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Organization of the day
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Goals

» Understand and apply concepts of optimal policy and
imperfect credibility.
» Mainly monetary policy but tools can be applied to other
frameworks, e.g. fiscal, macro-prudential.

» Provide you with a toolbox that is easy to use and allows
you to apply the concepts learned here either in your
research or policy work.

» Both theory and computer exercises.



Outline

» Simplest New Keynesian model:

» Time-inconsistent solution

» Time-consistent solution

> This will be derived and explained in a manner consistent
with recursive contracts theory and will set the stage for the
imperfect commitment settings.

» Central bank communication:
» State-contingent nature of commitment
» Targeting rules
» Monetary policy design
» Benefits of price level targeting
> Alternative policies

» Imperfect credibility



Outline

» Some theory behind solutions
» Toolkit of imperfect credibility

» Application to large scale models
» Smets and Wouters AER 2007 model

> What are the gains of achieving more credibility?

» How does the possibility of future re-optimizations affect
current outcomes and promises?

> How does imperfect credibility affect the shock propagation,
volatilities, and cross-correlations between relevant
variables?

» Does the policy response to some shocks require more
commitment? At what stages?



Introduction

» Managing expectations is crucial for determining optimal
policy:
» anchoring inflation expectations,
» providing forward guidance,
» speeches, announcements, press releases.
» Time-inconsistency problem (Kydland and Prescott (1977),
Barro and Gordon (1983)).



Introduction

» What is the source of the time-inconsistency problem in the
simplest New Keynesian model?

7t = kYt + BEimiq + Ut
¥t = Etyri1 — o (it — Eyme1) + 9t



Introduction

» What is the source of the time-inconsistency problem in the
simplest New Keynesian model?

Tt = kYt + BEtmiq + U
Yt = Etyry1 — o (it — Etmeyq) + 0
» By managing E;m; 1 and E;y;. 1, the central bank can
influence 7; and y;.

» In a rational expectations equilibrium, E;m; 1 and Ety;. 1
need to correspond with actual outcomes in period t + 1.

» There is an incentive to commit to a policy for t + 1 just
because doing so allows for better outcomes in period t.

> In t+ 1 there is an ex-post incentive to renege.



Commitment and stabilization policy:

V(u,gr) = max B BY{~(n? +\yP)}
Wit} 2 =0

s.t. mt = Kyt + BEtmi4q + Ut
Yt = Etyry1 — o (it — Ermpr) + G
Ut = puli—1 + cut
9t = pggi—1 + €g.t;

> Output gap target is zero: 72 + A (y; — y)? with y = 0

» We don’t need the IS equation. Exercise: Can you show
this formally?



Commitment and stabilization policy:
Write the Lagrangean:

V(ut, gt) =  max EoZﬂt (mE+ AV ) e (e — wye — BErmeps — ur)}

Yo

Crucial step: At time zero, the central bank decides a plan once
and for all.

» The expectation term E;m;,¢ can, therefore, be decided
upon directly.

» Law of iterated expectations: EqEimi1 = Egmiiq
And the problem becomes:

V(u, gr) = A, EoZﬁt (TF+AAYE)+e (7t — Kyt — Bt — U}
t,7Tt

We can take first order conditions here directly, but we will first
rearrange the lagrangean.



Commitment and stabilization policy:

Rearranging parts of constraints:

V(u,9t) = o (mo — kYo — B — Up)
+B8y1 (11 — ky1 — B2 — uy)
+8%y2 (w2 — KYp — Bz — Up) + ...
= [70 (mo — kYo — Uo)]
+B[v1 (71 — Ky — Uy) — vomi]
+B8%[2 (2 — kYo — Up) — y1m2] + ...

1. We can always shift forward the term 7;, 1 because there
are infinitely many terms going forward.
[Note: this would be different in a finite horizon.]

2. The period t = 0 is different, because there are no

expectations from period t = —1 to be shifted forward into
t=0.



Commitment and stabilization policy:

Rearranging parts of constraints:

V(u,9t) = o (mo — kYo — B — Up)
+Bv1 (1 — kY1 — Bz — Uy)
+8%y2 (w2 — KYp — Bz — Up) + ...
= [70 (mo — kYo — Uo)]
+B[v1 (w1 — Ky — uy) — vo71]
+B8%[2 (2 — kYo — Up) — y172] + ...

1. We can always shift forward the term 7;, 1 because there
are infinitely many terms going forward.
[Note: this would be different in a finite horizon.]

2. The period t = 0 is different, because there are no

expectations from period t = —1 to be shifted forward into
t=0.



Commitment and stabilization policy:

V(Ut,gt {max EoZ,B{ 7T +)\yt2)

yl‘a'n-t}t 0

+ vt (7t — Kyt — Ut) — Y17t}
AND v 4 =0

Taking first order conditions:



Commitment and stabilization policy:

V(v g) = max EOZ/B{ (7% + M%)

Ym0

+ vt (7t — Kyt — Ut) — Y17t}
AND v 4 =0

Taking first order conditions:

Ve — kYt — BEmi —Up =0
m 2T+t — 71 =0
Yii =2\t — k=0

v-1=0



Commitment and stabilization policy:
Rearranging the FOCs:

—2mt+v=0,t=0
—2m+ vt — -1 =0,t>1

» Exactly because the FOCs change fromf=0to f > 1,
there is a time-inconsistency problem. Why?

> If the FOCs were equal regardless of t then the solution
would be time-consistent.

» In period t=1, the central bank would like to implement the
FOC of period t = 0. Why?

» Remember, that past lagrange multipliers are associated
with past constraints and were just “carried forward”
because of expectations.

» How would we ignore a constraint? We put the lagrange
multiplier to zero.



Commitment and stabilization policy:

A side note for later:

We can express the past lagrange multiplier as a function of
other endogenous variables:

Yt = —2%}/[ fort > 0.

But again note that:

A
V-1 =0%#-2-y 4.
K

The time-inconsistency is still there.



Commitment and stabilization policy:

» The system had no endogenous persistence. But
commitment introduces persistence through ~;_1.

» Past lagrange multipliers «;_1 summarize the shadow
value of past promises that need to be fulfilled today.

» The lagged lagrange multiplier v;_4 is not a PHYSICAL
state variable, it measures past promises.

» The central bank would like to reset this variable to 0
(welfare of unconstrained maximization is higher than
constrained one).



IRF i.i.d. cost push shock under commitment

x10° Inflation Output
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IRF i.i.d. cost push shock under commitment

Impulse response function to a i.i.d. cost push shock — there is
no endogenous or exogenous persistence in the model.

» Previous figure shows persistence....

» There is a part in the graph where we can see that the
central bank is fulfilling previous promises. If the central
bank could, it would like to reoptimize. When (which
period)?



IRF i.i.d. cost push shock under commitment

» Above we discussed why it is not optimal ex-post. Can you
describe why such promises are optimal from an ex-ante
perspective?

V(Ut,gt) = max Eozﬁt{—(ﬂ'? +)\y[2)}
Wi} 20 =0

S.t. = Ky + ,BEtﬂ'H_1 + Ut



IRF i.i.d. cost push shock under commitment

» Above we discussed why it is not optimal ex-post. Can you
describe why such promises are optimal from an ex-ante
perspective?

V(u,g) = max_ Eg Y BY{~(xF + \yP)}
Wi} 20 =0

S.t. = Ky + ,BEtﬂ'H_1 + Ut

» A planner equates/distributes the trade-offs of shocks or
distortions across different 1) variables 2) states of nature
(insurance).



IRF i.i.d. cost push shock under commitment

» Above we discussed why it is not optimal ex-post. Can you
describe why such promises are optimal from an ex-ante
perspective?

V(u,g) = max_ Eg Y BY{~(xF + \yP)}
Wi} 20 =0

S.t. = Ky + ,BEtﬂ'H_1 + Ut

» A planner equates/distributes the trade-offs of shocks or
distortions across different 1) variables 2) states of nature
(insurance).

» A planner with commitment also equates/distributes the
trade-offs across time.



IRF i.i.d. cost push shock under commitment
Simple illustrative example for intuition:
» Intuitively, think that due to the cost-push shock, inflation

today goes up today by 2 units.
» Since the cost push shock is i.i.d., tomorrow inflation can

be at target.
» For simplicity, we set 8 = 1 and focus on inflation only.
Costs today  Costs tomorrow  ¢osts total

@ + 0 -

The central bank under commitment improves on this by
promising to be tough tomorrow on inflation. This implies a

reduction in inflation today.
Tt = Kyt + BEmiq + Ut
~—~ N——
N N
Costs today ~ Costs tomormow  ¢osts total

2 =
+ (-052 = 25

2)
}



Time-inconsistency and state-contingency

» We often associate commitment with lack of flexibility.

» We commit into something tomorrow that we will do
regardless of what happens tomorrow.

» Hence the expression “Commitment vs discretion”.

» Commitment allows you to influence expectations.
» But under commitment you can not react to future
unforeseen contingencies

» This is not what we are doing here.

» We are doing commitment that is state-contingent:
» Commitment allows the planner to decide today regarding
tomorrow;s policy, but what is being decided and what is
implemented does depend on shocks.

» Planner commits to implement policy action A if shock is x,
and implement policy action B if shock if y.



Time-inconsistency and state-contingency

x10° Inflation Output
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cost-push shock in period 1
cost-push shock in period 1 and 2
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Time-inconsistency and state-contingency

Blue line
» The shocks are uy = oy, U =0,u3 =0,u4 =0...

» At period t = 1, the planner knows the shock u; = o, and
handles it with a commitment policy.

> u» =0,u3 =0... is the expected path, so this one is easy to
plot to see the effects of promises.

» However, the commitment policy designed at t = 1 implies
a different 7, » for each level of the cost push shock.



Time-inconsistency and state-contingency

» The shocks are uy = oy, U = oy, U3 = 0,u4 = 0...
» Blue and green lines are not equal.
» This makes the point that the promises are
state-contingent.

> At t = 2 there is a similar type of response to thatat t = 1.

Promises are state-contingent. However, unexpected shocks
do not wipe out previous promises made at t = 1.
» Where can you see that?
> Note: compare inflation level at t = 2 green line with t = 1
blue line.
» Hence, we can describe the promise at t = 1 as: inflation
will respond to economic developments but inflation will be
set at a lower level than usual.



Time-inconsistency and state-contingency

Where was it in the math that commitment was state
contingent?



Time-inconsistency and state-contingency

Where was it in the math that commitment was state
contingent?

» Answer: When we applied the law of iterated expectations
and carried forward the lagrange multipliers.

> |f we do those steps “manually”, you can see that we have
one promise for each shock.



Time-inconsistency and state-contingency

o0
2 2
= max Eg > B —(nf + M) vt (mp — wyr — BErmpg — up)}
{yt,m} t=0

Write probabilities explicitly:

oo
= max Z Z El{—P (v.;[>(7r[2 + /\ylz) + P (w1>~/1 Tt — Kyt — B P (wr+1 |w1>7rt+1 —u |}
Wemih iz et Wit et

Put terms (t) apart from terms (t+1):

oo
= max S BiY{-P (W[) (7% + 2y %)+ P (Wt) y(mr — wyr — u) — P (Wt)%ﬁ S P (WH1 |W[)7fr+1}
R et Wt cat+

Arrange conditional expectations part:
oo
1
= max > B{~P (wt) (=% +xy %)+ P (wt) Velme—wyr—u) =B >, P (wt+ )Wm}

{yt:me} 120 wieqt Wt eqt+1

Finally shift terms forward:

oo
= max > B{-P (UJI) (=2 +2p2) + P (wt) Vi (7t — &Yt — Ut) — v¢—1P ("-") )
e i3 icat



Time-inconsistency and state-contingency

» The previous slide also shows more clearly why it is
appropriate to put forward the lagrange multipliers.
> At each node in time t we have enough terms for t + 1.

» Consider that we have one shock with two realizations.
» In each node, the “tree of events” unfolds into two

sub-branches.
» In each node, the expectations term has two elements that

can go into those two sub-branches.



Time-consistent policy:

Two changes:
1. The central bank can only decide on policies for t = 0.

> Policies at t = 1 are decided by another entity: different
selves or a different CEO of the central bank.

2. The central bank cannot affect private expectations directly.

VP(ur, gr) = max Ey {*(th +\e2) + BEVP (Ur 1, 9re 1 )}
{yfvﬂ—f}

st m = kYt + BEV (Upy1, 9t41) + Ut



Time-consistent policy:

Taking FOCs:

Ve mr— kYt — BEmi g — U =0
mp —2mi+v =0
Ye: =2\t — k=0

Note the following:

» FOCs are the same for t = 0 and t > 1. Policy is time
consistent.

» Previous period lagrange multipliers are gone.
» There is no endogenous persistence.



IRF i.i.d. cost push shock under discretion
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IRF i.i.d. cost push shock under discretion

» Since shock is not persistence, effects on variables
disappear immediately.



IRF i.i.d. cost push shock under discretion

Inflation Output
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IRF i.i.d. cost push shock under discretion

» Note that now green line in second period is at the same
height of blue line in first period.

What about the direct comparison of commitment and
discretion?



IRF i.i.d. cost push shock under commitment and
discretion @
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Commitment and communication strategies

» Discretion policy does not require communication: in future
periods, the central bank will do what it always does.
» Commitment requires communication:

» The benefits of commitment are only present because the
central bank communicates future policy actions to the
public and thereby manages effectively private sector
expectations.

> Important: Keeping promises that were not communicated is
a bad idea.

» Commitments are state-contingent and depend on the
evolution of the economy.
> |t's easy in the model but, in practice, it does not seem
easy to communicate commitment...



Riksbank’s Fan charts
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Commitment and communication strategies
Is it easy to distinguish commitments from forecasts?
» Think that the central bank also wants to communicate the
likely course of the economy...Why?

» One of the reasons that we believe in Rational Expectations
(or believe in it somewhat) is that certain institutions can
compute forecasts for us.

Commitment versus communicating the state of the economy
may be hard to distinguish
» This became a big issue during the Great Recession and
because of the ZLB.
» Two papers that try to address this:

» Bodenstein, M. , James Hebden, and Ricardo Nunes
“Imperfect Credibility and the Zero Lower Bound on the
Nominal Interest Rate”, Journal of Monetary Economics,
2012.

» Campbell, J., Jonas Fisher, Alejandro Justiniano, and
Leonardo Melosi“Forward guidance and macroeconomic
outcomes since the financial crisis,” in NBER
Macroeconomics Annual 2016.



Additional Issues of Implementing Optimal Policy

» Communication and State-contingency v/

Next:
» Implementation of optimal policy. Interest rate rules.
» Targeting Rules.
» Expectational interest rate rules.



Additional Issues of Implementing Optimal Policy

» Once we solve the optimal policy outcomes. We can obtain
laws of motion for inflation and output as a function of the
state variables:

mt = ay;_1 + buy (1)
Yt =cyi_1 + duy. @)

» One can then ask the question: How do we implement this
outcome?



Additional Issues of Implementing Optimal Policy

» We often think about interest rate rules.

» We can plug the laws of motion (1) and (2) into an interest
rate rule of the type:

It = Onmt + Oyt

» In these type of exercises, we often find that the
equilibrium is not unique.

» There are several versions of this result...
» One can also find coefficients ¢, and ¢, that are consistent
with the optimal policy.
» But again some of these interest rate rules do not lead to
an unique equilibrium.

» We now discuss an alternative: Targeting Rules.



Targeting rules
Targeting rules are the FOCs of the system written in a
compact way
A
T (Yt = Yi-1)
This seems very easy, as simple as an interest rate rule such
as it = ¢xmt + Py Y.

Tt —

When we consider the system with an interest rate rule we do:
mt = kYt + BEtmiq + Ut
Yt = Etyri1 — o (it — Etmeyq) + G
It = ¢rmt + Py Yt
Now we do:
mt = kYt + BEimi 4 + Ut
Yt = Etyry1 — o (it — Ermpr) + 9t

A
=== (¥t — Yt-1)

¢ _
K



Targeting rules

» Of course this system implements optimal policy. It is the
system of equations for optimal policy!

» The economics of this are the following: The central bank
announces that inflation will be kept at a level inversely
proportional to the growth rate of the output-gap.

» If the public believes and understands the system of
equations then this is all correct!



Targeting rules

The targeting rule purposefully abstracts from the
implementation.
» Advantages
» Several instruments (interest rates, communication, forward
guidance, quantitative easing, money)
» Are you a micro-manager?

» Do you tell the taxi-driver the final destination or how many
times to turn left and right, and which pedals to press?

> |sn’t this what the public should actually know?

» Disadvantages
» Sure... Ok... but how do we implement it?
> |f you are the client in the taxi or in the restaurant, you care

about the targeting rule. But... What if you are the driver or
the chef?



Targeting rules

Targeting rules are certainly useful, but some considerations:

» The model consists of 2 constraints. The target rule is
“just” 1 equation — nearly as complicated as the entire
description of private agents behavior.

> |f one considers more complex models, targeting rules
start looking very complicated.

> Sometimes it may not be immediate to eliminate/substitute
lagrange multipliers.



Targeting rules and Expectational Interest Rate Rules

» What is the relation between Targeting Rules and
Instrument Rules?

» There is not necessarily a strict relation if the interest rate
rule is too simple. Remember that sometimes it is not
possible to obtain a unique equilibrium with some interest
rate rules.

» Evans and Honkapohja, 2003. Review of Economic
Studies.and Evans and Honkapohja (2006). Scandinavian
Journal of Economics make an important point.



Targeting rules and Expectational Interest Rate Rules
Reverse engineer a rule such that the system:

Yt = Etyty1 — o (it — E¢mgq) + 9t
i = F(...)

is equivalent to the system:
Yt = Etyrp1 — o (it — Etmyq) + G
=2 - y1)
=T Y —Yi-1)-
This is always possible to do. Rearrange the IS equation:

. 1
it = Etmepq — p (Yt — EtYir1 — gr) -

Now sum the FOC: ¢ + 2 (y; — y4—1) = 0

] 1 A
it = Eymiyq — ;(Yt — EtYry1 — gt) + 1 + E(Yt —Yi_1)-



Designing Monetary Policy objectives:

» Assumption 1: It is not possible to conduct
time-inconsistent policy, the central bank would renege.

» Assumption 2: Society can design a central bank at the
beginning of time, and will abstain from interfering with

monetary policy.

Are these two assumptions compatible?
» McCallum, B. T., 1995 AER critique

» Any defense?



Designing Monetary Policy objectives:

Society’s utility:
—Eo Y B'(7f + M)

t=0

Central bank’s utility:
—Eo > B'(7F + Acsyd)
t=0

Acs is chosen by society to maximize its own utility. (theory of
the second best)



Appointing a conservative central bank

The FOC of time-inconsistent policy is:

A
WtZ—E(Yt—YH)-

The FOC of the central bank is:

Acs
T ==y
K

» This policy design does not create persistence and is not
very helpful as a shock stabilization policy.

» This policy is more helpful to mitigate the inflation bias due
to a positive output-gap target y > 0.
» Time inconsistent FOC: m; = —2 (y; — y1_1)
> Central Bank FOC: m; = — 2% (y; — y)
> Lower A\gg makes “wrong” term [A¢cgy] become smaller.



Price-level targeting:

Intuition, a FOC of the type

A
Pt =—Wt
K

implies the correct law of motion:

A
YVt — Yiz1) -

= ——
K

The central bank preferences

Eo) B {(Pt)2 + )‘CBYtz}
t=0



Price-level targeting:

Intuition in relation to the i.i.d. cost push shock:

» Step 1: When the cost-push shock hits, inflation goes up
and the price level goes above target.

» Step 2: The central bank immediately faces an incentive to
bring the price level down next period. Therefore, inflation
next period will be below target mimicking the commitment
solution.



Speed Limit Policies

The FOC of time-inconsistent policy is

A
T = _E(yt — Yi-1)

The FOC of time-consistent policy is

A
Tt=——Wt
K

What if we substitute in the objective function y; by (y: — yi—1):

Eo Y BY{~(7F + Aca (vt — Yi1)?)
t=0



Speed Limit Policies

Intuition in relation to the i.i.d. cost push shock:

» Step 1: When cost-push shock hits, inflation goes up and a
recession is in place.

» Step 2: The central bank objective IS NOT to end the
recession immediately (y;.1 = 0). The objective is to
smooth the recovery (Vi1 — yi) -

» Step 3: In doing so, the recovery is slower and inflation is
below target.



Other Policies

Looking at the objectives, FOCs, and IRFs what other types of
delegated objectives do you think would have a chance at
improving welfare?



Other Policies

Looking at the objectives, FOCs, and IRFs what other types of
delegated objectives do you think would have a chance at
improving welfare?

» What about interest rate inertia through a term (iy — i;_1)??



Other Policies

Looking at the objectives, FOCs, and IRFs what other types of
delegated objectives do you think would have a chance at
improving welfare?
» What about interest rate inertia through a term (i; — is_1)2?
» What about nominal income growth targeting through a
term [(pr + Xt) — (Pr—1 + Xt_1)]??
> Note that: (pr + X¢) — (Pr—1 + Xt—1) = 7t + Xt — Xt—1



Other Policies

Looking at the objectives, FOCs, and IRFs what other types of
delegated objectives do you think would have a chance at
improving welfare?
» What about interest rate inertia through a term (i; — is_1)2?
» What about nominal income growth targeting through a
term [(pr + Xt) — (Pr—1 + Xt_1)]??
> Note that: (pr + X¢) — (Pr—1 + Xt—1) = 7t + Xt — Xt—1

This debate is still ongoing...
» For a recent proposal of price level targeting see:

Ben S. Bernanke (2017) Monetary Policy in a New Era,
Brookings Institution, October 2, 2017.



Other Policies

Usually the weights on the different variables are found
numerically:

» Solve for the law of motion that the central bank
implements

» Calculate welfare for society

» Find the optimal Agg with a numerical solver or solve it in a
grid.



Welfare Clarifications:

» Welfare under commitment is < > than under discretion?
» Why?
» So what is the temptation to renege?

Notation:
> The path chosen at date T with commitment {y™, 7F7}5°
» Important: for commitment we are distinguishing between
the period of the allocation (t) and the period in which the
path was designed (T).
> Attime T = 0 planner designs the plan. Inflation at period
t = 1 in this path is given by 7r1C°
» Attime T = 1 planner decides the plan. Inflation at period
t =1 from this path is given by 7T1C‘
> The path chosen with discretion {y?, 7P},



Welfare Clarifications:
Problem from period t = 0:
Welfare of commitment policy is higher than that of the
discretion policy.

—Eozﬁf(n 24P > EZBf(wD)%A(y))

t=0

Then at period t = 1:
But later on, promises start to be binding and the central bank
would like to reoptimize:

_E1 Zﬁt—1((ﬂ_t00)2+)\(yfo)2) < _E1 Zﬁt—1(ﬂ_tc1 )2+)\(th1)2)

t=1 t=1

At a later date, commitment may be worse than discretion:

—Er Y BN (R HA)R) 77— Er Y BT (7))

t=1 t=1



Imperfect Credibility

Two common ways to address optimal policy:
» Commitment (Time-inconsistent)
» Discretion (Time-consistent)

Commitment Discretion
Policy plan covers Entire future  Nothing beyond current period
Reoptimizations Never Always
Ability to make promises Perfect Inexistent

Some reasons for imperfect credibility:

1. time-varying composition of monetary policy committees
and central bank staff,

2. outside pressures of varying intensity,
3. economic research,
4. unforeseen events.



Model: imperfect credibility

Planner makes state-contingent promises regarding the entire
future.

At the beginning of each time period, the occurrence of a
re-optimization is driven by a two-state Markov stochastic
process
X _{ 1 with Prob. n
t=1 0 with Prob. 1 — 7

with0 <n <1

» x; = 1 previous promises are honored and the previous
plan is continued.

» x; = 0 previous promises are not honored and a new plan
regarding the future is made.



Model: imperfect credibility

Commitment:
V(u,gr) = max  Eo Y BY—(nf + Ay}
e}, —o

S.t. mt = Kyt + BEimi 1 + Uy
Discretion:

VP(ur, gr) = max Ey {—(th + 2Y2) + BEVP(Uriq, Gria )}

Y, 7t

s.t. ¢t = kYt + BEV (Uts1, 9iv1) + Ut

Imperfect Credibility:

oo

VO(ur, gr) = oA, Eo Y (Bn) {=(7F + Myi®) + B (1 =) VP(Uri1,Gri1)}
Tt} o —o

st m = Kyt + BnEmi + B (1 —n) EV (U1, 9e1) + Ut



Model: imperfect credibility

ND

ND



Model: imperfect credibility

Denote U; = —(72 + Ay?). Covering all the terms in the “tree”:
VP = Ur+ BnUs + B(1 =) V2, (3)
+ 8202 Upra + B2 (1= m) VB2 + ..
Rearranging:
VtD =U+8(1—-1n) V13-1 (4)
+ 81 {Ut+1 +8(1—n) Vtﬁz} +

e {Ut+2 +B8(1—n) vgs} ;o

Writing this as an infinite sum:

oo

VP =E > (Bn)' {Ui+ 801 —n) VB4 (5)

t=0

Or alternatively (we will come back to this), consider the
recursive representation and solve forward:

VE (ovet) = Ur + BnVE () + B(1 —n) VB, (6)



Model: imperfect credibility

» This approach cannot address the reasons of default, but
can address the consequences.

» The central bank and private agents are aware and
internalize reoptimizations.

» Analogous approach to Calvo-Yun pricing.

» Debortoli and Nunes (2010) show that results are similar
when defaults are time-dependent.

» Simplicity is required for implementation in large scale
models and this framework moves away from perfect
commitment or no-commitment at all.



Some theory behind commitment solution

> In models without time-inconsistency, recursive
programming techniques prove that a solution exists and is
a function of certain variables (state-variables).

max E tU(Ct, Kiot, Ks, S
{CiKi,Ki}iZo Ogﬁ (Ct, Kev1, K, st)

S.t: Kt+1 :g(Ct,Kt,st) t=0,...0
St exogenous and Markov



Some theory behind commitment solution

One can prove that a value function exists with certain
properties:

V (Ko, S0) =  max  Eo» B'U(CP K1, K st)
{Ct,Kis1,K} 2 —

V(Kt, st) = U(Ct, Kir1, K, 8t) + BEtV (Kis1, Ste1) -

One can prove that the optimal allocations Ct, K;. 1, Kt can be
written as a time-invariant function ¢ that depends on the state
variables:

{Ct,Kiv1} = o (Kt, st) -



Some theory behind commitment solution

> These results are often forgotten because we use them
without almost even noticing. We use these results when:
» solving a model in any toolkit (Uhlig, Sims, Dynare). These
solutions imply a guess and verify where we start with a
function of state-variables.

» solving for nonlinear models where we assume a functional
form for the solution.

» In both cases, we assume a policy function and can only
assess that it converged according to some criteria (and
always up to machine precision).



Some theory behind commitment solution

Some papers have extended the recursive programming
techniques to problems with time-inconsistency.

Vi, g) = max £y > BY=(xF + i)}

YTt § g —0

S.t. m = Kyt + BEimip1 + Ut
Taking first order conditions:

Ve — kYt — BEm 1 — U =0
2T+ — -1 =0
Yei =2\t — k=0

7-1=0

The solution can be characterized as a function of the usual
state-variables (in this case u;) and the previous period
lagrange multipliers associated with forward-looking constraints

(Vt-1)-



Writing the commitment problem recursively:

V(ut, 9t,7t—1) = min max Et{—(ﬂtz + )\}’tz) + 7t (7t — kYt — Ut) — Yi—17t}
{7} {yeme}

+ BV (Uts1, 9t+1, 1)
¥-1=0

Min Max formulation is only useful to prove some theorems.
The bottom line is:

» The lagged lagrange multipliers associated with forward
looking constraints need to be included as state variables.

» There exists value function: V(us, g¢,v¢-1)
» There exists an optimal policy function: ¥ (ut, gt, vt—1)



Imperfect Credibility:

oo

VP(ur,g) = max_ Eo Y (Bn)' {=(f + \y®) + B(1 —n) VO(Ur11, G111}

ORI (=
st. m = wyr + BnErmegr + B (1 — 1) BtV (Uts1, Gre1) + Ut

Map this problem into a regular commitment problem
» For given VP and V, this formulation maps directly into
usual commitment problems.
» Discount factor is 8n
> |n the objective function, we have an infinite sum covering
all the commitment terms.

» We have forward looking terms in the constraints.



Imperfect Credibility:

Writing the imperfect credibility problem recursively:
V(ut, gr, vt—1) = min max Eo{—(7? + \y;?)
{ve} {yeme}
+ BV (Ursr, G, v) + B(1 =) VP (Urer, 9r41)}
+ e (me = Kye — B(1 —n) BV (Uts1, Gr1) — Ut) — Y17t
v-1=0

Then the regular proofs of commitment apply and we can establish
the following:

1. The value function exists and is defined as V/(u:, gt, vt—1) where
the previous period lagrange multiplier is a state variable.

2. The optimal allocations solving this problem can be summarized
by a time-invariant function: (y:, m:) = ¥(ut, 9¢, vi—1)-



Imperfect Credibility:

Writing the imperfect credibility problem recursively:
V(ut, gr, vt—1) = min max Eo{—(7? + \y;?)
{ve} {yeme}
+ BV (Ursr, G, v) + B(1 =) VP (Urer, 9r41)}
+ e (me = Kye — B(1 —n) BV (Uts1, Gr1) — Ut) — Y17t
v-1=0

Then the regular proofs of commitment apply and we can establish
the following:

1. The value function exists and is defined as V/(u:, gt, vt—1) where
the previous period lagrange multiplier is a state variable.

2. The optimal allocations solving this problem can be summarized
by a time-invariant function: (y:, m:) = ¥(ut, 9¢, vi—1)-

Note: we have still not defined the equilibrium. What is V2 and w?



Solution — Equilibrium Definition

The equilibrium with imperfect commitment satisfies the
following conditions:
1. Given {yP, =P} ", and the value V7, the path {y, m:};2,
solves the problem of the central bank in sequence form.
2. The value function V7 is such that
VO(u, gt) = V(ut, gt,vi—1 = 0) and V is defined by the
recursive formulation of the central bank’s problem.
3. Denote the optimal policy functions as
(1, mt) = ¥(Ut, 9, vt—1). The pair (yP, =P) satisfies the
condition (y?, 7P) = v (ut, g1, 0).

Note: we abused notation earlier on and wrote
D
Tt = Y(Uer1, 1)



Solution — Equilibrium Definition

» What this means is that when there is a default, the
optimization problem re-starts again without binding
promises.

» Hence the value function and the optimal functions are
exactly the same, but taking into account that previous
promises are reneged on.

> It's a problem that restarts itself but obviously unlike
promises, the physical state variables remain...

» Note that we could have defined analogous but different
problems:
» We could assume different commitment conditions when a
default occurs.
» We could also incorporate political disagreement and
different parties.



Literature

» Imperfect credibility setting: Roberds (1987), Schaumburgh
and Tambalotti (2007), Debortoli and Nunes (2010).
» Full-commitment:
» Optimal policy in linear quadratic: Currie and Levine (1993),
Soderlind (1999).
» Solution algorithms: Uhlig (1995), Klein (2000), Sims
(2002).
» Discretion (Markov-perfect equilibria):
» Optimal policy in linear quadratic: Backus and Diriffill
(1985), Soderlind (1999), Dennis (2007).
» Solution algorithms: Krusell, Quadrini, and Rios-Rull
(1997), Judd (2004), Klein, Krusell, and Rios-Rull (2008).



Road map

DONE:
» Time-inconsistent solution. v/

» Time-consistent solution. v/

» Central Bank Communication. v/

» Designing monetary policy objectives. v/
» Imperfect Credibility. v/

» Some theory behind solutions. v/



Road map

NEXT:
» General model.

> Toolkit.

» Application to the Smets and Wouters (2007) model:
» What are the gains of achieving more credibility?

» How does the possibility of future re-optimizations affect
current outcomes and promises?

» How does imperfect credibility affect the shock propagation,
volatilities, and cross-correlations between relevant
variables?

» Does the policy response to some shocks require more
commitment? At what stages?



Model: general form

Consider a general linear model
A_1Yi1+ Aoyt + AtEtyi1 + By =0, vt

where y; is a vector of endogenous variables, v; is exogenous
with Evy = Evivi_; = 0, Eviv{ = L.

Models with more lags and leads, lagged expectations,
constants, and serially correlated shocks can be
accommodated by expanding the y; vector.

The policymaker is assumed to have a quadratic loss function

[e.9]

> By Wy

t=0



Model: general form with imperfect credibility

The central bank’s problem can be written as:

Yo Py +d= {}f/“ig‘o E_4 Z (Bn)' [yiWye + B(1 —n) (v{Py: + d)]
Hi=0 t=0

stiA 1yi1+ Aoyt + nAEwyia + (1 —n) AEyP, + By =0Vt >0

Analogy with earlier model:
> Value function when reoptimizing at time ¢ + 1: (y{Py; + d)
» Using the Markov-perfect assumption:

Eiyf4 = Hy:.

» We considered 77, ; = W(U1, Gr41) and %;;g’“) =0

> Butif 75, = W(Urs1, Gryr, mr) then Z2epdirml 4o



Solving Imperfect Credibility

» The solution is a time-invariant policy function with the
Lagrange multiplier vector v;_¢ as co-states.

{Yt}:["’yy Hyv][}’H]Jr[Gy}vt
Yt Hvy H’w Yt—1 67 ’
where the matrices H and G depend on the unknown matrix H.

» When a re-optimization occurs in period t, v;_1 = 0.
» This feature is not imposed. The theory shows that the

optimal policy functions have this characterization.
P—H G
Yi yyYt—1 + Gyt
D
Etyri1 = Hyyi

» Therefore:



Solving Imperfect Credibility — Lagrangean

Form the Lagrangean and take first order conditions
L=E_> (8Bn) {}’; W+ (1 =n) 8Py + 7187 Ay

ol [AAYH + (Ao +(1=n)A /:/) Yi+ BVt} }

v-1=0
l:I ,y_1 given.



Recap on matrix differentiation
Consider the expression (x’a), where (x) is a vector of
variables and (&) is a vector of parameters of size (n x 1).

Example of n = 2:
Xa=[x x| a1 | xay + xean
a

Note that x’a is of dimension (1 x 1). This is the same as the
Lagrangian, we are optimizing one objective function.

Matrix differentiation:
0 I 0 A
o (x'a) = B (X181 + Xoap) = { a }
The "rule" is that when differentiating with respect to a vector
the result is a vector. Hence, we have:
0

e (x'a) = a



Recap on matrix differentiation (cont.)

Also note that since x’a is of dimension (1 x 1) :

Hence we have:



Recap on matrix differentiation (cont.)
Finally:

At As2 } [X1 ]
XAx =] xy x
[x e ] Axi = A Ax X2

X
= [ x1A11 + XeA12  X1A12 + X2Azz | [ x; }

= (x1)2 A1y + Xox1 Atz + X1 X2 A1 + (X2)? Ao
= (x1)? Aqq + 2x2x1 A1z + (%2)% Agp

0
o ((X1 )2 Art + 2xox1Arz + (x2)? A22> = [

2x1A11 +2x0A12
ox

2x1A12 + 2X2A22
:2[ Aqq A12][X1]
Axy = A Ax Xo

Hence: X' Ax) = 2Ax

ax



Solving Imperfect Credibility — FOCs

L=E_) (Bn) {y{ W+ (1 =) 8Pyt + 71187 Ayt
t=0

o [A_1yt_1 + (Ao +(1—1n)A F/) Vi + th} }

v-1=0
H,y_1 given.
oL -
Fve A_1Yiq+ |Ao+ (1 —n) Ay H} Yt +nA1Ety 1 + By =0
oL N/
S =2Wy+28 (1 =) Pye+ (Ao+ (1= ) Al)
Yt

+Z,87 Ayt + BnA_ 1 Eryeyr = 0.



Solving Imperfect Credibility — FOCs

oL

5 = A_1yt—1 + [Ao+ (1 —n) AtHyyl vt + nA1EtYrer + By = 0
oL

By, = 2+ 8 (1 =) ALy By o+ (Ao + (1= ) AvHy)

+ In5_1A/1 Yi—1 + BUA,_1 Et’)/t_H =0.

Three notes: y
First, substitute H = Hy, .

Second, we have already substituted the envelope condition

oY1 Pyt oy; Py;
TV T 2Py, = A AP — N _opy, A D
Yr s Yt-1 —17t oy Yt —1 BtV

Third, 7, = 0if =0 and Z, = 1 if > 0.



Solving Imperfect Credibility — rearranging FOCs

Use the law of motion:

Yi | _ | Hy Hyy ] [ V-1 ] [ Gy ]
- + v,
[ Tt } { Hy Hyy Yt—1 G, !
Substituting:

Etyi1 = Hyyt + Hyyvt
Et7t+1 = Hvy}’t + H’w%‘

Envgy = Hyt,

One obtains:
07| 2W+BA_H,y Ay+(1—n)Hy A, + A H,,

_ | A 0 [ B
= ] mele]



Solving Imperfect Credibility — rearranging FOCs

Hence we arrive at:

Yt Y1
r +T + Ty =0,
SRR R R

The resulting law of motion is

[ Yi ] _ _|-61|—1 [ Yt—1 ] —ra1|_th,

Tt — | M1 | ~——
H G

We started with a law of motion of this type. But the H and G
that we started with are not the same as this one.



Solving Imperfect Credibility — Iterative Algorithm

In summary, the algorithm proceeds as follows:

1. Using a guess Hgyess, form 'y and I'y.

2. Compute H= —T,'T}.

3. Check if |[|H — Hguess|| < &, where ||.|| is a distance
measure and £ > 0. If the guess and the solution have
converged, proceed to step 4. Otherwise, update the
guess as Hyuess = H and repeat steps 1-3 until
convergence.

4. Finally, form ', and compute G = —T; T,

Clearly, there are alternative algorithms to the one proposed.
For a given H the system of equations could be solved:

» using a generalized Schur decomposition as in Blanchard
and Kahn (1980),

» solving a quadratic matrix equation as in Uhlig (1995),
» using a Newton-type method to find H.



Imperfect Credibility — Welfare

One can also determine matrix formulas for conditional and
unconditional welfare.



Application: Smets and Wouters (2007) model

| 2

>

Nominal frictions — sticky price and wage settings allowing
for backward inflation indexation.

Real rigidities — habit formation in consumption, investment
adjustment costs, variable capital utilization, and fixed
costs in production.

Six orthogonal shocks: total factor productivity, two shocks
affecting the intertemporal margin (risk premium and
investment-specific technology shocks), two shocks
affecting the intratemporal margin (wage and price-markup
shocks), and an exogenous government spending shock.



Application: Smets and Wouters (2007) model

» All parameters are calibrated to the posterior mode as
reported in Smets and Wouters (2007).

» No interest rate rule nor the associated monetary policy
shock. Instead, the central bank solves an optimal policy
problem.

» The benchmark formulation is given by
Up = werf + wyyg + wi(ip — ir—1)?,
while the alternative specifications takes the form
a2

a 2 2
Ut = Wﬂ—ﬂ't + Wyyt + Wi It .

Following Woodford (2003), w, = 1, w;, = 0.003,
wP = 0.0176, and w? = 0.0048.



Application: relative welfare

Relative welfare is defined as (V;, — V,—0)/(V;)=1 — V,—0)

relative welfare

0.9
0.8
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0.6
0.5
0.4
0.3
0.2
0.1

Benchmark objective

0.5
commitment probability — vy

relative welfare

0.91
0.8
0.7
0.6
0.51
0.4
0.3
0.2
0.1

Alternative objective

0.5
commitment probability — vy




Application: Credibility and volatilities

Higher credibility — better management of the policy trade-offs
because forward guidance is more effective as a policy tool.
Does higher credibility translate to lower volatilities of all welfare

relevant variables?

O.5w,

5w

\

L

2w _ =W
4.6 . . . . o.5 Y

o.1 0.2 0.3 0.4 0.5 o.e a.5 E3 5.5 6

Y=0.5 ----y=1 y




Application: Credibility and simple interest rate rules

» The optimal policy can be implemented through targeting
or interest rate rules.

» In DSGE models it is common to model the central bank’s
behavior through simple reduced-form interest rate rules.
Clearly, such behavior is affected by the degree of
commitment 7.

» How are changes in n captured by the parameters of a
simple rule?

» We perform a Monte-Carlo exercise taking our optimal
policy model as the pseudo-true data generating process
and estimate the rule

It = Qjlt—1 + OxTt + Oy Yt + €t,



Application: Credibility and simple interest rate rules

Benchmark Loss Function Alternative Loss Function U.S. Data
1 0.9 0.5 0 1 0.9 0.5 0 (1970-2008)

b 0.241 0.207 1.204 1.914 0.175 0.057 0.725 2.334 0.128

(0.047) (0.103) (0.141) (0.048) (0.043) (0.138) (0.312) (0.072) (0.039)
by 0.002 -0.003 0.059 0.105 0.002 -0.010 -0.030 0.12 0.042

(0.003) (0.007) (0.014) (0.005) (0.002) (0.009) (0.033) (0.008) (0.009)
N 0.971 0.926 0.875 0.75 0.972 0.843 0.503 0.159 0.926

(0.022) (0.033) (0.038) (0.015) (0.022) (0.06) (0.062) (0.027) (0.028)
R? 0.923 0.865 0.843 0.977 0.921 0.759 0.416 0.930 0.947

» Some Features:

» ¢; increases with ),
> R?is higher for  close to 0 and 1.

» Plausibility of n = 0.9:
> ¢y ~0,
> ¢ is high,
> ¢, is plausible.

» Coefficients in simple interest rate rules may change even
though preferences have not.



IRFs with imperfect commitment

For given initial conditions y_+, v_1, and histories of the shocks
{Vt, Xt}{_o, the model simulation follows the formula

Yt Y1
=H Gv;.
[ Yt ] [ XtVt—1 } o

A history of the shock driving the re-optimizations (x;) should
also be specified.
Some interesting histories:
1. x; = 1Vt — an important history to influence expectations.
2. xt =1Vt # m, xm = 0 — effects of reoptimizing in period
m).
3. Averages across many histories of {x;}f: o — average path.



Application: IRFs, n = .9, wage markup shock
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Application: IRFs, n = .9, wage markup shock

» Imperfect credibility is NOT the average of discretion and
commitment. The response of the nominal interest rate
does not lie between full-commitment and discretion.

> The uncertainty about future reoptimizations affects the
path where reoptimizations do not occur.

» Optimal response implies promising a deeper recession
and low inflation.

» With loose commitment, the interest rate needs to be higher
because of expectations of future reoptimizations and
associated reductions in interest rates.

» If a reoptimization occurs these promises are abandoned:
inflation and output gap are increased through a reduction
in the interest rate.

» Welfare gains of reoptimization are higher roughly after 9
quarters (both inflation and output gap are below target.)

» Commitment seems to be more important for markup
shocks than productivity or demand shocks.



Application: IRFs, n = .9, productivity shock

Output gap

Wage inflation
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Application: IRFs, n = .9, gov. spending shock

Output gap x 102 Price inflation

_10 o =
5 10 15 20 o 5 10 15 20
Gov't expenditure shock x 10°° Gains from reoptimization
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Application: Effects on second moments

Model U.S. Data
Full-Com. Loose Commitment Discr. | (1970 - 2008)
0.9 0.5

Standard deviation (w.r.t. output)

Output-gap 0.83 0.84 0.83 0.83 0.74
Price inflation 0.04 0.04 0.06 0.07 0.21
Wage inflation 0.08 0.08 0.08 0.09 0.26
Interest rate 0.09 0.15 0.21 0.18 0.29
Cross-correlations with output

Output-gap 0.87 0.88 0.86 0.86 0.90
Price inflation 0.05 -0.17 -0.66 -0.70 -0.13
Wage inflation 0.21 0.13 -0.29 -0.38 0.05
Interest rate -0.34 -0.49 -0.56 -0.56 -0.32

Some observations, when 7 |:
» 4th row: o(/) T (because less commitment means less
persistence).
» 6th row: p(out., ) | (because of markup shocks).
We are not estimating parameters but ... for n = 0.9:
» 6th row: p(out., ) <~ 0
» 7th row: p(out.,my) >~ 0
> 4th row: relative o (/).



Application: variance decompositions
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Application: variance decompositions

Patterns:
» Interest rate:
» Demand shocks: n | does not affect much the volatility of j;.

» Markup shocks: n | increases the volatility of ;.

» All variables:

» 1 | the importance of wage markup shocks increases.
» This is the shock that requires relatively more commitment.



Closing remarks

» We hope you enjoyed this course and the CIMS Summer
School.

» Hopefully these tools and concepts are of use to you in the
future.

» Any feedback is much appreciated.

» We are more than happy to provide e-mail support on the
course materials. Email us at:
ricardo.nunes@surrey.ac.uk, d.park@surrey.ac.uk and
l.rondina@sussex.ac.uk.
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Additional Material



Determining Unconditional Welfare:

We follow the steps in Marcet and Marimon (1998) to write the
value function.

We add the constraints to the objective function, which does not
alter its value, since in equilibrium the constraints equal zero.

The value of the objective function can thus be written as:

sup inf E_ Z B’Y) }’tW}’H‘BU -7) (J/;Pyt"i"d) + (7)
(e, Wiz t=0

+ X (Ao + (1 =) AtHyy) ¥t + YA Vi1 + AtYio1 + Bvy)]



Shifting the forward looking variables we have that:

o0

sup inf E_1 Y (B [yiWyi+B8(1 =) (ViPyi+d) + (8)
e, o P

+ A (Ao + (1 =) AtHy) yi + Atyi1 + Bvy) + 57 /\'HAM/J
)\L1 - 0

For any initial condition [ y;_; A;_, ] the welfare measure,
unconditional on the first realization of vy, is given by

/
Vi1 Bl Yt—1
P d. 9
[/\1—1] {)\1—1}+ ©)
Unconditional welfare must take this form because:

1. y;_1 and \;_q are state variables

2. unconditional welfare cannot depend on the current shock
3. welfare is linear quadratic
4

. A constant absorbs the effects of second moments.



Using the functional form for unconditional welfare, the previous
problem can be written recursively as:

y "B ¥ / -
20 1220 Jeomspipesbomesu (4 ][5 ]-0)«
t
A7 (Ao + (1 =) AtHy) vi + A_1yi—y + Bu) + 87 A4 Ayit

cor([ TPl )

In order to obtain the measurerf unconditional welfare we
need to determine the matrix P and the scalar d.



The matrix P can be obtained as a derivative of the value
function with respectto [ y;_; X4 |

5 V-1 | _ 0o A vi |
Gl Ry PP | S

o 0 A,_1 Yt—1 _

This implies that:

5 1] 0 A,
P_2[51A1 0 ]H. (13)

Notice that in the most pertinent case with initial conditions
At—1 = 0 the only relevant term would be the upper left block of
P, which equals A" H,,.



The constant d can be obtained considering that the recursive
problem can be written in matrix form as (terms in blue are from

the constraints):

/
Y1 Bl Yi—1
P +d=
[)\t1 ] [)\t1 ]
/
Yo | | W
]
= Et—1 / 1 A
4 YI‘ 0 B A1 Yt—1
At A_q 0 At—1
where V =

[ w 0

Jeo-n[4 o]

}+{g]w>+ﬂd

O -

0
0

\

]—i—ﬁfyﬁ

/



Substituting the law of motion of [ y; A; | we obtain:

[ Vi1 ]/ﬁ[ Vi1 ]+d: (15)

At—1
(H{ {‘;‘1 }Jer[)/V(H[ {’;‘1 ]+Gv,)
— ! —1 a7

([ Tren) ([, PN [ 2 1o ] 8 )u) woe

Focusing only on the constant d and noting that E;_1v; = 0, we
must have:

d=E 1vG (VG+[gth+5d (16)

Now apply the rule of the trace tr(ABC) = tr(CAB) = tr(BCA)
and rearrange:

d:116tr[ZV<G’VG+G’[gD]. (17)




Determining Conditional Welfare

We can now compute the conditional welfare, which is defined
as follows:

Yt—1 " v - , Yt - Yt ~
At—1 Pl At—q +d=y Wy +B(1 —7)E 0 P 0 +d (18)
vt vt Vi1 Vi

+ A7 (Ao + (1= ) Arky) ye+ A1yt + ABY) + B A4 Ay
G . )G ~

+ BYE M | Pl x| +d
Vi1 Vi1

The expectation of conditional welfare must be unconditional
welfare:

/

Yt | n ~ '

El| M | P| X |+d :<[§’]P{yt}+d>
Vi1 Vi1 !



Determining Conditional Welfare

We can now compute the conditional welfare, which is defined
as follows:

Yt—1 " v - , Yt " Yt -~
At—1 Pl At—q +d=y Wy +B(1 —7)E 0 P 0 +d (18)
vt vt Vit Vi

+ A7 (Ao + (1= ) Arky) ye+ A1yt + ABY) + B A4 Ay
Yt ' Yt ~

+ BYE M | Pl x| +d
Vi Vit

The expectation of conditional welfare must be unconditional
welfare:

!/

Yt | _ P

El| M | P| A |+d :<[KI]P{§t}+d>
Vi1 Vi41 ‘ ‘

Substituting the terms in blue we obtain the next expression:



Using this relation to rearrange the expression for conditional
welfare we obtain the expression:

AR R raemeaa—a ([ 5 ]2 4 ] +a)s )

Vi Vi

—1
+ A7 (Ao + (1= 9) AtHyy) ye + \A_1vi_1 + \{Bu) + B ' A_y Ayt

eor([ X TP R ]+0)

Writing the problem in matrix form, and substituting the law of
motion for [ y; A: | we obtain:

o = R O A e RO R
(H[ i\”[: ]+Gv,)/ ([ A21 57(;*‘4 ] [ i\"[:: ]+[ g }vz) + Bd
We can thus obtain conditional welfare, for any given initial

condition, by just evaluating the right-hand side of this last
expression.



> In these derivations we have computed welfare using the
recursive formulation of the Lagrangean. As mentioned in
class, that formulation is equivalent to the original problem
only after imposing the initial condition A_4 = 0.

» If one wants to evaluate the welfare according to the
original formulation of equation >"3°, 8y; Wy, but for a
different value of A_4, one needs to subtract
A_18 TA{E_1yp and A_15~ 1Ay o to equations (9) and
(20), respectively.



SW model equations: part 1
— Aggregate resource constraint:

Vi = CyCt+ iyt + 2y 2t + €7 (21)

¢t consumption, i investment, z; capital utilization rate, ¢/
exogenous spending.

— The consumption Euler equation:

¢t = CiC—1+(1 —¢1) Etcey1+Co (I — Etl1)—c3 (ft — Emr + 5?)
(22)

It hours worked, (r; — Eymi, 1) ex-ante real interest rate, e?

finance shock.

— Investment equation:

iy = ivi—1 + (1 = iy) Etlrs1 + oGy + €} (23)

qr value of capital, £} investment specific shock.



SW model equations: part 2
— The corresponding arbitrage equation for the value of capital:

qt = qiEiGrr + (1 — aq1) Eerfy — (I’t — B + 5?) (24)

rf_, real rental rate on capital.
— Aggregate production function:

Vi = ¢p(aki + (1 —a) bl + £F) (25)

¢p reflects the presence of fixed costs, k7 capital, ¢
productivity shock
— Installed capital and capital services:

ki = ki1 + 2z (26)

— Cost minimization by households links rental rate of capital

and capital utilization
Zt = Z4 ftk (27)



SW model equations: part 3

— Accumulation of installed capital
kt = k1 kt—1 + (1 — k1) it + kgE{\

— Cost minimization by firms defines the price mark-up
(average price minus nominal marginal cost)

Mt): mply — wt = o (kf — ) + 2 — wy
— New-Keynesian Phillips curve:
Tt = Mg + mpEympyq — mapf + ef
— Rental rate of capital

r;(:—(kt—/t)—l-Wt



SW model equations: part 4
— The wage mark-up
]
pif = W — mrsy = wy — <U//t ey (¢t — >\/70t—1)> (32)

mrs; marginal rate of substitution between working and
consuming.

— Real wages adjust sluggishly
wr = wiWi—q+(1 — wy) (EtWipq + Ermpyq) —Womp+Wame_q —Wapf +ef’

(33)
— Monetary policy reaction function:

rr=pri_1+ (1 =p) [Gme+ 1, (Ve — VE) + rayD (e — ¥7)] + ¢
(34)



Parametrization

Table A.1: Parameter Values in Smets and Wouters (2007).

Panel A: Calibrated

Parameter Description Value Parameter Description Value
4 Depreciation rate 0.025 €p Kimball Elast. GM 10
b Gross wage markup 1.50 €w Kimball Elast. LM 10
Iy Gov't G/Y ss-ratio 0.18
Panel B: Estimated
Parameter Description Value Parameter Description Value
© Investment adj. cost 5.48 @ Capital production share 0.19
o Inv subs. elast. of cons.  1.39 P Capital utilization cost 0.54
E2 Degree of ext. habit 0.71 (Z')p Gross price markup 1.61
Ew Calvo prob. wages 0.73 ™ Steady state net infl. rate  0.0081
oy Labor supply elas. 1.92 B Discount factor 0.9984
& Calvo prob. prices 0.65 7 Steady state hours worked ~ 0.25
Ly Ind. for non-opt. wages  0.59 ¥ Steady state gross growth — 1.0043
Ly Ind. for non-opt. prices  0.22
Panel C: Shock Processes
Shock Persistence MA(1) Std. of Innovation (%)
Neutral Technology  p, 0.95 - oq 0.45
Risk premium Py 0.18 - oy 0.24
Gov’t spending Py 0.97 Pga 0.52 oy 0.52
Inv. Specific Tech.  p; 0.71 o; 0.45
Price markup Pp 0.90 1y 0.74 op 0.14
‘Wage markup Puw 0.97 " 0.88 Ow 0.24
Monetary policy Pr - - oy -




SW equations: additional details and description

The aggregate resource constraint:
Yt = CyCt + iyl} + 2ZyZt + 8?

Output (y;) is absorbed by consumption (c;), investment (i),
capital-utilization costs that are a function of the capital
utilization rate (z;), and exogenous spending (ef’);

Exogenous spending follows the process

9_ g g a
€t = PgEi_1 TN + Pgacy



The consumption Euler equation:
Ct = C1Ct_1 +(1 - C1) EtCt+1 +Co (/[ - Etlt+1 )—03 (I’t - Et7T[+1 + 5?)

Current consumption (c¢;) depends on a weighted average of
past and expected future consumption, and on expected growth
in hours worked (/s — Etli,1), the ex-ante real interest rate

(rt — Etmyy1), and a disturbance term €.

The disturbance term af’ represents a wedge between the
interest rate controlled by the central bank and the return on
assets held by the households. Under the assumption of no
external habit formation and log utility in consumption,

¢y = ¢ = 0 and the traditional purely forward looking
consumption equation is obtained.



Investment Euler equation:
iy = i1 + (1 — i) Etigq + o qt + €}

where @; is the real value of the existing capital stock, and e’t'
represents a disturbance to the investment-specific technology
process. The corresponding arbitrage equation for the value of
capital is given by:

9t = q1EiQrer + (1 — q1) Eerfq — (ft — Etmeqq +€?>

The current value of the capital stock (g;) depends positively
on its expected future value and the expected real rental rate
on capital (Etrtk+1) and negatively on the ex-ante real interest
rate and the risk premium disturbance.



The aggregate production function is given by
Vi = qbp (Oékfs + (1 — (1) lt + E?)

Output is produced using capital (k7) and labor services (hours
worked, /), e denotes total factor productivity. The parameter
« captures the share of capital in production, and the
parameter ¢, is one plus the share of fixed costs in production.

kis =K1+ 2z

As newly installed capital becomes effective only with a
one-quarter lag, current capital services used in production (k;)
are a function of capital installed in the previous period (k;_1)
and the degree of capital utilization (z;).



Cost minimization by the households that provide capital
services implies that the degree of capital utilization is a
positive function of the rental rate of capital,

Z = Z1rtk

The accumulation of installed capital (k;) is a function not only
of the flow of investment but also of the relative efficiency of
these investment expenditures as captured by the investment
specific technology disturbance

ke = kiki_q + (1 — ky) iy + koc?

Cost minimization by firms will also imply that the rental rate of
capital is negatively related to the capital-labor ratio and
positively to the real wage (both with unitary elasticity):

i =—(k§f — )+ w



Cost minimization by firms in monopolistic competitive goods
market implies that the price mark-up (u‘t’), defined as the
difference between the average price and the nominal marginal
cost or the negative of the real marginal cost, is equal to the
difference between the marginal product of labor (mp/;) and the
real wage (w;):

/,L?:mp/t*Wt:Oé(ktS*/t)JrEta*Wt

The New Keynesian Phillips curve:

_ P .p
Tt = Ty + TeEmeq — mapy + €

(m¢) depends positively on past and expected future inflation,
negatively on the current price mark-up, and positively on a
price mark-up disturbance (e‘t’). The price mark-up disturbance
is assumed to follow an ARMA(1, 1) process:

p_ P p p
€ = Pp€ey Nt — Kpllp_yq-



In analogy with the goods market, in the monopolistically
competitive labor market, the wage mark-up will be equal to the
difference between the real wage and the marginal rate of
substitution between working and consuming (mrs;),

1
pf = Wy —mrsy = w; — (Ullt + m (ct— )‘/’th—1)>

where o, is the elasticity of labor supply with respect to the real
wage, v is the steady-state growth rate, and X is the habit
parameter in consumption.



Similarly, due to nominal wage stickiness and partial indexation
of wages to inflation, real wages adjust only gradually to the
desired wage mark-up:

wr = wiWi_1+(1 — wy) (EtWip1 + Ermpq)—Womp+Wam_ g —Wapg +ef’

The real wage w; is a function of expected and past real wages,
expected, current, and past inflation, the wage mark-up, and a
wage mark-up disturbance (g}’) assumed to follow an ARMA(1,
1) el = pwef s + 0 — pwnf 4.

The monetary policy rule (not used in the optimal policy)

r=pr_1+(1—p) [rmer ry (}/t _ytp)]

+ray (e = y0) = (Vi1 = YE4)] + <7,

where (y; — y7) is the output-gap.



"They sang these words most musically, and as | longed to hear
them further | made by frowning to my men that they should set
me free; but they quickened their stroke, and Eurylochus and
Perimedes bound me with still stronger bonds till we had got
out of hearing of the Sirens’ voices. Then my men took the wax
from their ears and unbound me.”

Book XII, Homer, The Odyssey, 8th century BC



Ulysses and the Sirens, J. W. Waterhouse (1849-1917),
1891



