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Aggregate Uncertainty



Introducing Aggregate Uncertainty

We allow for aggregate uncertainty: this is the setup
studied by Krusell and Smith (1998).

Aggregate uncertainty:

Idiosyncratic risk is not the only source of uncertainty

Aggregate variables (including the wealth distribution!) are
not constant

Wealth distribution not only matters for aggregate
demand, but it is a time-varying argument now.

https://www.jstor.org/stable/10.1086/250034


Model Summary
The model consists of the household’s maximization problem

V (k, ε, λ,A) = max
k′

U(Rk + εW − k′)+

βE{V (k′, ε′, λ′, A′)|ε,A} (14)

s.t. λ′ = Γ(λ,A,A′) (15)

k′ ≥ k, (16)

the firm’s first order conditions

W = αAα
(
K

H

)1−α
(17)

R = (1− α)Aα
(
K

H

)−α
+ 1− δ, (18)

and the market clearing conditions

K ′ =

∫
k′dλ′(k′, ε) (19)

H = Eε (20)



A Generic Solution Algorithm

We need to operationalize the steps from our generic
algorithm:

1 Guess the law of motion Γ.

2 Solve for the optimal individual decision rules given the law
of motion.

3 Aggregate the individual decisions in order to determine the
aggregate demand functions.

4 If the resulting aggregate demand functions are consistent
with our guess about Γ, then we have found the solution.

5 Otherwise update our guess. Rinse and repeat.



Guessing the Law of Motion



Guessing the Law of Motion

Can we approach the problem the same way as we did the
Aiyagari model?

Suppose we try to solve the Aiyagari model, but with a
time varying wealth distribution.

The model’s state variables would be: k, ε, and λ(k, ε).

Recall from Day 1: every time-varying state variable
requires a grid

How many gridpoints do we need?



Guessing the Law of Motion

How many gridpoints do we need?

The shock ε can take 2 values: 2 gridpoints

Individual capital k can take nk values: 2 ∗ nk gridpoints

We have nk × 2 household types: λ(k1, ε1), . . ., λ(kn, ε2)

Suppose λ(k1, ε1) can take nλ values: 2 ∗ nk ∗ nλ gridpoints

Suppose λ(k2, ε1) can take nλ values: 2 ∗ nk ∗ nλ ∗ nλ gridpoints

...

The size of the state space: 2 ∗ nk ∗ nλ ∗ . . . ∗ nλ︸ ︷︷ ︸
2nk−1 times

= 4nkn
2nk−1
λ



Guessing the Law of Motion

How many gridpoints do we need?

The size of the state space: 2 ∗ nk ∗ nλ ∗ . . . ∗ nλ︸ ︷︷ ︸
2nk−1 times

= 4nkn
2nk−1
λ

The code that solves the Aiyagari model evaluates 340, 249.5
gridpoints each second on my laptop.

With nk = nλ = 10 we can evaluate the model once (i.e. one
iteration!) every 18,639,141.5 years on my laptop.

And having nk = nλ = 100 would still be a very coarse grid...

Note: normally k has a continuous domain so nk →∞. Not only
the number of gridpoints is infinite, but also the dimensionality
of the problem.



Guessing the Law of Motion

We need to reduce the dimensionality of the problem.

KS assume that agents do not use the entire distribution
when predicting future prices. They only use a limited set
of statistics.

The agents’ perceived law of motion takes only the first nm
moments as arguments instead of the whole distribution:

λ′ = Γ(m, A,A′) (39)

where m = {m1,m2, . . . ,mnm} denotes the set of the first
nm moments of the wealth distribution.



Guessing the Law of Motion

Example:

Suppose that λ is normal with mean µt and variance σKt .

Assume that we know the exact dynamics of these two
(conditional) moments.

Then we could characterize the dynamics of the entire
distribution using the dynamics of the conditional mean
and the conditional variance only.

This would correspond to nm = 2, m = {µt−1, σKt−1} and
λ′ = Γ(µt−1, σ

K
t−1, A,A

′).



Guessing the Law of Motion

So the state vector contains k, ε, A, and the first nm
moments.

Note: the aggregate capital stock, the first-moment of the
wealth distribution, is always among the state variables
which allows us to compute factor prices R and W .

KS experiment with different functional forms and values
for nm in their paper. They find that

logK ′ = a0(A) + a1(A) logK

provide an extremely good fit despite of its simplicity.

Both a0 and a1 depend on the business cycle.



Guessing the Law of Motion

Important to emphasize: one moment is not always enough

KS find that it is enough in their model, but they check
other functional forms as well.

Reiter (2010a) finds that he needs 8 moments in his model:

the tax rate on capital is a source of aggregate uncertainty

the tax rate itself is common to all agents

taxation is a random redistribution of wealth from the rich
to the poor

https://ideas.repec.org/p/ihs/ihsesp/258.html


A Generic Solution Algorithm

We need to operationalize the steps from our generic
algorithm:

1 Guess the law of motion Γ.

2 Solve for the optimal individual decision rules given the law
of motion.

3 Aggregate the individual decisions in order to determine the
aggregate demand functions.

4 If the resulting aggregate demand functions are consistent
with our guess about Γ, then we have found the solution.

5 Otherwise update our guess. Rinse and repeat.



Optimal Individual Decision Rules



Optimal Individual Decision Rules

The maximization problem we need to solve:

V (k, ε, λ,A) = max
k′

U(Rk + εW − k′)+

βE{V (k′, ε′, λ′, A′)|ε,A}
s.t. logK ′ = a0(A) + a1(A) logK

k′ ≥ k

Let us specify the exogenous processes.



Optimal Individual Decision Rules

Assume aggregate productivity is a 2-state Markov chain:

It can take only two values: A2 > A1

We will refer to these two states as: good times and bad and
denote them by g and b

The transition probabilities of these two realizations are
defined by the 2× 2 matrix PA.



Optimal Individual Decision Rules

Assume individual productivity is a 2-state Markov chain:

It can take only two values: ε2 > ε1

We will refer to agents in these states as: employed and
unemployed and denote them by 1 and 0

The transition probabilities of these two realizations are
defined by the 2× 2 matrices Pε(A,A′).

The aggregate and idiosyncratic shocks are correlated: the
transition probabilities of the idiosyncratic shock depend on
the business cycle (but not the other way around).



Optimal Individual Decision Rules

We can construct a joint process z:

It has 4 states: (g, 1), (g, 0), (b, 1) and (b, 0)

The transition probabilities of these four realizations are
defined by the 4× 4 matrix Pz

Pz can be constructed from PA and Pε(A,A′)



Guessing the Law of Motion
The maximization problem can be written as:

V (k,K, zj) = max
k′

U(R(K, zj)k + ε(zj)W (K, zj)− k′)+

Q(k′,K ′, zj) (41)

s.t. Q(k′,K ′, zj) = β

4∑
m=1

PzmjV (k′,K ′, zm) (42)

logK ′ =

{
ab0 + ab1 logK if A(zj) = A1

ag0 + ag1 logK if A(zj) = A2

(43)

k′ ≥ k (44)

We use value function iteration

Individual capital: nk-point grid

{k1 = k︸ ︷︷ ︸
borrowing constraint

, k2, . . . , knk−1, knk
= k︸ ︷︷ ︸

suitably chosen upper bound

}



Optimal Individual Decision Rules

Aggregate capital: nK-point grid

{ K1︸︷︷︸
suitably chosen lower bound

,K2, . . . ,KnK−1,KnK︸︷︷︸
suitably chosen upper bound

}

We restrict the households to choose one of the nk
gridpoints as their capital holding tomorrow, k′.

Typically little curvature along the K dimension:

We do not restrict K ′ to be a gridpoint: linear interpolation

V (k,K ′z) = ωV (k,Ki, z) + (1− ω)V (k,Ki+1, z)) (63)

Typically nK � nk

The solution is the decision rule k′ = g(k,K, z).



A Generic Solution Algorithm

We need to operationalize the steps from our generic
algorithm:

1 Guess the law of motion Γ.

2 Solve for the optimal individual decision rules given the law
of motion.

3 Aggregate the individual decisions in order to determine the
aggregate demand functions.

4 If the resulting aggregate demand functions are consistent
with our guess about Γ, then we have found the solution.

5 Otherwise update our guess. Rinse and repeat.



Aggregation



Aggregation

We use simulation to aggregate individual decisions:

We simulate a panel for a large number of agents (N) over a
large number of periods (T )

Aggregate capital is simply given by

Kt =
1

N

N∑
i=1

ki,t t = 1, . . . , T (54)

Generated shocks:

We have to make sure there is no sampling uncertainty.

We use the same set of shocks for every simulation.



A Generic Solution Algorithm

We need to operationalize the steps from our generic
algorithm:

1 Guess the law of motion Γ.

2 Solve for the optimal individual decision rules given the law
of motion.

3 Aggregate the individual decisions in order to determine the
aggregate demand functions.

4 If the resulting aggregate demand functions are consistent
with our guess about Γ, then we have found the solution.

5 Otherwise update our guess. Rinse and repeat.



Evaluating our Guess



Evaluating our Guess

Once we have simulated the model:

We estimate the actual law of motion based on the
simulated time series for aggregate capital

For the subsample of bad time periods (At = 1):

logKt = âb0 + âb1 logKt−1 (47)

For the subsample of good time periods (At = 2):

logKt = âg0 + âg1 logKt−1 (48)

The actual and perceived laws of motion are close to each
other if ∥∥[âg0 âg1 âb0 âb1

]
−
[
ag0 ag1 ab0 ab1

]∥∥
∞ (49)

is sufficiently small.



Evaluating our Guess

We estimate the coefficients from a sample:

We need to check the accuracy of the law of motion
carefully

We can use the R2:

it is not clear what can be considered a low R2

it can be a weak metric (see den Haan (2010a))

We can use the forecast error:

The purpose of the perceived law of motion is to predict
the future values of K′

We can check the forecast error to see if it serves its
purpose

KS use the 100 period forecast error: the maximum
forecast error is 0.1 percent

https://www.sciencedirect.com/science/article/abs/pii/S0165188909001353


Implementing the Algorithm



Implementing the Algorithm

Utility function:

U(c) = log c

Parameter values:

Parameter β α δ k A1 A2 ε1 ε2

Value 0.99 0.64 0.025 0 0.99 1.01 0.15 0.7

A′ε′ \Aε (b, 0) (b, 1) (g, 0) (g, 1)

(b, 0) 0.5250 0.0389 0.0938 0.0091
(b, 1) 0.3500 0.8361 0.0313 0.1159
(g, 1) 0.0313 0.0021 0.2917 0.0243
(g, 1) 0.0938 0.1229 0.5833 0.8507



Implementing the algorithm

 39 %% Parameters
 40 % Model parameters
 41 p.beta                = 0.99;           % discount factor
 42 p.alpha               = 0.64;           % labour elasticity of output
 43 p.delta               = 0.025;          % depreciation rate
 44 
 45 % Aggregate shock
 46 p.mean_length_good    = 8;              % expected duration of good times
 47 p.mean_length_bad     = 8;              % expected duration of bad times
 48 p.A                   = [0.99 1.01];    % constant aggregate productivity
 49 p.N_A                 = length(p.A);    % number of grid points along A dimension
 50 
 51 % Idiosyncratic shock
 52 p.fraction_u_good     = 0.04;           % unemployment ratio during good times
 53 p.mean_length_u_good  = 1.5;            % expected duration of unemployment during good times
 54 p.fraction_u_bad      = 0.1;            % unemployment ratio during bad times
 55 p.mean_length_u_bad   = 2.5;            % expected duration of unemployment during bad times
 56 p.cond_prob_1         = 1.25;           % conditional probability of staying unemployed: recession vs trough
 57 p.cond_prob_2         = 0.75;           % conditional probability of staying unemployed: expansion vs peak
 58 p.e                   = [0.15 0.7];     % productivity values in the two states
 59 p.N_e                 = length(p.e);    % number of grid points along e dimension
 60 ergdist_e_g           = [p.fraction_u_good 1-p.fraction_u_good];
 61                                         % stationary distribution of workers during good times
 62 ergdist_e_b           = [p.fraction_u_bad 1-p.fraction_u_bad];
 63                                         % stationary distribution of workers during bad times
 64 



Implementing the algorithm

 65 % Aggregate variables
 66 p.H                   = p.e*[ergdist_e_b; ergdist_e_g]';
 67                                         % aggregate labour in the two aggregate states
 68 
 69 % Solution method
 70 p.N_K                 = 3;              % aggregate capital grid size
 71 p.K_min               = 23;             % minimum value of aggregate capital
 72 p.K_max               = 27;             % maximum value of aggregate capital
 73 a_b                   = [0 1]';         % perceived ALM: log K' = a(1) + a(2)*log K
 74 a_g                   = [0 1]';         % initial guess: a=[0 1], i.e. K is perceived to remain constant
 75 
 76 p.T                   = 3500;           % sample size to be generated during simulation
 77 p.T_burn              = 500;            % observations at the beginning of the sample to be dropped
 78 p.N                   = 30000;          % number of agents to be simulated
 79 
 80 p.N_k                 = 2000;           % individual capital grid size
 81 p.k_min               = 0;              % minimum value of individual capital holding
 82 p.k_max               = 100;            % maximum value of individual capital holding
 83 
 84 p.update_weight       = 0.75;           % weight on current values during iteration
 85 
 86 p.tol_num             = 1e-4;           % tolerance parameter for number of agents
 87 p.tol_alm             = 1e-5;           % tolerance parameter for aggregate law of motion
 88 p.tol_vfi             = 1e-6;           % tolerance parameter for value function iteration
 89 p.tol_dist0           = p.tol_alm*100;  % tolerance parameter for starting wealth distribution
 90 



Implementing the algorithm

 91 %% Initialization
 92 % Constructing the transition matrix
 93 targets               = [p.mean_length_good p.mean_length_bad...
 94                          p.fraction_u_good p.mean_length_u_good...
 95                          p.fraction_u_bad p.mean_length_u_bad...
 96                          p.cond_prob_1 p.cond_prob_2];           % calibration targets
 97 
 98 [tran_prob, P_A, P_e] = tran_prob_KS(targets);                   % transition matrix in terms of probabilities
 99 N                     = tran_number_of_agents_KS(p,P_e,targets); % transition matrix in terms of number of agents
100 
101 % Capital spaces
102 k                     = linspace(p.k_min,p.k_max,p.N_k)';        % individual
103 K                     = linspace(p.K_min,p.K_max,p.N_K)';        % aggregate
104 p.K                   = ((1/p.beta-(1-p.delta))/(1-p.alpha))^(-1/p.alpha)*mean(p.H);
105                                                                  % steady-state capital stock at mean labour supply
106 
107 % Generating shocks
108 [shocks_a, shocks_e]  = Draw_shocks_KS(p,P_A,N);                 % generating aggregate and individual shocks;
109 shocks_a=p.A(shocks_a);
110 shocks_e=p.e(shocks_e);
111 good_times            = shocks_a(p.T_burn+2:end)==p.A(2);        % good times dummy
112 and_bad               = shocks_a(p.T_burn+2:end)==p.A(1);        % bad times dummy
113 
114 % Allocating memory for/Construct matrices used within the main loop
115 pol_func              = zeros(p.N_k,p.N_K,p.N_e,p.N_A);          % decision rule
116 V                     = zeros(p.N_k,p.N_K,p.N_e,p.N_A);          % value function; also our initial guess for V



Implementing the algorithm
118 %% Let's party
119 iter       = 0;                                                                % iteration counter
120 keep_going = true;                                                             % exit flag
121 
122 k0         = interp1(k,k,p.K,'nearest')*ones(1,p.N);                           % initial guess: uniform
123 % main iteration
124 while keep_going
125     iter                      = iter+1;
126     
127     % Obtaining decision rule
128     [V, pol_func, iter_V]     = Individual_KS(p, tran_prob, K, k, a_g, a_b, V); % decision rule (indices)
129     % Note: we also carry V over to the next iteration. It'll be our initial guess.
130    
131     % Obtaining time seris for aggregate capital by simulating the model
132     [K_actual, k1, k_sim_max] = Simulate_model_KS(p, pol_func, k, K, k0, shocks_a, shocks_e);
133     
134     % Regression
135     Y                         = log(K_actual(p.T_burn+3:end));                   % log K'
136     X                         = [ones(size(Y)) log(K_actual(p.T_burn+2:end-1))]; % [1 log K]
137     [a_g1,~,~,~,statsg]       = regress(Y(good_times),X(good_times,:));          % good times
138     [a_b1,~,~,~,statsb]       = regress(Y(and_bad),X(and_bad,:));                % bad times
139     
140     change_in_coeffs          = max(abs([a_g-a_g1; a_b-a_b1]));
141     keep_going                = change_in_coeffs>p.tol_alm;
142     
143     % updating initial cross-section: only if we're still far from convergence
144     if change_in_coeffs>p.tol_dist0
145         k0                    = k1;
146     end
147     
148     fprintf('Iteration %03d: VFI iterations: %03d, minmax K: %2.2f %2.2f max k(i): %2.1f%% (%03d times)\n',iter,iter_V,min(K_actual),max(K_actual),100*max(k_sim_max(:,1))./p.k_max,sum(k_sim_max(:,1)==max(k_sim_max(:,1))));
149     fprintf('               good times coeffs: %1.3f->%1.3f   %1.3f->%1.3f  R2:  %1.6f\n',a_g(1),a_g1(1),a_g(2),a_g1(2),statsg(1));
150     fprintf('               bad times coeffs:  %1.3f->%1.3f   %1.3f->%1.3f  R2:  %1.6f\n',a_b(1),a_b1(1),a_b(2),a_b1(2),statsb(1));
151     fprintf('               change in coeffs: %1.2e\n',change_in_coeffs);
152     
153     % updating coefficients
154     a_b = p.update_weight*a_b + (1-p.update_weight)*a_b1;
155     a_g = p.update_weight*a_g + (1-p.update_weight)*a_g1;
156 end


