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Alternative Solutions Methods and Further Reading



Alternative Solution Methods

There are several ways to solve heterogeneous agent
models.

The aim here was to give an introduction so we have
chosen the simplest solution method: very transparent and
easily implementable algorithm

Also very inaccurate and inefficient.



Alternative Solution Methods

The key to solving our heterogeneous agent model: the
aggregation of the individual decision rules

Two ingredients:

the decision rules, and

the cross-sectional distribution (possibly time varying)

We will review different methods to improve our algorithms
to compute these two ingredients: see the Journal of
Economic Dynamics & Control (Volume 34, Issue 1) and
the Handbook of Computational Economics (Volume 3,
Chapter 6) for a more comprehensive overview

We will also review two alternative solution algorithms by
Reiter (2009) and Achdou et al. (2020)

https://www.sciencedirect.com/journal/journal-of-economic-dynamics-and-control/vol/34/issue/1
https://www.sciencedirect.com/journal/journal-of-economic-dynamics-and-control/vol/34/issue/1
https://www.sciencedirect.com/science/article/pii/B9780444529800000062
https://www.sciencedirect.com/science/article/pii/B9780444529800000062
https://www.sciencedirect.com/science/article/abs/pii/S0165188908001528
https://benjaminmoll.com/wp-content/uploads/2019/07/HACT.pdf


Alternative Solutions Methods: Decision Rules



Alternative Solution Methods:
Decision Rules

We have used discrete value function iteration: we
restricted households to choose a gridpoint

We discuss three alternatives:

continuous value function iteration

endogenous gridpoint method

perturbation



Continuous Value Function Iteration

Using a continuous support for state variables: very
accurate, but can be slow

Consider the Aiyagari model with discrete grids:

V (kl, εj) = max
k′

U(Rkl + εjW − k′) +Q(k′, εj) (58)

s.t. Q(k′, εj) = βE{V (k′, ε′)|ε} = β

nε∑
m=1

Pε
mjV (k′, εm) (59)

k′ ≥ k (60)

In order to compute the continuation value Q(k′, εj) in
between gridpoints we can use interpolation.



Continuous Value Function Iteration

Linear interpolation would give

Q(k′, εj) = β

nε∑
m=1

Pε
mj [ωV (ks, εm) + (1− ω))V (ks+1, εm)] (61)

where ks < k′ < ks+1 and ω = (ks+1 − k′)/(ks+1 − ks)

The resulting decision rule

is more accurate

can be evaluated at any values of k: has implications for the
computation of the wealth distribution

There are many options available (quadratic, cubic, etc.).



Endogenous Gridpoint Method

Carroll (2006) proposes an algorithm called endogenous
gridpoint method (EGM).

It allows us to use interpolation without the increased
computational burden under certain conditions.

VFI: for each gridpoint ki we need to find k′ and this is
where the algorithm typically spends most of the time.

EGM: for each gridpoint k′i we need to find k.

https://www.sciencedirect.com/science/article/abs/pii/S0165176505003368


Endogenous Gridpoint Method

Consider again the Aiyagari model with interpolation:

V (kl, εj) = max
k′

log(Rkl + εjW − k′︸ ︷︷ ︸
c

)

+ β[Pε
1jV (k′, ε1) + Pε

2jV (k′, ε2)]︸ ︷︷ ︸
Q(k′,εj)

(62)

At each iteration we need to solve a maximization problem
for each pair (kl, εj) in order to update the value function.

This is computationally very costly.



Endogenous Gridpoint Method

Let us define the household’s disposable income at the
beginning of a period as:

x = Rk + εW (63)

Then we can also write the problem as

Ṽ (x, εj) = max
k′

log(x− k′︸ ︷︷ ︸
c

)

+ β[Pε
1j Ṽ (x′, ε1) + Pε

2j Ṽ (x′, ε2)]︸ ︷︷ ︸
Q̃

(64)

The two value functions Ṽ (x, ε) and V (k, ε) are different.

The key insight of the algorithm: the continuation value Q̃
is a function of k′ and ε

Q̃(k′, εj) = β[Pε
1j Ṽ (Rk′ + ε1, ε1) + Pε

2j Ṽ (Rk′ + ε2, ε2)] (65)



Endogenous Gridpoint Method

So we can write the Bellman equation as

Ṽ (x, εj) = max
k′

log(x− k′) + Q̃(k′, εj) (66)

The corresponding first-order condition has an analytical
solution:

(x− k′)−1 = Q̃k′(k′, εj) ⇒ c∗ = x− k′ =
1

Q̃k′(k′, εj)
(67)

Substituting back we obtain

Ṽ (x, εj) = Q̃(k′, εj)− log
(
Q̃k′(k′, εj)

)
(68)

Given grids for k′ and ε and an initial guess for Q̃(k′, ε) we
iterate on equations (63), (65) and (68).



Endogenous Gridpoint Method

How does it work in practice?

1 Guess the values Q̃(0)(k′l, εj).

2 Given Q̃(n)(k′l, εj) compute the partial derivatives

Q̃
(n)
k′ (k′l, εj) and the values c∗lj .

3 Compute the values x∗lj = k′l + c∗lj and use (68) to compute

Ṽ (x∗lj , εj).

4 Use (63) to compute Q̃(n+1)(k′l, εj)

As you can see no optimization is necessary, just basic
matrix algebra, numerical differentiation, and
interpolation.

For implementation details see Barillas and
Fernandez-Villaverde (2007).

https://www.sciencedirect.com/science/article/pii/S0165188906001783
https://www.sciencedirect.com/science/article/pii/S0165188906001783


Perturbation

Using perturbation to solve for the decision rule: may be
even less accurate, but extremely fast.

Problem: perturbation is not suited for models with
occasionally binding constraints (continuity,
differentiability, etc.)

Preston and Roca (2007) and Kim et al. (2010) replace the
borrowing constraint with a penalty term in the utility
function:

households are penalized when capital holdings move close
to the lower bound

the maximization problem has equality constraints only

https://www.nber.org/papers/w13260
https://www.sciencedirect.com/science/article/pii/S016518890900133X


Alternative Solution Methods

The key to solving our heterogeneous agent model: the
aggregation of the individual decision rules

Two ingredients:

the decision rules, and

the cross-sectional distribution (possibly time varying)

We will review different methods to improve our algorithms
to compute these two ingredients: see the Journal of
Economic Dynamics & Control (Volume 34, Issue 1) and
the Handbook of Computational Economics (Volume 3,
Chapter 6) for a more comprehensive overview

We will also review two alternative solution algorithms by
Reiter (2009) and Achdou et al. (2020)

https://www.sciencedirect.com/journal/journal-of-economic-dynamics-and-control/vol/34/issue/1
https://www.sciencedirect.com/journal/journal-of-economic-dynamics-and-control/vol/34/issue/1
https://www.sciencedirect.com/science/article/pii/B9780444529800000062
https://www.sciencedirect.com/science/article/pii/B9780444529800000062
https://www.sciencedirect.com/science/article/abs/pii/S0165188908001528
https://benjaminmoll.com/wp-content/uploads/2019/07/HACT.pdf


Alternative Solutions Methods: Cross-sectional Distribution



Alternative Solution Methods:
Cross-sectional Distribution

As we discussed there are two methods:

Simulation: it is subject to noticeable sampling uncertainty
even with a large number of agents

Non-stochastic simulation: it simulates the distribution
directly and no idiosyncratic shocks are generated (hence
the name)

We have used simulation already, so now let us have a look
at non-stochastic simulation.



Non-stochastic Simulation

The decision rule k′ = g(k, ε) together with the law of
motion for ε induce the following law of motion for each
household in the Aiyagari model:

(k, ε) (k′, ε) (k′, ε′) (k′′, ε′) (k′′, ε′′)
decision

k′ = g(k, ε)

shock

Prob(ε′|ε)
decision

k′′i = g(k′, ε′)

shock

Prob(ε′′|ε′)

Within each period there is an independent transition
along both dimensions of the unconditional probability
distribution:

1 every household learns its new productivity, followed by

2 a saving decision

There are 2 distributions: we are interested in the one after
the saving decisions, but before next period’s labour
productivities become known



Non-stochastic Simulation

We have discretized the state space:

there are n possible asset levels, {k1, . . . , kn}

there are 2 possible productivity levels, {ε1, ε2}

We have 2n distinct types of households and we can
represent the distribution λ(k, ε) as an n× 2 matrix.

Given the discrete nature of the probability distribution,
its evolution can be written in the form

vec(λ′) = Γ vec(λ) (71)

Γ needs to be constructed based on the individual decision
rule and the transition matrix for labour productivity.



Non-stochastic Simulation

The transition probability from, say, (kl, εj) to (ks, εm) can
be determined as follows:

There are 2 transitions: (kl, εj)→ (kl, εm)→ (ks, εm)

(kl, εj)→ (kl, εm): determined by Pε
mj

(kl, εm)→ (ks, εm): determined by the decision rule as

Gm
sl = Prob[(kl, εm)|(ks, εm)] =

{
1 if ks = g(kl, εm)

0 otherwise
(69)

Consequently, the transition probability is given by

P ((ks, εm)|(kl, εj)) = P [(ks, εm)|(kl, εm)]P [(kl, εm)|(kl, εj)]
= Gm

slPε
mj (70)

It gives the fraction of households transitioning.



Non-stochastic Simulation

We can collect these probabilities in matrices:

vec(λ′) = ΓG ∗ ΓP︸ ︷︷ ︸
Γ

vec(λ) (75)

where

ΓG =

[
G1 0n
0n G2

]
ΓP = Pε ⊗ In (74)

The order of the matrices in (75) is very important.



Non-stochastic Simulation

We are interested in the stationary (aka ergodic)
distribution, which is the time-invariant unconditional
distribution that solves

vec(λ) = Γ vec(λ)

The solution is the eigenvector (normalized to satisfy∑
i λi = 1) associated with a unit eigenvalue of Γ.



Non-stochastic Simulation
1 Use a direct method:

You can get all the eigenvalues and eigenvectors this way.

Direct methods use some form of matrix decomposition:
slow and memory intensive for large matrices

Matlab: eig command

2 The power iteration algorithm: iterate on

vec(λk+1) = Γ vec(λk) (76)

Yields the dominant eigenvalue only: exactly what we need

Iterative method that avoids matrix decomposition: fast

Matlab: eigs command

3 See notes.

4 See notes.



Non-stochastic Simulation

Once we have determined the stationary distribution:∫
k′dλ(k′, ε) =

n∑
l=1

2∑
j=1

λ(kl, εj)kl (27)

Essentially we are integrating the grid for k wrt the
end-of-period distribution.

Alternatively we can integrate the decision rule. The
market clearing condition can be written as:

K ′ =

∫
k′dλ(k′, ε) =

∫
g(k, ε)dλ(k, ε) (83)



Non-stochastic Simulation

We are integrating wrt the beginning-of-period distribution
(before saving decisions), which solves:

vec(λ′) = ΓP ∗ ΓG︸ ︷︷ ︸
Γ

vec(λ) (84)

Once the distribution is determined:

K ′ =

∫
g(k, ε)dλ(k, ε) =

n∑
l=1

2∑
j=1

g(kl, εj)λ(kl, εj) (85)

Exercise 6 asks you to implement (85) and compare the
two integrals.



Non-stochastic Simulation

We can generalize it to models with aggregate uncertainty.

The resulting dynamics can be written as:

vec(λt) = Γt vec(λt−1) (77)

The individual decision rules vary with the aggregate
states: we need to reconstruct ΓG every period.



Non-stochastic simulation

Approximating the wealth distribution by a histogram
constitutes a piecewise approximation.

Algan et al. (2010) parametrize the density function to
describe the cross-sectional distribution.

Example: normal distribution can be parametrized by two
parameters only

They use exponential of polynomials as the functional
form: it is a very flexible yet accurate tool.

https://www.sciencedirect.com/science/article/pii/S0165188909001444


Alternative Solution Methods

The key to solving our heterogeneous agent model: the
aggregation of the individual decision rules

Two ingredients:

the decision rules, and

the cross-sectional distribution (possibly time varying)

We will review different methods to improve our algorithms
to compute these two ingredients: see the Journal of
Economic Dynamics & Control (Volume 34, Issue 1) and
the Handbook of Computational Economics (Volume 3,
Chapter 6) for a more comprehensive overview

We will also review two alternative solution algorithms by
Reiter (2009) and Achdou et al. (2020)

https://www.sciencedirect.com/journal/journal-of-economic-dynamics-and-control/vol/34/issue/1
https://www.sciencedirect.com/journal/journal-of-economic-dynamics-and-control/vol/34/issue/1
https://www.sciencedirect.com/science/article/pii/B9780444529800000062
https://www.sciencedirect.com/science/article/pii/B9780444529800000062
https://www.sciencedirect.com/science/article/abs/pii/S0165188908001528
https://benjaminmoll.com/wp-content/uploads/2019/07/HACT.pdf


Additional Alternative Solutions Methods



Alternative solution methods

Reiter (2009) develops a solution algorithm to KS type
models that combines projection and perturbation.

The main idea of the algorithm is very similar to the way
DSGE models are solved using perturbation:

first we obtain a fixed point of the model (steady state)

then we log-linearize the model about this point

the steady state of a DSGE model: no uncertainty

the steady state of a heterogeneous agent model: no
aggregate uncertainty (the stationary equilibrium)

we perturb the equilibrium conditions of the model
(including the dynamics of the cross-sectional wealth
distribution) around the stationary equilibrium to see how
they change once aggregate uncertainty is introduced

https://www.sciencedirect.com/science/article/abs/pii/S0165188908001528


Alternative solution methods

Achdou et al. (2020) develop a solution algorithm for
heterogeneous agent models in continuous time.

In continuous time, the equilibrium of heterogeneous agent
models can be conveniently characterized as systems of
partial differential equations which can be solved easily.

Consider the first-order condition the of the households’
maximization problem in the Aiyagari model:

(Rk + εW − k′(k, ε))−1 = βEVk′(k
′(k, ε), ε′) (87)

We usually need to

resort to costly root-finding operations for solving it

evaluate the integral on the left-hand side of the equation
multiple times

https://benjaminmoll.com/wp-content/uploads/2019/07/HACT.pdf


Alternative solution methods

The continuous-time approach sidesteps both of these
difficulties completely.

In continuous time “tomorrow“ is the same thing as
”today“ and the first-order condition becomes

(Rk + εW − k′(k, ε))−1 = βVk′(k
′(k, ε), ε) (88)

There is no expectation: never a need for computing
integrals

Like EGM: given a guess for the value function, the
first-order condition can be solved analytically.

Benjamin Moll’s website has lots of resources and it is a
good point to start learning about this approach.

https://benjaminmoll.com/codes/

