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Organization of the day

9.30 — 11.00: Session 1
11.00 — 11.30: Coffee and Tea
11.30 — 13.00: Session 2
13.00 — 14.15: Lunch
14.15 — 15.45: Session 3
15.45 — 16.15: Coffee and Tea
16.15 — 17.45: Session 4



Goals

I Understand and apply concepts of optimal policy and
imperfect credibility.
I Mainly monetary policy but tools can be applied to other

frameworks, e.g. fiscal, macro-prudential.

I Provide you with a toolbox that is easy to use and allows
you to apply the concepts learned here either in your
research or policy work.

I Both theory and computer exercises.



Outline

I Simplest New Keynesian model:
I Time-inconsistent solution
I Time-consistent solution
I This will be derived and explained in a manner consistent

with recursive contracts theory and will set the stage for the
imperfect commitment settings.

I Central bank communication:
I State-contingent nature of commitment
I Targeting rules

I Monetary policy design
I Benefits of price level targeting
I Alternative policies

I Imperfect credibility



Outline

I Some theory behind solutions
I Toolkit of imperfect credibility
I Application to large scale models

I Smets and Wouters AER 2007 model
I What are the gains of achieving more credibility?
I How does the possibility of future re-optimizations affect

current outcomes and promises?
I How does imperfect credibility affect the shock propagation,

volatilities, and cross-correlations between relevant
variables?

I Does the policy response to some shocks require more
commitment? At what stages?



Introduction

I Managing expectations is crucial for determining optimal
policy:
I anchoring inflation expectations,
I providing forward guidance,
I speeches, announcements, press releases.

I Time-inconsistency problem (Kydland and Prescott (1977),
Barro and Gordon (1983)).



Introduction

I What is the source of the time-inconsistency problem in the
simplest New Keynesian model?

πt = κyt + βEtπt+1 + ut

yt = Etyt+1 − σ (it − Etπt+1) + gt

I By managing Etπt+1 and Etyt+1, the central bank can
influence πt and yt .

I In a rational expectations equilibrium, Etπt+1 and Etyt+1
need to correspond with actual outcomes in period t + 1.

I There is an incentive to commit to a policy for t + 1 just
because doing so allows for better outcomes in period t .

I In t + 1 there is an ex-post incentive to renege.
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Commitment and stabilization policy:

V (ut ,gt ) = max
{yt ,πt ,it}∞t=0

E0

∞∑
t=0

βt{−(π2
t + λyt

2)}

s.t. πt = κyt + βEtπt+1 + ut

yt = Etyt+1 − σ (it − Etπt+1) + gt

ut = ρuut−1 + εu,t

gt = ρggt−1 + εg,t ,

I Output gap target is zero: π2
t + λ (yt − ȳ)2 with ȳ = 0

I We don’t need the IS equation. Exercise: Can you show
this formally?



Commitment and stabilization policy:
Write the Lagrangean:

V (ut ,gt ) = max
{yt ,πt}∞t=0

E0

∞∑
t=0

βt{−(π2
t +λyt

2)+γt (πt − κyt − βEtπt+1 − ut )}

Crucial step: At time zero, the central bank decides a plan once
and for all.
I The expectation term Etπt+1 can, therefore, be decided

upon directly.
I Law of iterated expectations: E0Etπt+1 = E0πt+1

And the problem becomes:

V (ut ,gt ) = max
{yt ,πt}∞t=0

E0

∞∑
t=0

βt{−(π2
t +λyt

2)+γt (πt − κyt − βπt+1 − ut )}

We can take first order conditions here directly, but we will first
rearrange the lagrangean.



Commitment and stabilization policy:

Rearranging parts of constraints:

V (ut ,gt ) = γ0 (π0 − κy0 − βπ1 − u0)

+βγ1 (π1 − κy1 − βπ2 − u1)

+β2γ2 (π2 − κy2 − βπ3 − u2) + ...

= [γ0 (π0 − κy0 − u0)]

+β[γ1 (π1 − κy1 − u1)− γ0π1]

+β2[γ2 (π2 − κy2 − u2)− γ1π2] + ...

1. We can always shift forward the term πt+1 because there
are infinitely many terms going forward.
[Note: this would be different in a finite horizon.]

2. The period t = 0 is different, because there are no
expectations from period t = −1 to be shifted forward into
t = 0.
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Commitment and stabilization policy:

V (ut ,gt ) = max
{yt ,πt}∞t=0

E0

∞∑
t=0

βt{ − (π2
t + λyt

2)

+ γt (πt − κyt − ut )− γt−1πt}
AND γ−1 = 0

Taking first order conditions:

γt : πt − κyt − βEtπt+1 − ut = 0
πt : −2πt + γt − γt−1 = 0
yt : −2λyt − κγt = 0

γ−1 = 0
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Commitment and stabilization policy:

Rearranging the FOCs:

−2πt + γt = 0, t = 0
−2πt + γt − γt−1 = 0, t ≥ 1

I Exactly because the FOCs change from t = 0 to t ≥ 1,
there is a time-inconsistency problem. Why?
I If the FOCs were equal regardless of t then the solution

would be time-consistent.

I In period t=1, the central bank would like to implement the
FOC of period t = 0. Why?
I Remember, that past lagrange multipliers are associated

with past constraints and were just “carried forward”
because of expectations.

I How would we ignore a constraint? We put the lagrange
multiplier to zero.



Commitment and stabilization policy:

A side note for later:

We can express the past lagrange multiplier as a function of
other endogenous variables:

γt = −2
λ

κ
yt for t ≥ 0.

But again note that:

γ−1 = 0 6= −2
λ

κ
y−1.

The time-inconsistency is still there.



Commitment and stabilization policy:

I The system had no endogenous persistence. But
commitment introduces persistence through γt−1.

I Past lagrange multipliers γt−1 summarize the shadow
value of past promises that need to be fulfilled today.

I The lagged lagrange multiplier γt−1 is not a PHYSICAL
state variable, it measures past promises.

I The central bank would like to reset this variable to 0
(welfare of unconstrained maximization is higher than
constrained one).



IRF i.i.d. cost push shock under commitment
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IRF i.i.d. cost push shock under commitment

Impulse response function to a i.i.d. cost push shock – there is
no endogenous or exogenous persistence in the model.
I Previous figure shows persistence....
I There is a part in the graph where we can see that the

central bank is fulfilling previous promises. If the central
bank could, it would like to reoptimize. When (which
period)?



IRF i.i.d. cost push shock under commitment

I Above we discussed why it is not optimal ex-post. Can you
describe why such promises are optimal from an ex-ante
perspective?

V (ut ,gt ) = max
{yt ,πt ,it}∞t=0

E0

∞∑
t=0

βt{−(π2
t + λyt

2)}

s.t. πt = κyt + βEtπt+1 + ut

I A planner equates/distributes the trade-offs of shocks or
distortions across different 1) variables 2) states of nature
(insurance).

I A planner with commitment also equates/distributes the
trade-offs across time.
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IRF i.i.d. cost push shock under commitment
Simple illustrative example for intuition:
I Intuitively, think that due to the cost-push shock, inflation

today goes up today by 2 units.
I Since the cost push shock is i.i.d., tomorrow inflation can

be at target.
I For simplicity, we set β = 1 and focus on inflation only.

Costs today︷︸︸︷
(2)2 +

Costs tomorrow︷︸︸︷
(0)2 =

Costs total︷︸︸︷
4

The central bank under commitment improves on this by
promising to be tough tomorrow on inflation. This implies a
reduction in inflation today.

πt︸︷︷︸
↘

= κyt + βEtπt+1︸ ︷︷ ︸
↘

+ ut

Costs today︷ ︸︸ ︷
(1.5)2 +

Costs tomorrow︷ ︸︸ ︷
(−0.5)2 =

Costs total︷︸︸︷
2.5



Time-inconsistency and state-contingency

I We often associate commitment with lack of flexibility.

I We commit into something tomorrow that we will do
regardless of what happens tomorrow.

I Hence the expression “Commitment vs discretion”.
I Commitment allows you to influence expectations.
I But under commitment you can not react to future

unforeseen contingencies

I This is not what we are doing here.

I We are doing commitment that is state-contingent:
I Commitment allows the planner to decide today regarding

tomorrow;s policy, but what is being decided and what is
implemented does depend on shocks.

I Planner commits to implement policy action A if shock is x,
and implement policy action B if shock if y.



Time-inconsistency and state-contingency
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cost−push shock in period 1
cost−push shock in period 1 and 2



Time-inconsistency and state-contingency

Blue line
I The shocks are u1 = σu,u2 = 0,u3 = 0,u4 = 0...
I At period t = 1, the planner knows the shock u1 = σu and

handles it with a commitment policy.
I u2 = 0,u3 = 0... is the expected path, so this one is easy to

plot to see the effects of promises.
I However, the commitment policy designed at t = 1 implies

a different πt+2 for each level of the cost push shock.



Time-inconsistency and state-contingency

Green line:
I The shocks are u1 = σu,u2 = σu,u3 = 0,u4 = 0...
I Blue and green lines are not equal.

I This makes the point that the promises are
state-contingent.

I At t = 2 there is a similar type of response to that at t = 1.

Promises are state-contingent. However, unexpected shocks
do not wipe out previous promises made at t = 1.
I Where can you see that?

I Note: compare inflation level at t = 2 green line with t = 1
blue line.

I Hence, we can describe the promise at t = 1 as: inflation
will respond to economic developments but inflation will be
set at a lower level than usual.



Time-inconsistency and state-contingency

Where was it in the math that commitment was state
contingent?

I Answer: When we applied the law of iterated expectations
and carried forward the lagrange multipliers.

I If we do those steps “manually”, you can see that we have
one promise for each shock.
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Time-inconsistency and state-contingency

= max
{yt ,πt}

E0

∞∑
t=0

β
t{−(π2

t + λyt
2) + γt

(
πt − κyt − βEtπt+1 − ut

)
}

Write probabilities explicitly:

= max
{yt ,πt}

∞∑
t=0

∑
ωt∈Ωt

β
t{−P

(
ω

t
)

(π2
t + λyt

2) + P
(
ω

t
)
γt

πt − κyt − β
∑

ωt+1∈Ωt+1

P
(
ω

t+1|ωt
)
πt+1 − ut

}
Put terms (t) apart from terms (t+1):

= max
{yt ,πt}

∞∑
t=0

∑
ωt∈Ωt

β
t{−P

(
ω

t
)

(π2
t + λyt

2) + P
(
ω

t
)
γt (πt − κyt − ut )− P

(
ω

t
)
γtβ

∑
ωt+1∈Ωt+1

P
(
ω

t+1|ωt
)
πt+1}

Arrange conditional expectations part:

= max
{yt ,πt}

∞∑
t=0

∑
ωt∈Ωt

β
t{−P

(
ω

t
)

(π2
t + λyt

2) + P
(
ω

t
)
γt (πt − κyt − ut )− γtβ

∑
ωt+1∈Ωt+1

P
(
ω

t+1
)
πt+1

︸ ︷︷ ︸
}

Finally shift terms forward:

= max
{yt ,πt}

∞∑
t=0

∑
ωt∈Ωt

β
t{−P

(
ω

t
)

(π2
t + λyt

2) + P
(
ω

t
)
γt (πt − κyt − ut )− γt−1P

(
ω

t
)
πt}



Time-inconsistency and state-contingency

I The previous slide also shows more clearly why it is
appropriate to put forward the lagrange multipliers.
I At each node in time t we have enough terms for t + 1.

I Consider that we have one shock with two realizations.
I In each node, the “tree of events” unfolds into two

sub-branches.
I In each node, the expectations term has two elements that

can go into those two sub-branches.



Time-consistent policy:

Two changes:
1. The central bank can only decide on policies for t = 0.

I Policies at t = 1 are decided by another entity: different
selves or a different CEO of the central bank.

2. The central bank cannot affect private expectations directly.

V D(ut ,gt ) = max
{yt ,πt}

E0

{
−(π2

t + λyt
2) + βEtV D(ut+1,gt+1)

}
s.t. πt = κyt + βEt Ψ (ut+1,gt+1) + ut



Time-consistent policy:

Taking FOCs:

γt : πt − κyt − βEtπt+1 − ut = 0
πt : −2πt + γt = 0
yt : −2λyt − κγt = 0

Note the following:
I FOCs are the same for t = 0 and t ≥ 1. Policy is time

consistent.
I Previous period lagrange multipliers are gone.
I There is no endogenous persistence.



IRF i.i.d. cost push shock under discretion
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IRF i.i.d. cost push shock under discretion

I Since shock is not persistence, effects on variables
disappear immediately.



IRF i.i.d. cost push shock under discretion
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IRF i.i.d. cost push shock under discretion

I Note that now green line in second period is at the same
height of blue line in first period.

What about the direct comparison of commitment and
discretion?



IRF i.i.d. cost push shock under commitment and
discretion Go
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Commitment and communication strategies

I Discretion policy does not require communication: in future
periods, the central bank will do what it always does.

I Commitment requires communication:
I The benefits of commitment are only present because the

central bank communicates future policy actions to the
public and thereby manages effectively private sector
expectations.

I Important: Keeping promises that were not communicated is
a bad idea.

I Commitments are state-contingent and depend on the
evolution of the economy.

I It’s easy in the model but, in practice, it does not seem
easy to communicate commitment...



Riksbank’s Fan charts

-1

0

1

2

3

4

5

6

7

8

1413121110090807060504
-8

-6

-4

-2

0

2

4

6

8

10

1413121110090807060504

-2

-1

0

1

2

3

4

5

6

1413121110090807060504
-1

0

1

2

3

4

1413121110090807060504

1 – M O N E T A R Y  P O L I C Y  U P D A T E  S E P T E M B E R  2 0 1 1

During the summer, concern over public fi nances in the United States and the euro area has increased, and the 
prospects for global growth have deteriorated. The fi scal policy tightening expected in several countries will be 
more far-reaching than was previously assumed. Although more expansionary monetary policy will contribute to 
counteracting the effects on growth, it will not fully counteract them. Growth abroad will be weaker, and will affect 
Sweden through fewer exports and lower confi dence. This means that the slowdown in the Swedish economy will 
be slightly more pronounced than was forecast in July. 

The political uncertainty abroad makes it particularly diffi cult to forecast future developments. The basic assumption 
for the forecast is that credible fi scal policy measures will be decided on in the coming period, and that market 
agents and households will regain confi dence in Sweden and abroad. This, together with a more expansionary 
monetary policy, will mean that growth in Sweden rises during the course of next year. 

Developments on the Swedish labour market are now slowing down and the improvement over the coming year will 
be slow. All in all, resource utilisation in the Swedish economy is now expected to be slightly lower than normal. 
There is little infl ationary pressure in the Swedish economy. CPIF infl ation amounted to 1.6 per cent in July, but is 
expected to gradually rise towards 2 per cent within a couple of years. The currently high CPI infl ation is expected 
to fall towards 2.5 per cent in the same period. In the long run, when the repo rate has stabilised, the two measures 
of infl ation will coincide. 

Given the assumption that the slowdown in the Swedish economy is expected to be more pronounced, the Riksbank 
assesses it is appropriate to hold the repo rate unchanged now at 2 per cent and to postpone continued increases 
somewhat. A lower repo-rate path will gradually stabilise infl ation around the target of 2 per cent and resource 
utilisation around a normal level.

Monetary Policy Update 
September 2011

Figure 1. Repo rate with uncertainty bands
Per cent, quarterly averages

Figure 4. CPIF with uncertainty bands
Annual percentage change

Figure 3. CPI with uncertainty bands
Annual percentage change

Note. The uncertainty bands in the fi gures are based on historical forecast errors, see the article “Calculation method for uncertainty 
bands” in MPR 2007:1.

Sources: Statistics Sweden and the Riksbank

Figure 2. GDP with uncertainty bands
Annual percentage change, seasonally-adjusted data

ForecastOutcome 75% 50%90%



Commitment and communication strategies
Is it easy to distinguish commitments from forecasts?
I Think that the central bank also wants to communicate the

likely course of the economy...Why?
I One of the reasons that we believe in Rational Expectations

(or believe in it somewhat) is that certain institutions can
compute forecasts for us.

Commitment versus communicating the state of the economy
may be hard to distinguish
I This became a big issue during the Great Recession and

because of the ZLB.
I Two papers that try to address this:

I Bodenstein, M. , James Hebden, and Ricardo Nunes
“Imperfect Credibility and the Zero Lower Bound on the
Nominal Interest Rate”, Journal of Monetary Economics,
2012.

I Campbell, J., Jonas Fisher, Alejandro Justiniano, and
Leonardo Melosi“Forward guidance and macroeconomic
outcomes since the financial crisis,” in NBER
Macroeconomics Annual 2016.



Additional Issues of Implementing Optimal Policy

I Communication and State-contingency X

Next:
I Implementation of optimal policy. Interest rate rules.
I Targeting Rules.
I Expectational interest rate rules.



Additional Issues of Implementing Optimal Policy

I Once we solve the optimal policy outcomes. We can obtain
laws of motion for inflation and output as a function of the
state variables:

πt = ayt−1 + but (1)
yt = cyt−1 + dut . (2)

I One can then ask the question: How do we implement this
outcome?



Additional Issues of Implementing Optimal Policy
I We often think about interest rate rules.

I We can plug the laws of motion (1) and (2) into an interest
rate rule of the type:

it = φππt + φyyt .

I In these type of exercises, we often find that the
equilibrium is not unique.

I There are several versions of this result...
I One can also find coefficients φπ and φy that are consistent

with the optimal policy.
I But again some of these interest rate rules do not lead to

an unique equilibrium.

I We now discuss an alternative: Targeting Rules.



Targeting rules
Targeting rules are the FOCs of the system written in a
compact way

πt = −λ
κ

(yt − yt−1)

This seems very easy, as simple as an interest rate rule such
as it = φππt + φyyt .

When we consider the system with an interest rate rule we do:

πt = κyt + βEtπt+1 + ut

yt = Etyt+1 − σ (it − Etπt+1) + gt

it = φππt + φyyt

Now we do:

πt = κyt + βEtπt+1 + ut

yt = Etyt+1 − σ (it − Etπt+1) + gt

πt = −λ
κ

(yt − yt−1)



Targeting rules

I Of course this system implements optimal policy. It is the
system of equations for optimal policy!

I The economics of this are the following: The central bank
announces that inflation will be kept at a level inversely
proportional to the growth rate of the output-gap.

I If the public believes and understands the system of
equations then this is all correct!



Targeting rules

The targeting rule purposefully abstracts from the
implementation.
I Advantages

I Several instruments (interest rates, communication, forward
guidance, quantitative easing, money)

I Are you a micro-manager?

I Do you tell the taxi-driver the final destination or how many
times to turn left and right, and which pedals to press?

I Isn’t this what the public should actually know?

I Disadvantages
I Sure... Ok... but how do we implement it?

I If you are the client in the taxi or in the restaurant, you care
about the targeting rule. But... What if you are the driver or
the chef?



Targeting rules

Targeting rules are certainly useful, but some considerations:
I The model consists of 2 constraints. The target rule is

”just” 1 equation – nearly as complicated as the entire
description of private agents behavior.

I If one considers more complex models, targeting rules
start looking very complicated.

I Sometimes it may not be immediate to eliminate/substitute
lagrange multipliers.



Targeting rules and Expectational Interest Rate Rules

I What is the relation between Targeting Rules and
Instrument Rules?

I There is not necessarily a strict relation if the interest rate
rule is too simple. Remember that sometimes it is not
possible to obtain a unique equilibrium with some interest
rate rules.

I Evans and Honkapohja, 2003. Review of Economic
Studies.and Evans and Honkapohja (2006). Scandinavian
Journal of Economics make an important point.



Targeting rules and Expectational Interest Rate Rules
Reverse engineer a rule such that the system:

yt = Etyt+1 − σ (it − Etπt+1) + gt

it = F (...)

is equivalent to the system:

yt = Etyt+1 − σ (it − Etπt+1) + gt

πt = −λ
κ

(yt − yt−1) .

This is always possible to do. Rearrange the IS equation:

it = Etπt+1 −
1
σ

(yt − Etyt+1 − gt ) .

Now sum the FOC: πt + λ
κ (yt − yt−1) = 0

it = Etπt+1 −
1
σ

(yt − Etyt+1 − gt ) + πt +
λ

κ
(yt − yt−1) .



Designing Monetary Policy objectives:

I Assumption 1: It is not possible to conduct
time-inconsistent policy, the central bank would renege.

I Assumption 2: Society can design a central bank at the
beginning of time, and will abstain from interfering with
monetary policy.

Are these two assumptions compatible?
I McCallum, B. T., 1995 AER critique

I Any defense? Go



Designing Monetary Policy objectives:

Society’s utility:

−E0

∞∑
t=0

βt (π2
t + λyt

2)

Central bank’s utility:

−E0

∞∑
t=0

βt (π2
t + λCByt

2)

λCB is chosen by society to maximize its own utility. (theory of
the second best)



Appointing a conservative central bank

The FOC of time-inconsistent policy is:

πt = −λ
κ

(yt − yt−1) .

The FOC of the central bank is:

πt = −λCB

κ
yt .

I This policy design does not create persistence and is not
very helpful as a shock stabilization policy.

I This policy is more helpful to mitigate the inflation bias due
to a positive output-gap target ȳ > 0.
I Time inconsistent FOC: πt = −λκ (yt − yt−1)
I Central Bank FOC: πt = −λCB

κ (yt − ȳ)
I Lower λCB makes “wrong” term [λCB ȳ ] become smaller.



Price-level targeting:

Intuition, a FOC of the type

pt = −λ
κ

yt

implies the correct law of motion:

πt = −λ
κ

(yt − yt−1) .

The central bank preferences

E0

∞∑
t=0

βt
{

(pt )
2 + λCByt

2
}



Price-level targeting:

Intuition in relation to the i.i.d. cost push shock: Commitment Dynamics

I Step 1: When the cost-push shock hits, inflation goes up
and the price level goes above target.

I Step 2: The central bank immediately faces an incentive to
bring the price level down next period. Therefore, inflation
next period will be below target mimicking the commitment
solution.



Speed Limit Policies

The FOC of time-inconsistent policy is

πt = −λ
κ

(yt − yt−1)

The FOC of time-consistent policy is

πt = −λ
κ

yt

What if we substitute in the objective function yt by (yt − yt−1):

E0

∞∑
t=0

βt{−(π2
t + λCB (yt − yt−1)2)



Speed Limit Policies

Intuition in relation to the i.i.d. cost push shock: Commitment Dynamics

I Step 1: When cost-push shock hits, inflation goes up and a
recession is in place.

I Step 2: The central bank objective IS NOT to end the
recession immediately (yt+1 = 0). The objective is to
smooth the recovery (yt+1 − yt ) .

I Step 3: In doing so, the recovery is slower and inflation is
below target.



Other Policies

Looking at the objectives, FOCs, and IRFs what other types of
delegated objectives do you think would have a chance at
improving welfare?

I What about interest rate inertia through a term (it − it−1)2?
I What about nominal income growth targeting through a

term [(pt + xt )− (pt−1 + xt−1)]2?
I Note that: (pt + xt )− (pt−1 + xt−1) = πt + xt − xt−1

This debate is still ongoing...
I For a recent proposal of price level targeting see:

Ben S. Bernanke (2017) Monetary Policy in a New Era,
Brookings Institution, October 2, 2017.
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improving welfare?
I What about interest rate inertia through a term (it − it−1)2?
I What about nominal income growth targeting through a

term [(pt + xt )− (pt−1 + xt−1)]2?
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Other Policies

Usually the weights on the different variables are found
numerically:
I Solve for the law of motion that the central bank

implements

I Calculate welfare for society

I Find the optimal λCB with a numerical solver or solve it in a
grid.



Welfare Clarifications:

I Welfare under commitment is < > than under discretion?
I Why?
I So what is the temptation to renege?

Notation:
I The path chosen at date T with commitment {yCT

t , πCT
t }∞t=T

I Important: for commitment we are distinguishing between
the period of the allocation (t) and the period in which the
path was designed (T ).

I At time T = 0 planner designs the plan. Inflation at period
t = 1 in this path is given by πC0

1
I At time T = 1 planner decides the plan. Inflation at period

t = 1 from this path is given by πC1
1

I The path chosen with discretion {yD
t , π

D
t }∞t=0



Welfare Clarifications:
Problem from period t = 0:
Welfare of commitment policy is higher than that of the
discretion policy.

−E0

∞∑
t=0

βt ((πC0
t )2 + λ(yC0

t )2) > −E0

∞∑
t=0

βt ((πD
t )2 + λ(yD

t )2)

Then at period t = 1:
But later on, promises start to be binding and the central bank
would like to reoptimize:

−E1

∞∑
t=1

βt−1((πC0
t )2 +λ(yC0

t )2) < −E1

∞∑
t=1

βt−1(πC1
t )2 +λ(yC1

t )2)

At a later date, commitment may be worse than discretion:

−E1

∞∑
t=1

βt−1((πC0
t )2 +λ(yC0

t )2) ???−E1

∞∑
t=1

βt−1((πD
t )2 +λ(yD

t )2)



Imperfect Credibility
Two common ways to address optimal policy:
I Commitment (Time-inconsistent)
I Discretion (Time-consistent)

Commitment Discretion
Policy plan covers Entire future Nothing beyond current period
Reoptimizations Never Always
Ability to make promises Perfect Inexistent

Some reasons for imperfect credibility:
1. time-varying composition of monetary policy committees

and central bank staff,
2. outside pressures of varying intensity,
3. economic research,
4. unforeseen events.



Model: imperfect credibility

Planner makes state-contingent promises regarding the entire
future.

At the beginning of each time period, the occurrence of a
re-optimization is driven by a two-state Markov stochastic
process

xt =
{ 1 with Prob. η

0 with Prob. 1− η

with 0 ≤ η ≤ 1
I xt = 1 previous promises are honored and the previous

plan is continued.
I xt = 0 previous promises are not honored and a new plan

regarding the future is made.



Model: imperfect credibility
Commitment:

V (ut ,gt ) = max
{yt ,πt}∞t=0

E0

∞∑
t=0

βt{−(π2
t + λyt

2)}

s.t. πt = κyt + βEtπt+1 + ut

Discretion:

V D(ut ,gt ) = max
{yt ,πt}

E0

{
−(π2

t + λyt
2) + βEtV D(ut+1,gt+1)

}
s.t. πt = κyt + βEt Ψ (ut+1,gt+1) + ut

Imperfect Credibility:

V D(ut ,gt ) = max
{yt ,πt}∞t=0

E0

∞∑
t=0

(βη)t {−(π2
t + λyt

2) + β (1− η) V D(ut+1,gt+1)}

s.t. πt = κyt + βηEtπt+1 + β (1− η) Et Ψ (ut+1,gt+1) + ut



Model: imperfect credibility
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Model: imperfect credibility
Denote Ut = −(π2

t + λy2
t ). Covering all the terms in the “tree”:

V D
t = Ut + βηUt+1 + β (1− η) V D

t+1 (3)

+ β2η2Ut+2 + β2η (1− η) V D
t+2 + ...

Rearranging:

V D
t = Ut + β (1− η) V D

t+1 (4)

+ βη
{

Ut+1 + β (1− η) V D
t+2

}
+

+ β2η2
{

Ut+2 + β (1− η) V D
t+3

}
+ ...

Writing this as an infinite sum:

V D
t = E0

∞∑
t=0

(βη)t {Ut + β (1− η) V D
t+1} (5)

Or alternatively (we will come back to this), consider the
recursive representation and solve forward:

V C
t (., γt−1) = Ut + βηV C

t (., γt ) + β (1− η) V D
t+1 (6)



Model: imperfect credibility

I This approach cannot address the reasons of default, but
can address the consequences.

I The central bank and private agents are aware and
internalize reoptimizations.

I Analogous approach to Calvo-Yun pricing.

I Debortoli and Nunes (2010) show that results are similar
when defaults are time-dependent.

I Simplicity is required for implementation in large scale
models and this framework moves away from perfect
commitment or no-commitment at all.



Some theory behind commitment solution

I In models without time-inconsistency, recursive
programming techniques prove that a solution exists and is
a function of certain variables (state-variables).

max
{Ct ,Kt+1,Kt}∞t=0

E0

∞∑
t=0

βtU (Ct ,Kt+1,Kt , st )

s.t : Kt+1 = g (Ct ,Kt , st ) t = 0, ....∞
st exogenous and Markov



Some theory behind commitment solution

One can prove that a value function exists with certain
properties:

V (K0, s0) = max
{Ct ,Kt+1,Kt}∞t=0

E0

∞∑
t=0

βtU
(
C∗t ,K

∗
t+1,K

∗
t , st

)
V (Kt , st ) = U (Ct ,Kt+1,Kt , st ) + βEtV (Kt+1, st+1) .

One can prove that the optimal allocations Ct ,Kt+1,Kt can be
written as a time-invariant function φ that depends on the state
variables:

{Ct ,Kt+1} = φ (Kt , st ) .



Some theory behind commitment solution

I These results are often forgotten because we use them
without almost even noticing. We use these results when:
I solving a model in any toolkit (Uhlig, Sims, Dynare). These

solutions imply a guess and verify where we start with a
function of state-variables.

I solving for nonlinear models where we assume a functional
form for the solution.

I In both cases, we assume a policy function and can only
assess that it converged according to some criteria (and
always up to machine precision).



Some theory behind commitment solution
Some papers have extended the recursive programming
techniques to problems with time-inconsistency.

V (ut ,gt ) = max
{yt ,πt}∞t=0

E0

∞∑
t=0

βt{−(π2
t + λyt

2)}

s.t. πt = κyt + βEtπt+1 + ut

Taking first order conditions:

γt : πt − κyt − βEtπt+1 − ut = 0
πt : −2πt + γt − γt−1 = 0
yt : −2λyt − κγt = 0
γ−1 = 0

The solution can be characterized as a function of the usual
state-variables (in this case ut ) and the previous period
lagrange multipliers associated with forward-looking constraints
(γt−1).



Writing the commitment problem recursively:

V (ut ,gt , γt−1) = min
{γt}

max
{yt ,πt}

Et{−(π2
t + λyt

2) + γt (πt − κyt − ut )− γt−1πt}

+ βV (ut+1,gt+1, γt )

γ−1 = 0

Min Max formulation is only useful to prove some theorems.
The bottom line is:
I The lagged lagrange multipliers associated with forward

looking constraints need to be included as state variables.
I There exists value function: V (ut ,gt , γt−1)

I There exists an optimal policy function: ψ(ut ,gt , γt−1)



Imperfect Credibility:

V D(ut ,gt ) = max
{yt ,πt}∞t=0

E0

∞∑
t=0

(βη)t {−(π2
t + λyt

2) + β (1− η) V D(ut+1,gt+1)}

s.t. πt = κyt + βηEtπt+1 + β (1− η) Et Ψ (ut+1,gt+1) + ut

Map this problem into a regular commitment problem
I For given V D and Ψ, this formulation maps directly into

usual commitment problems.
I Discount factor is βη
I In the objective function, we have an infinite sum covering

all the commitment terms.
I We have forward looking terms in the constraints.



Imperfect Credibility:

Writing the imperfect credibility problem recursively:

V (ut ,gt , γt−1) = min
{γt}

max
{yt ,πt}

E0{−(π2
t + λyt

2)

+ βηV (ut+1,gt+1, γt ) + β (1− η) V D(ut+1,gt+1)}
+ γt (πt − κyt − β (1− η) Et Ψ (ut+1,gt+1)− ut )− γt−1πt

γ−1 = 0

Then the regular proofs of commitment apply and we can establish
the following:

1. The value function exists and is defined as V (ut ,gt , γt−1) where
the previous period lagrange multiplier is a state variable.

2. The optimal allocations solving this problem can be summarized
by a time-invariant function: (yt , πt ) = ψ(ut ,gt , γt−1).

Note: we have still not defined the equilibrium. What is V D and Ψ?



Imperfect Credibility:

Writing the imperfect credibility problem recursively:

V (ut ,gt , γt−1) = min
{γt}

max
{yt ,πt}

E0{−(π2
t + λyt

2)

+ βηV (ut+1,gt+1, γt ) + β (1− η) V D(ut+1,gt+1)}
+ γt (πt − κyt − β (1− η) Et Ψ (ut+1,gt+1)− ut )− γt−1πt

γ−1 = 0

Then the regular proofs of commitment apply and we can establish
the following:

1. The value function exists and is defined as V (ut ,gt , γt−1) where
the previous period lagrange multiplier is a state variable.

2. The optimal allocations solving this problem can be summarized
by a time-invariant function: (yt , πt ) = ψ(ut ,gt , γt−1).

Note: we have still not defined the equilibrium. What is V D and Ψ?



Solution – Equilibrium Definition

The equilibrium with imperfect commitment satisfies the
following conditions:

1. Given
{

yD
t , π

D
t
}∞

t=0 and the value V D, the path {yt , πt}∞t=0
solves the problem of the central bank in sequence form.

2. The value function V D is such that
V D(ut ,gt ) = V (ut ,gt , γt−1 = 0) and V is defined by the
recursive formulation of the central bank’s problem.

3. Denote the optimal policy functions as
(yt , πt ) = ψ(ut ,gt , γt−1). The pair

(
yD

t , π
D
t
)

satisfies the
condition

(
yD

t , π
D
t
)

= ψ(ut ,gt ,0).

Note: we abused notation earlier on and wrote
πD

t+1 = Ψ(ut+1,gt+1).



Solution – Equilibrium Definition

I What this means is that when there is a default, the
optimization problem re-starts again without binding
promises.

I Hence the value function and the optimal functions are
exactly the same, but taking into account that previous
promises are reneged on.

I It’s a problem that restarts itself but obviously unlike
promises, the physical state variables remain...

I Note that we could have defined analogous but different
problems:
I We could assume different commitment conditions when a

default occurs.
I We could also incorporate political disagreement and

different parties.



Literature

I Imperfect credibility setting: Roberds (1987), Schaumburgh
and Tambalotti (2007), Debortoli and Nunes (2010).

I Full-commitment:
I Optimal policy in linear quadratic: Currie and Levine (1993),

Soderlind (1999).
I Solution algorithms: Uhlig (1995), Klein (2000), Sims

(2002).
I Discretion (Markov-perfect equilibria):

I Optimal policy in linear quadratic: Backus and Driffill
(1985), Soderlind (1999), Dennis (2007).

I Solution algorithms: Krusell, Quadrini, and Rios-Rull
(1997), Judd (2004), Klein, Krusell, and Rios-Rull (2008).



Road map

DONE:
I Time-inconsistent solution. X

I Time-consistent solution. X

I Central Bank Communication. X

I Designing monetary policy objectives. X

I Imperfect Credibility. X

I Some theory behind solutions. X



Road map

NEXT:
I General model.

I Toolkit.

I Application to the Smets and Wouters (2007) model:
I What are the gains of achieving more credibility?

I How does the possibility of future re-optimizations affect
current outcomes and promises?

I How does imperfect credibility affect the shock propagation,
volatilities, and cross-correlations between relevant
variables?

I Does the policy response to some shocks require more
commitment? At what stages?



Model: general form

Consider a general linear model

A−1yt−1 + A0yt + A1Etyt+1 + Bvt = 0, ∀t

where yt is a vector of endogenous variables, vt is exogenous
with Evt = Evtvt−j = 0, Evtv ′t = Σv .

Models with more lags and leads, lagged expectations,
constants, and serially correlated shocks can be
accommodated by expanding the yt vector.

The policymaker is assumed to have a quadratic loss function

∞∑
t=0

βty ′t Wyt



Model: general form with imperfect credibility

The central bank’s problem can be written as:

y ′−1Py−1 + d = min
{yt}∞t=0

E−1

∞∑
t=0

(βη)t [y ′t Wyt + β (1− η) (y ′t Pyt + d)
]

s.t.: A−1yt−1 + A0yt + ηA1Etyt+1 + (1− η) A1EtyD
t+1 + Bvt = 0.∀t ≥ 0

Analogy with earlier model:
I Value function when reoptimizing at time t + 1: (y ′t Pyt + d)

I Using the Markov-perfect assumption:

EtyD
t+1 = H̃yt .

I We considered πD
t+1 = Ψ(ut+1,gt+1) and ∂Ψ(ut+1,gt+1)

∂πt
= 0

I But if πD
t+1 = Ψ(ut+1,gt+1, πt ) then ∂Ψ(ut+1,gt+1,πt )

∂πt
6=0



Solving Imperfect Credibility

I The solution is a time-invariant policy function with the
Lagrange multiplier vector γt−1 as co-states.[

yt
γt

]
=

[
Hyy Hyγ
Hγy Hγγ

] [
yt−1
γt−1

]
+

[
Gy
Gγ

]
vt ,

where the matrices H and G depend on the unknown matrix H̃.
I When a re-optimization occurs in period t , γt−1 = 0.

I This feature is not imposed. The theory shows that the
optimal policy functions have this characterization.

yD
t = Hyyyt−1 + Gyvt

EtyD
t+1 = Hyyyt

I Therefore:
Hyy = H̃.



Solving Imperfect Credibility – Lagrangean

Form the Lagrangean and take first order conditions

L ≡ E−1

∞∑
t=0

(βη)t

{
y ′t [W + (1− η)βP] yt + γ′t−1β

−1A1yt

γ′t

[
A−1yt−1 +

(
A0 + (1− η) A1H̃

)
yt + Bvt

]}
γ−1 = 0

H̃, y−1 given.



Recap on matrix differentiation
Consider the expression (x ′a), where (x) is a vector of
variables and (a) is a vector of parameters of size (n × 1).

Example of n = 2:

x ′a =
[

x1 x2
] [ a1

a2

]
= x1a1 + x2a2

Note that x ′a is of dimension (1× 1) . This is the same as the
Lagrangian, we are optimizing one objective function.

Matrix differentiation:

∂

∂x
(
x ′a
)

=
∂

∂x
(x1a1 + x2a2) =

[
a1
a2

]
The "rule" is that when differentiating with respect to a vector
the result is a vector. Hence, we have:

∂

∂x
(
x ′a
)

= a



Recap on matrix differentiation (cont.)

Also note that since x ′a is of dimension (1× 1) :

x ′a = a′x

Hence we have:

∂

∂x
(
x ′a
)

= a

∂

∂x
(
a′x
)

= a



Recap on matrix differentiation (cont.)
Finally:

x ′Ax =
[

x1 x2
] [ A11 A12

A21 = A12 A22

] [
x1
x2

]
=
[

x1A11 + x2A12 x1A12 + x2A22
] [ x1

x2

]
= (x1)2 A11 + x2x1A12 + x1x2A12 + (x2)2 A22

= (x1)2 A11 + 2x2x1A12 + (x2)2 A22

∂

∂x

(
(x1)2 A11 + 2x2x1A12 + (x2)2 A22

)
=

[
2x1A11 + 2x2A12
2x1A12 + 2x2A22

]
= 2

[
A11 A12

A21 = A12 A22

] [
x1
x2

]
Hence: ∂

∂x
(
x ′Ax

)
= 2Ax



Solving Imperfect Credibility – FOCs

L ≡ E−1

∞∑
t=0

(βη)t

{
y ′t [W + (1− η)βP] yt + γ′t−1β

−1A1yt

γ′t

[
A−1yt−1 +

(
A0 + (1− η) A1H̃

)
yt + Bvt

]}
γ−1 = 0

H̃, y−1 given.

∂L
∂γt

= A−1yt−1 +
[
A0 + (1− η) A1H̃

]
yt + ηA1Etyt+1 + Bvt = 0

∂L
∂yt

= 2Wyt + 2β (1− η) Pyt +
(

A0 + (1− η) A1H̃
)′
γt

+ Iηβ−1A′1γt−1 + βηA′−1Etγt+1 = 0.



Solving Imperfect Credibility – FOCs

∂L
∂γt

= A−1yt−1 + [A0 + (1− η) A1Hyy ] yt + ηA1Etyt+1 + Bvt = 0

∂L
∂yt

= 2Wyt + β (1− η) A′−1Etγ
D
t+1 + (A0 + (1− η) A1Hyy )′ γt

+ Iηβ−1A′1γt−1 + βηA′−1Etγt+1 = 0.

Three notes:
First, substitute H̃ = Hyy .

Second, we have already substituted the envelope condition

∂y ′t−1Pyt−1

∂yt−1
= 2Pyt−1 = A′−1γ

D
t =⇒

∂y ′t Pyt

∂yt
= 2Pyt = A′−1Etγ

D
t+1.

Third, Iη = 0 if η = 0 and Iη = 1 if η > 0. Go



Solving Imperfect Credibility – rearranging FOCs
Use the law of motion:[

yt
γt

]
=

[
Hyy Hyγ
Hγy Hγγ

] [
yt−1
γt−1

]
+

[
Gy
Gγ

]
vt

Substituting:

Etyt+1 = Hyyyt + Hyγγt

Etγt+1 = Hγyyt + Hγγγt

Etγ
D
t+1 = Hγyyt ,

One obtains:

Γ0 ≡
[

A0 + A1Hyy ηA1Hyγ
2W + βA′−1Hγy A′0 + (1− η) H ′yyA′1 + βηA′−1Hγγ

]
Γ1 ≡

[
A−1 0

0 β−1IηA′1

]
, Γv ≡

[
B
0

]
.



Solving Imperfect Credibility – rearranging FOCs

Hence we arrive at:

Γ0

[
yt
γt

]
+ Γ1

[
yt−1
γt−1

]
+ Γv vt = 0,

The resulting law of motion is[
yt
γt

]
= −Γ−1

0 Γ1︸ ︷︷ ︸
H

[
yt−1
γt−1

]
−Γ−1

0 Γv︸ ︷︷ ︸
G

vt ,

We started with a law of motion of this type. But the H and G
that we started with are not the same as this one.



Solving Imperfect Credibility – Iterative Algorithm
In summary, the algorithm proceeds as follows:

1. Using a guess Hguess, form Γ0 and Γ1.

2. Compute H = −Γ−1
0 Γ1.

3. Check if ||H − Hguess|| < ξ, where ||.|| is a distance
measure and ξ > 0. If the guess and the solution have
converged, proceed to step 4. Otherwise, update the
guess as Hguess = H and repeat steps 1-3 until
convergence.

4. Finally, form Γv and compute G = −Γ−1
0 Γv .

Clearly, there are alternative algorithms to the one proposed.
For a given H the system of equations could be solved: Go

I using a generalized Schur decomposition as in Blanchard
and Kahn (1980),

I solving a quadratic matrix equation as in Uhlig (1995),
I using a Newton-type method to find H.



Imperfect Credibility – Welfare

One can also determine matrix formulas for conditional and
unconditional welfare. Go



Application: Smets and Wouters (2007) model

I Nominal frictions – sticky price and wage settings allowing
for backward inflation indexation.

I Real rigidities – habit formation in consumption, investment
adjustment costs, variable capital utilization, and fixed
costs in production.

I Six orthogonal shocks: total factor productivity, two shocks
affecting the intertemporal margin (risk premium and
investment-specific technology shocks), two shocks
affecting the intratemporal margin (wage and price-markup
shocks), and an exogenous government spending shock.

Detailed Model Description Calibration



Application: Smets and Wouters (2007) model

I All parameters are calibrated to the posterior mode as
reported in Smets and Wouters (2007). Calibration

I No interest rate rule nor the associated monetary policy
shock. Instead, the central bank solves an optimal policy
problem.

I The benchmark formulation is given by

Ub
t = wππ

2
t + wyy2

t + wb
i (it − it−1)2,

while the alternative specifications takes the form

Ua
t = wππ

2
t + wyy2

t + wa
i i2t .

Following Woodford (2003), wπ = 1, wy = 0.003,
wb

i = 0.0176, and wa
i = 0.0048.



Application: relative welfare

Relative welfare is defined as (Vη − Vη=0)/(Vη=1 − Vη=0)
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Application: Credibility and volatilities
Higher credibility→ better management of the policy trade-offs
because forward guidance is more effective as a policy tool.
Does higher credibility translate to lower volatilities of all welfare
relevant variables?
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Application: Credibility and simple interest rate rules

I The optimal policy can be implemented through targeting
or interest rate rules.

I In DSGE models it is common to model the central bank’s
behavior through simple reduced-form interest rate rules.
Clearly, such behavior is affected by the degree of
commitment η.

I How are changes in η captured by the parameters of a
simple rule?

I We perform a Monte-Carlo exercise taking our optimal
policy model as the pseudo-true data generating process
and estimate the rule

it = φi it−1 + φππt + φyyt + εt ,



Application: Credibility and simple interest rate rules
Benchmark Loss Function Alternative Loss Function U.S. Data

1 0.9 0.5 0 1 0.9 0.5 0 (1970-2008)

φπ 0.241 0.207 1.204 1.914 0.175 0.057 0.725 2.334 0.128
(0.047) (0.103) (0.141) (0.048) (0.043) (0.138) (0.312) (0.072) (0.039)

φy 0.002 -0.003 0.059 0.105 0.002 -0.010 -0.030 0.12 0.042
(0.003) (0.007) (0.014) (0.005) (0.002) (0.009) (0.033) (0.008) (0.009)

φi 0.971 0.926 0.875 0.75 0.972 0.843 0.503 0.159 0.926
(0.022) (0.033) (0.038) (0.015) (0.022) (0.06) (0.062) (0.027) (0.028)

R2 0.923 0.865 0.843 0.977 0.921 0.759 0.416 0.930 0.947

I Some Features:
I φi increases with η,
I R2 is higher for η close to 0 and 1.

I Plausibility of η = 0.9:
I φy ≈ 0,
I φi is high,
I φπ is plausible.

I Coefficients in simple interest rate rules may change even
though preferences have not.



IRFs with imperfect commitment

For given initial conditions y−1, γ−1, and histories of the shocks
{vt , xt}Tt=0, the model simulation follows the formula[

yt
γt

]
= H

[
yt−1

xtγt−1

]
+ Gvt .

A history of the shock driving the re-optimizations (xt ) should
also be specified.

Some interesting histories:
1. xt = 1∀t – an important history to influence expectations.
2. xt = 1∀t 6= m, xm = 0 – effects of reoptimizing in period

m).
3. Averages across many histories of {xt}Tt=0 – average path.



Application: IRFs, η = .9, wage markup shock
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Application: IRFs, η = .9, wage markup shock
I Imperfect credibility is NOT the average of discretion and

commitment. The response of the nominal interest rate
does not lie between full-commitment and discretion.
I The uncertainty about future reoptimizations affects the

path where reoptimizations do not occur.
I Optimal response implies promising a deeper recession

and low inflation.
I With loose commitment, the interest rate needs to be higher

because of expectations of future reoptimizations and
associated reductions in interest rates.

I If a reoptimization occurs these promises are abandoned:
inflation and output gap are increased through a reduction
in the interest rate.

I Welfare gains of reoptimization are higher roughly after 9
quarters (both inflation and output gap are below target.)

I Commitment seems to be more important for markup
shocks than productivity or demand shocks.



Application: IRFs, η = .9, productivity shock
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Application: IRFs, η = .9, gov. spending shock
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Application: Effects on second moments
Model U.S. Data

Full-Com. Loose Commitment Discr. (1970 - 2008)
0.9 0.5

Standard deviation (w.r.t. output)
Output-gap 0.83 0.84 0.83 0.83 0.74
Price inflation 0.04 0.04 0.06 0.07 0.21
Wage inflation 0.08 0.08 0.08 0.09 0.26
Interest rate 0.09 0.15 0.21 0.18 0.29
Cross-correlations with output
Output-gap 0.87 0.88 0.86 0.86 0.90
Price inflation 0.05 -0.17 -0.66 -0.70 -0.13
Wage inflation 0.21 0.13 -0.29 -0.38 0.05
Interest rate -0.34 -0.49 -0.56 -0.56 -0.32

Some observations, when η ↓:
I 4th row: σ(i) ↑ (because less commitment means less

persistence).
I 6th row: ρ(out ., π) ↓ (because of markup shocks).

We are not estimating parameters but ... for η = 0.9:
I 6th row: ρ(out ., π) <≈ 0
I 7th row: ρ(out ., πw ) >≈ 0
I 4th row: relative σ(i).



Application: variance decompositions
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Application: variance decompositions

Patterns:
I Interest rate:

I Demand shocks: η ↓ does not affect much the volatility of it .
Go

I Markup shocks: η ↓ increases the volatility of it . Go

I All variables:
I η ↓ the importance of wage markup shocks increases.
I This is the shock that requires relatively more commitment.



Closing remarks

I We hope you enjoyed this course and the CIMS Summer
School.

I Hopefully these tools and concepts are of use to you in the
future.

I Any feedback is much appreciated.

I We are more than happy to provide e-mail support on the
course materials. Email us at:
ricardo.nunes@surrey.ac.uk, d.park@surrey.ac.uk and
l.rondina@sussex.ac.uk.
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Additional Material



Determining Unconditional Welfare:

We follow the steps in Marcet and Marimon (1998) to write the
value function.

We add the constraints to the objective function, which does not
alter its value, since in equilibrium the constraints equal zero.

The value of the objective function can thus be written as:

sup
{λt}∞t=0

inf
{yt}∞t=0

E−1

∞∑
t=0

(βγ)t [y ′t Wyt + β (1− γ)
(
y ′t Pyt + d

)
+ (7)

+ λ′t ((A0 + (1− γ) A1Hyy ) yt + γA1yt+1 + A−1yt−1 + Bvt )
]



Shifting the forward looking variables we have that:

sup
{λt}∞t=0

inf
{yt}∞t=0

E−1

∞∑
t=0

(βγ)t [y ′t Wyt + β (1− γ)
(
y ′t Pyt + d

)
+ (8)

+ λ′t ((A0 + (1− γ) A1Hyy ) yt + A−1yt−1 + Bvt ) + β−1λ′t−1A1yt

]
λ′−1 = 0

For any initial condition
[

y ′t−1 λ
′
t−1

]
the welfare measure,

unconditional on the first realization of v0, is given by[
yt−1
λt−1

]′
P̂
[

yt−1
λt−1

]
+ d . (9)

Unconditional welfare must take this form because:
1. yt−1 and λt−1 are state variables
2. unconditional welfare cannot depend on the current shock
3. welfare is linear quadratic
4. A constant absorbs the effects of second moments.



Using the functional form for unconditional welfare, the previous
problem can be written recursively as:
[

yt−1
λt−1

]′
P̂
[

yt−1
λt−1

]
+ d = sup

λt
inf
yt

Et−1

[
y′t Wyt + β (1− γ)

([
yt
0

]′
P̂
[

yt
0

]
+ d
)

+ (10)

+ λ
′
t
((

A0 + (1− γ) A1Hyy
)

yt + A−1yt−1 + Bvt
)

+ β
−1
λ
′
t−1A1yt +

+ βγ

([
yt
λt

]′
P̂
[

yt
λt

]
+ d
)]

In order to obtain the measure of unconditional welfare we
need to determine the matrix P̂ and the scalar d .



The matrix P̂ can be obtained as a derivative of the value
function with respect to

[
y ′t−1 λ′t−1

]
:

2P̂
[

yt−1
λt−1

]
= Et−1

[
0 A′−1

β−1A1 0

] [
yt
λt

]
= (11)

= Et−1

[
0 A′−1

β−1A1 0

](
H
[

yt−1
λt−1

]
+ Gvt

)
=

(12)

=

[
0 A′−1

β−1A1 0

]
H
[

yt−1
λt−1

]
,

This implies that:

P̂ =
1
2

[
0 A′−1

β−1A1 0

]
H. (13)

Notice that in the most pertinent case with initial conditions
λt−1 = 0 the only relevant term would be the upper left block of
P̂, which equals A′−1Hλy .



The constant d can be obtained considering that the recursive
problem can be written in matrix form as (terms in blue are from
the constraints):

[
yt−1
λt−1

]′
P̂
[

yt−1
λt−1

]
+ d = (14)

= Et−1


[

yt
λt

]′
Ṽ
[

yt
λt

]
+

[
yt
λt

]′([ 0 β−1A′1
A−1 0

] [
yt−1
λt−1

]
+

[
0
B

]
vt

)
+ βd


where Ṽ =([

W 0
A0 + (1− γ) A1Hyy 0

]
+ β (1− γ)

[
I 0
0 0

]′
P̂
[

I 0
0 0

]
+ βγP̂

)
.



Substituting the law of motion of
[

yt λt
]

we obtain:
[

yt−1
λt−1

]′
P̂
[

yt−1
λt−1

]
+ d = (15)

= Et−1


(

H
[

yt−1
λt−1

]
+ Gvt

)′
Ṽ
(

H
[

yt−1
λt−1

]
+ Gvt

)
+

(
H
[

yt−1
λt−1

]
+ Gvt

)′ ([ 0 β−1A′1
A−1 0

] [
yt−1
λt−1

]
+

[
0
B

]
vt

)
+ βd



Focusing only on the constant d and noting that Et−1vt = 0, we
must have:

d = Et−1v ′t G
′
(

ṼG +

[
0
B

])
vt + βd (16)

Now apply the rule of the trace tr(ABC) = tr(CAB) = tr(BCA)
and rearrange:

d =
1

1− β
tr
[

Σv

(
G′ṼG + G′

[
0
B

])]
. (17)



Determining Conditional Welfare

We can now compute the conditional welfare, which is defined
as follows:
 yt−1
λt−1

vt

′ P̃

 yt−1
λt−1

vt

 + d̃ = y′t Wyt + β (1− γ) Et

 yt
0

vt+1

′ P̃

 yt
0

vt+1

 + d̃

 (18)

+ λ
′
t

((
A0 + (1− γ) A1Hyy

)
yt + λ

′
t A−1yt−1 + λ

′
t Bvt

)
+ β
−1
λ
′
t−1A1yt

+ βγEt

 yt
λt

vt+1

′ P̃

 yt
λt

vt+1

 + d̃



The expectation of conditional welfare must be unconditional
welfare:

Et

 yt
λt

vt+1

′ P̃
 yt

λt
vt+1

+ d̃

 =

([
yt
λt

]′
P̂
[

yt
λt

]
+ d

)

Substituting the terms in blue we obtain the next expression:



Determining Conditional Welfare

We can now compute the conditional welfare, which is defined
as follows:
 yt−1
λt−1

vt

′ P̃

 yt−1
λt−1

vt

 + d̃ = y′t Wyt + β (1− γ) Et

 yt
0

vt+1

′ P̃

 yt
0

vt+1

 + d̃

 (18)

+ λ
′
t

((
A0 + (1− γ) A1Hyy

)
yt + λ

′
t A−1yt−1 + λ

′
t Bvt

)
+ β
−1
λ
′
t−1A1yt

+ βγEt

 yt
λt

vt+1

′ P̃

 yt
λt

vt+1

 + d̃



The expectation of conditional welfare must be unconditional
welfare:

Et

 yt
λt

vt+1

′ P̃
 yt

λt
vt+1

+ d̃

 =

([
yt
λt

]′
P̂
[

yt
λt

]
+ d

)

Substituting the terms in blue we obtain the next expression:



Using this relation to rearrange the expression for conditional
welfare we obtain the expression:
 yt−1
λt−1

vt

′ P̃

 yt−1
λt−1

vt

 + d̃ = y′t Wyt + β (1− γ)

([
yt
0

]′
P̂
[

yt
0

]
+ d
)

+ (19)

+ λ
′
t

((
A0 + (1− γ) A1Hyy

)
yt + λ

′
t A−1yt−1 + λ

′
t Bvt

)
+ β
−1
λ
′
t−1A1yt +

+ βγ

([
yt
λt

]′
P̂
[

yt
λt

]
+ d
)

Writing the problem in matrix form, and substituting the law of
motion for

[
yt λt

]
we obtain:

 yt−1
λt−1

vt

′ P̃

 yt−1
λt−1

vt

 + d̃ =

(
H
[

yt−1
λt−1

]
+ Gvt

)′
Ṽ
(

H
[

yt−1
λt−1

]
+ Gvt

)
+ (20)

(
H
[

yt−1
λt−1

]
+ Gvt

)′ ([ 0 β−1A′1
A−1 0

] [
yt−1
λt−1

]
+

[
0
B

]
vt

)
+ βd

We can thus obtain conditional welfare, for any given initial
condition, by just evaluating the right-hand side of this last
expression.



I In these derivations we have computed welfare using the
recursive formulation of the Lagrangean. As mentioned in
class, that formulation is equivalent to the original problem
only after imposing the initial condition λ−1 = 0.

I If one wants to evaluate the welfare according to the
original formulation of equation

∑∞
t=0 β

ty ′t Wyt , but for a
different value of λ−1, one needs to subtract
λ−1β

−1A1E−1y0 and λ−1β
−1A1y0 to equations (9) and

(20), respectively.



SW model equations: part 1
— Aggregate resource constraint:

yt = cyct + iy it + zyzt + ε
g
t (21)

ct consumption, it investment, zt capital utilization rate, εg
t

exogenous spending.

— The consumption Euler equation:

ct = c1ct−1+(1− c1) Etct+1+c2 (lt − Et lt+1)−c3

(
rt − Etπt+1 + εb

t

)
(22)

lt hours worked, (rt − Etπt+1) ex-ante real interest rate, εb
t

finance shock.
— Investment equation:

it = i1it−1 + (1− i1) Et it+1 + i2qt + εi
t (23)

qt value of capital, εi
t investment specific shock.



SW model equations: part 2
— The corresponding arbitrage equation for the value of capital:

qt = q1Etqt+1 + (1− q1) Et r k
t+1 −

(
rt − Etπt+1 + εb

t

)
(24)

r k
t+1 real rental rate on capital.

— Aggregate production function:

yt = φp (αks
t + (1− α) lt + εa

t ) (25)

φp reflects the presence of fixed costs, ks
t capital, εa

t
productivity shock
— Installed capital and capital services:

ks
t = kt−1 + zt (26)

— Cost minimization by households links rental rate of capital
and capital utilization

zt = z1r k
t (27)



SW model equations: part 3

— Accumulation of installed capital

kt = k1kt−1 + (1− k1) it + k2ε
i
t (28)

— Cost minimization by firms defines the price mark-up
(average price minus nominal marginal cost)

µp
t = mplt − wt = α (ks

t − lt ) + εa
t − wt (29)

— New-Keynesian Phillips curve:

πt = π1πt−1 + π2Etπt+1 − π3µ
p
t + εp

t (30)

— Rental rate of capital

r k
t = − (kt − lt ) + wt (31)



SW model equations: part 4

— The wage mark-up

µw
t = wt −mrst = wt −

(
σl lt +

1
1− λ/γ

(ct − λ/γct−1)

)
(32)

mrst marginal rate of substitution between working and
consuming.

— Real wages adjust sluggishly

wt = w1wt−1+(1− w1) (Etwt+1 + Etπt+1)−w2πt +w3πt−1−w4µ
w
t +εw

t
(33)

— Monetary policy reaction function:

rt = ρrt−1 + (1− ρ)
[
rππt + ry

(
yt − yp

t
)

+ r∆y ∆
(
yt − yp

t
)]

+ εr
t

(34)



Parametrization

A.4 Model Parameterization

When solving the model, we adopt the parameter estimates (posterior mode) in Tables 1.A and 1.B

of SW. We also use the same values for the calibrated parameters. Table A1 provides the relevant

values.

Table A.1: Parameter Values in Smets and Wouters (2007).
Panel A: Calibrated

Parameter Description Value Parameter Description Value
δ Depreciation rate 0.025 εp Kimball Elast. GM 10
φw Gross wage markup 1.50 εw Kimball Elast. LM 10
gy Gov’t G/Y ss-ratio 0.18

Panel B: Estimated
Parameter Description Value Parameter Description Value

ϕ Investment adj. cost 5.48 α Capital production share 0.19
σc Inv subs. elast. of cons. 1.39 ψ Capital utilization cost 0.54
κ Degree of ext. habit 0.71 φp Gross price markup 1.61

ξw Calvo prob. wages 0.73 π Steady state net infl. rate 0.0081
σl Labor supply elas. 1.92 β Discount factor 0.9984

ξp Calvo prob. prices 0.65 l Steady state hours worked 0.25

ιw Ind. for non-opt. wages 0.59 γ Steady state gross growth 1.0043
ιp Ind. for non-opt. prices 0.22

Panel C: Shock Processes
Shock Persistence MA(1) Std. of Innovation (%)

Neutral Technology ρa 0.95 - σa 0.45
Risk premium ρb 0.18 - σb 0.24
Gov’t spending ρg 0.97 ρga 0.52 σg 0.52

Inv. Specific Tech. ρi 0.71 σi 0.45
Price markup ρp 0.90 µp 0.74 σp 0.14

Wage markup ρw 0.97 µw 0.88 σw 0.24
Monetary policy ρr - - σr -

Note: SW estimates ρr = 0.12 and σr = 0.24, but in our optimal policy exercises these parameters are not present.

There are two issues to notice with regards to the parameters in Table A1. First, we adapt and

re-scale the processes of the price and wage markup shocks so that when our model is log-linearized

it matches exactly the original SW model. Second, we set the monetary policy shock parameters

to nil, as we restrict our analysis to optimal policy.
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SW equations: additional details and description

The aggregate resource constraint:

yt = cyct + iy it + zyzt + ε
g
t

Output (yt ) is absorbed by consumption (ct ), investment (it ),
capital-utilization costs that are a function of the capital
utilization rate (zt ), and exogenous spending (εg

t );

Exogenous spending follows the process

ε
g
t = ρgε

g
t−1 + η

g
t + ρgaε

a
t



The consumption Euler equation:

ct = c1ct−1+(1− c1) Etct+1+c2 (lt − Et lt+1)−c3

(
rt − Etπt+1 + εb

t

)
Current consumption (ct ) depends on a weighted average of

past and expected future consumption, and on expected growth
in hours worked (lt − Et lt+1), the ex-ante real interest rate
(rt − Etπt+1), and a disturbance term εb

t .

The disturbance term εb
t represents a wedge between the

interest rate controlled by the central bank and the return on
assets held by the households. Under the assumption of no
external habit formation and log utility in consumption,
c1 = c2 = 0 and the traditional purely forward looking
consumption equation is obtained.



Investment Euler equation:

it = i1it−1 + (1− i1) Et it+1 + i2qt + εi
t

where qt is the real value of the existing capital stock, and εi
t

represents a disturbance to the investment-specific technology
process. The corresponding arbitrage equation for the value of
capital is given by:

qt = q1Etqt+1 + (1− q1) Et r k
t+1 −

(
rt − Etπt+1 + εb

t

)
The current value of the capital stock (qt ) depends positively

on its expected future value and the expected real rental rate
on capital

(
Et r k

t+1
)

and negatively on the ex-ante real interest
rate and the risk premium disturbance.



The aggregate production function is given by

yt = φp (αks
t + (1− α) lt + εa

t )

Output is produced using capital (ks
t ) and labor services (hours

worked, lt ), εa
t denotes total factor productivity. The parameter

α captures the share of capital in production, and the
parameter φp is one plus the share of fixed costs in production.

ks
t = kt−1 + zt

As newly installed capital becomes effective only with a
one-quarter lag, current capital services used in production (ks

t )
are a function of capital installed in the previous period (kt−1)
and the degree of capital utilization (zt ).



Cost minimization by the households that provide capital
services implies that the degree of capital utilization is a
positive function of the rental rate of capital,

zt = z1r k
t

The accumulation of installed capital (kt ) is a function not only
of the flow of investment but also of the relative efficiency of
these investment expenditures as captured by the investment
specific technology disturbance

kt = k1kt−1 + (1− k1) it + k2ε
i
t

Cost minimization by firms will also imply that the rental rate of
capital is negatively related to the capital-labor ratio and
positively to the real wage (both with unitary elasticity):

r k
t = − (ks

t − lt ) + wt



Cost minimization by firms in monopolistic competitive goods
market implies that the price mark-up (µp

t ), defined as the
difference between the average price and the nominal marginal
cost or the negative of the real marginal cost, is equal to the
difference between the marginal product of labor (mplt ) and the
real wage (wt ):

µp
t = mplt − wt = α (ks

t − lt ) + εa
t − wt

The New Keynesian Phillips curve:

πt = π1πt−1 + π2Etπt+1 − π3µ
p
t + εp

t

(πt ) depends positively on past and expected future inflation,
negatively on the current price mark-up, and positively on a
price mark-up disturbance (εp

t ). The price mark-up disturbance
is assumed to follow an ARMA(1, 1) process:

εp
t = ρpε

p
t−1 + ηp

t − µpη
p
t−1.



In analogy with the goods market, in the monopolistically
competitive labor market, the wage mark-up will be equal to the
difference between the real wage and the marginal rate of
substitution between working and consuming (mrst ),

µw
t = wt −mrst = wt −

(
σl lt +

1
1− λ/γ

(ct − λ/γct−1)

)
where σl is the elasticity of labor supply with respect to the real

wage, γ is the steady-state growth rate, and λ is the habit
parameter in consumption.



Similarly, due to nominal wage stickiness and partial indexation
of wages to inflation, real wages adjust only gradually to the
desired wage mark-up:

wt = w1wt−1+(1− w1) (Etwt+1 + Etπt+1)−w2πt +w3πt−1−w4µ
w
t +εw

t

The real wage wt is a function of expected and past real wages,
expected, current, and past inflation, the wage mark-up, and a
wage mark-up disturbance (εw

t ) assumed to follow an ARMA(1,
1) εw

t = ρwε
w
t−1 + ηw

t − µwη
w
t−1.

The monetary policy rule (not used in the optimal policy)

rt =ρrt−1 + (1− ρ)
[
rππt + ry

(
yt − yp

t
)]

+ r∆y
[(

yt − yp
t
)
−
(
yt−1 − yp

t−1

)]
+ εD

t ,

where
(
yt − yp

t
)

is the output-gap.



”They sang these words most musically, and as I longed to hear
them further I made by frowning to my men that they should set
me free; but they quickened their stroke, and Eurylochus and
Perimedes bound me with still stronger bonds till we had got
out of hearing of the Sirens’ voices. Then my men took the wax
from their ears and unbound me.”

Book XII, Homer, The Odyssey, 8th century BC



Ulysses and the Sirens, J. W. Waterhouse (1849-1917),
1891


