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No Aggregate Uncertainty



No Aggregate Uncertainty

We start with a simplified model: there is no aggregate
uncertainty, At ≡ A

This is the setup studied by Aiyagari (1994).

No aggregate uncertainty:

Idiosyncratic risk is the only source of uncertainty

Aggregate variables are constant: including the wealth
distribution

Wealth distribution still matters for aggregate variables,
but it is not time-varying.

https://www.jstor.org/stable/2118417


Model Summary
The model consists of the household’s maximization problem

V (k, ε, λ,A) = max
k′

U(Rk + εW − k′)+

βE{V (k′, ε′, λ′, A′)|ε,A} (14)

s.t. λ′ = Γ(λ,A,A′) (15)

k′ ≥ k, (16)

the firm’s first order conditions

W = αAα
(
K

H

)1−α
(17)

R = (1− α)Aα
(
K

H

)−α
+ 1− δ, (18)

and the market clearing conditions

K ′ =

∫
k′dλ′(k′, ε) (19)

H = Eε (20)



A Generic Solution Algorithm

We need to operationalize the steps from our generic
algorithm:

1 Guess the law of motion Γ.

2 Solve for the optimal individual decision rules given the law
of motion.

3 Aggregate the individual decisions in order to determine the
aggregate demand functions.

4 If the resulting aggregate demand functions are consistent
with our guess about Γ, then we have found the solution.

5 Otherwise update our guess. Rinse and repeat.
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Guessing the Law of Motion

Recall the households’ maximization problem:

V (k, ε, λ,A) = max
k′

U(Rk + εW − k′)+

βE{V (k′, ε′, λ′, A′)|ε,A} (14)

s.t. λ′ = Γ(λ,A,A′) (15)

k′ ≥ k (16)

No aggregate uncertainty:

All aggregate variables are constant

λ′ = λ, A′ = A: we can simplify the maximization problem

So we know what the law of motion is.

In order to compute R and W : we need to know the
(constant) distribution

But do we need to guess the entire distribution?
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Guessing the Law of Motion

Both factor prices can be expressed as functions of the
aggregate capital-labour ratio:

W = αAα
(
K

H

)1−α
(17)

R = (1− α)Aα
(
K

H

)−α
+ 1− δ (18)

Aggregate labour supply is constant: it is given by the
unconditional mean of idiosyncratic labour productivity
(from market clearing)

H = Eε



Guessing the Law of Motion

Consequently: we can compute factor prices given
aggregate capital, K.

So we only need to guess the first moment of the wealth
distribution.

We still need to compute the entire distribution to solve
the model, but no need to guess the entire distribution.



A Generic Solution Algorithm

We need to operationalize the steps from our generic
algorithm:

1 Guess the law of motion Γ.

2 Solve for the optimal individual decision rules given the law
of motion.

3 Aggregate the individual decisions in order to determine the
aggregate demand functions.

4 If the resulting aggregate demand functions are consistent
with our guess about Γ, then we have found the solution.

5 Otherwise update our guess. Rinse and repeat.
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Optimal Individual Decision Rules
We need to solve:

V (k, ε) = max
k′

U(Rk + εW − k′) + βE{V (k′, ε′)|ε} (21)

k′ ≥ k (22)

given R and W implied by our guess on K.

Nonlinear problem: value function iteration



Optimal Individual Decision Rules
We need to solve:
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U(Rk + εW − k′) + βE{V (k′, ε′)|ε} (21)

k′ ≥ k (22)

given R and W implied by our guess on K.

Labour productivity: 2-state Markov chain

can take only two values: ε1 = εL < ε2 = εH

the transition probabilities of these two realizations are defined
by the 2× 2 matrix Pε



Optimal Individual Decision Rules
We need to solve:

V (k, εj) = max
k′

U(Rk + εjW − k′) +Q(k′, εj), j = 1, 2 (23)

s.t. Q(k′, εj) = βE{V (k′, ε′)|εj} = β

2∑
m=1

PεmjV (k′, εl) (24)

k′ ≥ k (25)

given R and W implied by our guess on K.

Labour productivity: 2-state Markov chain

can take only two values: ε1 = εL < ε2 = εH

the transition probabilities of these two realizations are defined
by the 2× 2 matrix Pε

Note: We use left stochastic matrices whose columns sum up to 1



Optimal Individual Decision Rules
We need to solve:

V (k, εj) = max
k′

U(Rk + εjW − k′) +Q(k′, εj), j = 1, 2 (23)

s.t. Q(k′, εj) = βE{V (k′, ε′)|εj} = β

2∑
m=1

PεmjV (k′, εl) (24)

k′ ≥ k (25)

given R and W implied by our guess on K.

Q(k′, ε):

the continuation value of the savings decision

fully determined by V (k, ε) and Pε

a convenient tool when we implement the algorithm



Optimal Individual Decision Rules

We skip the implementation details (see Day 1).

Capital is represented by an n-point discrete grid:

{k1 = k︸ ︷︷ ︸
borrowing constraint

, k2, . . . , kn−1, kn = k︸ ︷︷ ︸
suitably chosen upper bound

}

The solution is the decision rule k′ = g(k, ε):

We restrict the households to choose one of the n gridpoints
as their capital holding tomorrow, k′.

For both values of the idiosyncratic productivity shock εj ,
j = 1, 2, the decision rule can be represented by an n× 1
vector whose lth element is k′ = g(kl, εj).



A Generic Solution Algorithm

We need to operationalize the steps from our generic
algorithm:

1 Guess the law of motion Γ.

2 Solve for the optimal individual decision rules given the law
of motion.

3 Aggregate the individual decisions in order to determine the
aggregate demand functions.

4 If the resulting aggregate demand functions are consistent
with our guess about Γ, then we have found the solution.

5 Otherwise update our guess. Rinse and repeat.
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Aggregation

Market clearing for capital requires that:

K ′ =

∫
k′dλ(k′, ε) (19)

We need to determine λ(k′, ε) to evaluate the integral.



Aggregation
We have discretized the state space:

there are n possible asset levels, {k1, . . . , kn}

there are 2 possible productivity levels, {ε1, ε2}

We have restricted households to choose one of the n
gridpoints for capital.

So there are 2n distinct types of households and we can
represent the distribution λ(k, ε) as an n× 2 matrix:

λ(k, ε) =

λ(k1, ε1) λ(k1, ε2)
...

...
λ(kn, ε1) λ(kn, ε2)

 (26)

and the integral can be computed as∫
k′dλ(k′, ε) =

n∑
l=1

2∑
j=1

λ(kl, εj)kl (27)



Aggregation
There are two different methods in the literature:

1 Aggregation by simulation:

We simulate the model to determine the distribution from
the simulated sample.

Easy to implement, but subject to sampling uncertainty.

2 Aggregation by non-stochastic simulation:

No need to generate idiosyncratic shocks.

We determine the evolution of the histogram directly, i.e.
we simulate the distribution itself.

May be computationally costly, but no sampling
uncertainty.

We discuss non-stochastic simulation among the alternative
solution methods.



Aggregation

Let us look at simulations from the Aiyagari model:

I have solved the model.

I have simulated a panel of N = 100, 000 households for
T = 10, 000 periods.

I have evaluated the market clearing condition to compute
aggregate capital.



Aggregation

9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10000
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Not converging even after 10, 000 periods.

Actually: it never will.



Aggregation

The reason: sampling uncertainty

In period t = 9, 400 for example:

10, 050 households have low productivity (ε1)

The transition probabilities used in the model:

Pε
11 = 0.6 Pε

21 = 0.4

So 10, 050× 0.6 = 6, 030 should stay in the same state.

The random numbers generated by Matlab imply that
actually 6, 035 households stay.

Sampling uncertainty implies that the actual transition
probabilities are biased: the Law of Large Numbers does
not hold in finite samples.



Aggregation

Two ways to solve the problem:

1 “Fix” the transition probabilities.

2 Change the size of the cross-section (N).



Aggregation

We can generate shocks that “respect” the transitional
probabilities; just like Krusell and Smith (1998) do.

The way we usually generate 2-state Markov chains:

1 For each low productivity household generate a uniform random
number in [0, 1].

2 If a household has a random number ≤ 0.60, then the household
stays in the same state.

3 Otherwise the household transitions to the other state.

This is how the previous plot was generated.

And this is how the Law of Large Numbers gets violated.

https://www.jstor.org/stable/10.1086/250034


Aggregation

We can generate shocks that “respect” the transitional
probabilities; just like Krusell and Smith (1998) do.

We can modify this as follows:

1 For each low productivity household generate a uniform random
number in [0, 1].

2 Sort them in increasing order of their generated random
numbers.

3 The first 6, 030 households (with the lowest numbers) will stay in
the same state.

4 The rest (households with the highest 40 per cent of the random
numbers generated) transition to the other state.

This is how the next plot was generated.

https://www.jstor.org/stable/10.1086/250034


Aggregation
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Convergence is quick.

Sampling uncertainty is completely eliminated; which is the
basic idea behind non-stochastic simulation.



Aggregation

We can also change the size of the cross-section; just like
many papers in the literature do.

Your first thought probably: increase N .

It would certainly decrease the transitional probabilities’ bias.

But the bias would asymptotically disappear only of we kept
increasing N . Which is what you need for convergence.

But N needs to be kept fixed.



Aggregation

We can also change the size of the cross-section; just like
many papers in the literature do.

Or we can simulate a single household only (N = 1).

As we increase T the transitional probabilities for that household
converge to their true value asymptotically.

What is different? We compute the transitional probabilities
longitudinally and not cross-sectionally.



Aggregation

We can also change the size of the cross-section; just like
many papers in the literature do.



Aggregation

We can also change the size of the cross-section; just like
many papers in the literature do.

But can we obtain the cross-sectional wealth distribution from a
single household?

Uhlig (1996) shows that:

The fraction of time any given household spends in each state
(kl, εj) over time is the same as the fraction of households in
each state (kl, εj) in the stationary cross-sectional wealth
distribution.

So the distribution of the states a single household visits over
time asymptotically converges to the stationary cross-sectional
wealth distribution.

https://www.jstor.org/stable/25054951


Aggregation

We can also change the size of the cross-section; just like
many papers in the literature do.
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A Generic Solution Algorithm

We need to operationalize the steps from our generic
algorithm:

1 Guess the law of motion Γ.

2 Solve for the optimal individual decision rules given the law
of motion.

3 Aggregate the individual decisions in order to determine the
aggregate demand functions.

4 If the resulting aggregate demand functions are consistent
with our guess about Γ, then we have found the solution.

5 Otherwise update our guess. Rinse and repeat.
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Evaluating our Guess

Recall that no aggregate uncertainty implies constant
aggregate variables:

K = K ′ (38)

Combine it with market clearing to get:

K =

∫
k′dλ(k′, ε) (29)

LHS: aggregate capital at the beginning of the period that
is used to determine prices (capital demand by firms)

RHS: aggregated individual saving decisions implied by
those prices (capital supply by households at the end of the
period)



Evaluating our Guess

Consistency condition:

K︸︷︷︸
demand

=

∫
k′dλ(k′, ε)︸ ︷︷ ︸
supply

(39)

Recall that we solve the individuals’ problem given a guess
about K, so both sides are functions of K:

The left-hand side is increasing in K

The right-hand side is decreasing in K



Evaluating our Guess
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Evaluating our Guess

We use bisection to solve for K∗:

1 Find two values for aggregate capital such that they bracket
the solution, K < K∗ < K; there is excess supply and
demand of capital at K and K, respectively.

2 Solve the model for the midpoint (K +K)/2:

i) Optimal individual decision rule

ii) Stationary distribution

3 If there is excess supply of capital at the midpoint, then it
is below the optimal solution and we replace the lower
bound K with the midpoint. Otherwise we replace the
upper bound K with the midpoint.

4 We iterate until the bracketing interval becomes sufficiently
small.
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Implementing the Algorithm

Utility function:

U(c) = log c

Parameter values:

Parameter k A α β δ ε1 ε2

Value 0 1 0.64 0.96 0.1 0.15 0.7

ε′/ε ε1 ε2

ε1 0.600 0.044
ε2 0.400 0.956



Implementing the Algorithm
 37 %% Parameters
 38 % Model parameters
 39 p.beta                = 0.96;           % discount factor
 40 p.alpha               = 0.64;           % labour elasticity of output
 41 p.delta               = 0.1;            % depreciation rate
 42 
 43 % Aggregate shock
 44 p.A                   = 1;              % constant aggregate productivity
 45 
 46 % Idiosyncratic shock
 47 p.mean_length_lowprod = 2.5;            % expected duration of being in low productivity state
 48 p.fraction_lowprod    = 0.1;            % fraction of low productivity households
 49 p.e                   = [0.15 0.7];     % productivity values in the two states
 50 p.N_e                 = length(p.e);    % number of grid points along e dimension
 51 ergdist_e             = [p.fraction_lowprod 1-p.fraction_lowprod];
 52                                         % stationary distribution of productivity process
 53 
 54 % Aggregate variables
 55 p.H                   = ergdist_e*p.e'; % aggregate labour
 56 
 57 % Solution method
 58 p.K                   = ((1/p.beta-(1-p.delta))/(1-p.alpha))^(-1/p.alpha)*p.A*p.H; 
 59                                         % steady state capital stock of repr. agent model
 60 p.Klow                = 0.5;            % the low and high values for K (in terms of p.K)
 61 p.Khigh               = 2;              % for the initial bisection step
 62 
 63 p.N_k                 = 500;              % individual capital grid size
 64 p.k_min               = 0;              % minimum value of individual capital holding
 65 p.k_max               = 7;              % maximum value of individual capital holding
 66 
 67 p.tol_bis             = 1e-6;           % tolerance parameter for bisection
 68 p.tol_vfi             = 1e-6;           % tolerance parameter for value function iteration



Implementing the Algorithm

 70 %% Initialization
 71 % Constructing the transition matrix
 72 targets               = [p.mean_length_lowprod p.fraction_lowprod]; % calibration targets
 73 tran_prob             = tran_prob_aiyagari(targets);                % transition matrix (left-stochastic)
 74 
 75 % Individual capital space
 76 k                     = linspace(p.k_min,p.k_max,p.N_k)';
 77 
 78 % Initializing bisection
 79 K                     = [p.Klow p.Khigh].*p.K;                      % initial interval 
 80 
 81 % Allocating memory for matrices used within the main loop
 82 V                     = zeros(p.N_k,p.N_e);                         % value function; also the initial guess
 83 
 84 % Generating shocks for the simulation
 85 p.T                   = 1005000;                                    % sample size to be generated during simulation
 86 p.T_burn              = 5000;                                       % observations at the beginning of the sample to be dropped
 87 rand('seed',1);                                                     % setting seed
 88 epsi                  = zeros(p.T,1);                               % vector to save the shocks
 89 epsi(1)               = p.e(1);                                     % first realizaton is state 1
 90 for t = 2:p.T
 91     previous_state    = epsi(t-1)==p.e;
 92     randomdraw        = rand;
 93     if randomdraw<tran_prob(1,previous_state)
 94         epsi(t) = p.e(1);
 95     else
 96         epsi(t) = p.e(2);
 97     end
 98 end



Implementing the Algorithm

101 %% Let's party
102 iter       = 0;                                                           % iteration counter
103 keep_going = true;                                                        % exit flag
104 
105 % main iteration
106 while keep_going
107     iter                  = iter+1;
108     K0                    = mean(K);                                      % midpoint
109     
110     % Obtaining decision rule
111     [V, pol_func, iter_V] = Individual_aiyagari(p, tran_prob, K0, k, V);
112     % Note: we carry V over to the next iteration. It'll be our initial guess.
113    
114     % Obtaining stationary ditribution
115     [lambda, kmax]        = Stationary_distribution_by_simulation_aiyagary(p, pol_func, epsi);
116     Kprime                = sum(sum(bsxfun(@times,lambda,k)));
117     % Note: lambda will also be our initial guess for the next iteration
118 
119     fprintf('Iteration %03d: interval %1.2f %2.2f, demand %s%2.2f supply %s%2.2f excess: %+1.1e, VFI iterations: %04d, min lambda: %+1.1e, max k: %5.1f%%\n'
120     if Kprime>K0
121         K(1) = K0;                                                        % excess supply
122     else
123         K(2) = K0;                                                        % excess demand
124     end
125     length_of_interval    = diff(K)/K0;                                   % is the interval still to wide?
126     keep_going            = length_of_interval>p.tol_bis;
127 end



Implementing the Algorithm

36 % Individual capital space
37 k                  = linspace(p.k_min,p.k_max,p.N_k)';
38 
39 % Simulating a single household
40 k_sim              = zeros(p.T+1,1);
41 k_sim(1)           = k(1);                                                % starting from the first gridpoint, i.e. constrained
42 for t=1:p.T
43     k_sim(t+1) = pol_func(k_sim(t)==k,epsi(t)==p.e);
44 end
45 
46 % dropping some observations
47 k_sim(1)           = [];                                                  % drop initial condition
48 k_sim(1:p.T_burn)  = [];                                                  % drop burn-in sample
49 epsi(1:p.T_burn)   = [];                                                  % drop burn-in sample
50 
51 lambda             = hist3([k_sim epsi],{k,p.e});                         % computing the histogram over the grid
52 lambda             = lambda./sum(lambda(:));                              % make sure it is a proper distribution
53 
54 maxk               = max(k_sim);
55 maxknum            = sum(k_sim==maxk);
 


