Insurance and Opportunities: A Welfare Analysis of Labor Market Risk

1 Introduction

- Large rise in cross-sectional U.S. wage dispersion since 1970
- In the past decade, economists have investigated the *causes* of this phenomenon
- Next natural question: what are its welfare implications?
 - Quantitatively big: variance of growth rate of individual wages over 100 times larger than variance of growth rate of average wages
 - Policy relevance: welfare gains from redistributive policies may be much larger than gains from aggregate stabilization

2 Welfare effect of a rise in wage dispersion

- Focus on expected welfare "under the veil of ignorance", equivalently welfare for a utilitarian social planner
- Consider an increase in wage dispersion of $\Delta v = \Delta v_{\alpha} + \Delta v_{\varepsilon}$
- \bullet Compute the equivalent variation ω that solves

$$Eu\left(\left(1+\omega\right)c,h\right)\big|_{\left[\begin{array}{c}v_{\alpha}\\v_{\epsilon}\end{array}\right]}=Eu\left(\hat{c},\hat{h}\right)\big|_{\left[\begin{array}{c}\hat{v_{\alpha}}=v_{\alpha}+\Delta v_{\alpha}\\\hat{v_{\epsilon}}=v_{\epsilon}+\Delta v_{\epsilon}\end{array}\right]}$$

3 Insurance and Opportunities

- With exogenous labor supply: increased wage dispersion \Rightarrow increased consumption dispersion
- With *endogenous* labor supply, may also get changes in aggregate consumption and hours, and increased dispersion in labor supply
- Following Benabou (2002) and Floden (2001) we decompose welfare effects into a level effect and a volatility effect: $\omega = \omega^{lev} + \omega^{vol}$
 - 1. ω^{lev} : welfare effect from changes in aggregate consumption & hours

$$u\left(\left(1+\omega^{lev}\right)C,H\right)=u\left(\hat{C},\hat{H}\right)$$

2. ω^{vol} : welfare effect from changes in cross-sectional dispersion

4 Welfare Gain from Completing Markets

 \bullet Compute the equivalent variation $\chi_{IM \to CM}$ that solves

$$Eu\left(\left(1+\chi_{IM\to CM}\right)c_{IM},h_{IM}\right)\Big|_{\left[\begin{array}{c}v_{\alpha}\\v_{\epsilon}\end{array}\right]}=Eu\left(c_{CM},h_{CM}\right)\Big|_{\left[\begin{array}{c}v_{\alpha}\\v_{\epsilon}\end{array}\right]}$$

for market structure IM = incomplete markets

5 Assume Separable Preferences

$$u\left(c,h\right) = \frac{c^{1-\gamma}}{1-\gamma} - \psi \frac{h^{1+\sigma}}{1+\sigma}$$

- $1/\gamma$ is the elasticity of intertemporal substitution (and γ is the risk aversion coefficient)
- $1/\sigma$ is the Frisch elasticity of labor supply
- ψ measures the taste for leisure, relative to consumption (turns out to be irrelevant for welfare)

6 Competitive Equilibrium: Autarky

• The autarky allocation is:

$$c(\alpha, \epsilon) = \exp\left(\frac{1+\sigma}{\gamma+\sigma} \cdot (\alpha+\epsilon)\right)$$
$$h(\alpha, \epsilon) = \exp\left(\frac{1-\gamma}{\gamma+\sigma} \cdot (\alpha+\epsilon)\right)$$

- Hours are increasing in wages iff $\gamma < 1$
 - If $\gamma < 1$ labor flexibility used to make hay while the sun shines
 - If $\gamma > 1$ labor flexibility used to smooth earnings and consumption
- Consumption is always is increasing in wages

7 Competitive Equilibrium: Complete Markets

• CM allocation captures Marx's dictum :

"From each according to his abilities, to each according to his needs"

$$c(\alpha, \epsilon) = \bar{c} \equiv \exp\left(\frac{1+\sigma}{\sigma+\gamma} \cdot \frac{v_{\alpha}+v_{\epsilon}}{2\sigma}\right)$$
$$h(\alpha, \epsilon) = \exp\left(-\frac{\gamma}{\sigma^2} \frac{1+\sigma}{\sigma+\gamma} \cdot \frac{v_{\alpha}+v_{\epsilon}}{2} + \frac{1}{\sigma} \cdot (\alpha+\epsilon)\right)$$

- Hours are increasing in w
- \bullet Consumption is independent of w
- Average consumption is increasing in wage dispersion
 - ▶ Remark: From period 0 onwards, high fixed-effect agents hold constant debt, low fixed-effect agents hold constant positive wealth.

8 Competitive Equilibrium: Incomplete Markets

- Under IM, there exists a competitive equilibrium with a safe rate of return $R_t = 1/\beta$ where all agents maintain zero financial wealth over time
- The IM allocation (" α -island trading") is:

$$c(\alpha, \epsilon) = \exp\left(\frac{1+\sigma}{\sigma+\gamma} \cdot \left(\alpha + \frac{v_{\epsilon}}{2\sigma}\right)\right)$$

$$h(\alpha, \epsilon) = \exp\left(-\frac{\gamma}{2\sigma^2} \frac{1+\sigma}{\sigma+\gamma} \cdot v_{\epsilon} + \frac{1-\gamma}{\sigma+\gamma} \cdot \alpha + \frac{\epsilon}{\sigma}\right).$$

- Consumption is increasing in v_{ϵ} and α
- Differential effect of permanent and transitory shocks on labor supply

9 Welfare Effect of Rise in Labor Market Risk

$$\omega_{CM} \simeq \frac{1}{\sigma} \frac{\Delta v}{2}$$

$$\omega_{IM} \simeq \frac{1}{\sigma} \frac{\Delta v_{\epsilon}}{2} + \left[\frac{1 - \gamma}{\sigma + \gamma} - \gamma \left(\frac{1 + \sigma}{\sigma + \gamma} \right) \right] \frac{\Delta v_{\alpha}}{2}$$

10 Complete Markets

$$\omega_{CM} \simeq \frac{1}{\sigma} \frac{\Delta v}{2}$$

$$\omega^{lev} = \frac{1}{\sigma} \Delta v \qquad \omega^{vol} = -\frac{1}{\sigma} \frac{\Delta v}{2}$$

- Source of welfare gains is increase in aggregate productivity
- Planner takes advantage of flexible labor supply to impose "positive assortative matching"
- Related to consumer theory result that indirect utility function is quasiconvex in prices
- Magnitude of the welfare gain proportional to the Frisch labor supply elasticity
- The "price" paid for assortative matching is increased dispersion in leisure

11 Autarky

$$\omega_{AUT} \simeq \left[\frac{1 - \gamma}{\sigma + \gamma} - \gamma \frac{1 + \sigma}{\sigma + \gamma} \right] \frac{\Delta v}{2}$$

$$\omega^{lev} = \frac{1 - \gamma}{\gamma + \sigma} \Delta v \qquad \omega^{vol} = -\left[\frac{1 - \gamma}{\gamma + \sigma} + \gamma \left(\frac{1 + \sigma}{\sigma + \gamma} \right) \right] \frac{\Delta v}{2}$$

- As $\sigma \to \infty$, $\omega^{AUT} \to -\gamma \frac{\Delta v}{2} < 0$ (Lucas, 1987)
- $\gamma \in [0, 1/(2+\sigma)] \Rightarrow \omega^{AUT} > 0$
 - When $\gamma < 1$, hours and wages are positively correlated and greater productivity dispersion increases average labor productivity
 - When γ is low, consumption fluctuations not too costly
 - For $\gamma = 0$, $\omega_{AUT} = \omega_{CM} > 0$

12 Incomplete markets

• Under incomplete markets, the welfare gain of increased inequality is a weighted average of gain under complete markets and autarky:

$$\omega_{IM} = \omega_{CM} \cdot \frac{\Delta v_{\epsilon}}{\Delta v} + \omega_{AUT} \cdot \frac{\Delta v_{\alpha}}{\Delta v}$$

13 Welfare Gain from Completing Markets

• With separable preferences, the welfare gain from completing markets when the variance of uninsurable risk is v_{α} is

$$\chi_{IM \to CM} \simeq \left[\frac{1}{\sigma} + \frac{\gamma - 1}{\sigma + \gamma} + \gamma \left(\frac{1 + \sigma}{\sigma + \gamma} \right) \right] \frac{v_{\alpha}}{2}$$

• This is equal to the welfare effect of a change in the variance of wages, ω_{IM} where

$$\Delta v_{\alpha} = -v_{\alpha}$$

$$\Delta v_{\epsilon} = +v_{\alpha}$$

14 Observables-Based Representation for Welfare Effects

• Using expressions for equilibrium allocations, the welfare effect from a change in the process for wages can be expressed in terms of observables as follows:

$$\omega \ \simeq \ \Delta cov\left(\log h, \log w\right) - \frac{\gamma}{2} \cdot \Delta var\left(\log c\right) - \frac{\sigma}{2} \cdot \Delta var\left(\log h\right)$$

$$\begin{array}{lcl} \omega^{lev} & = & \Delta cov \left(\log h, \log w\right) \\ \omega^{vol} & = & -\frac{\gamma}{2} \cdot \Delta var \left(\log c\right) - \frac{\sigma}{2} \cdot \Delta var \left(\log h\right) \end{array}$$

- These expressions apply irrespective of market structure
- One can also show that

$$\omega^{lev} \simeq \Delta \log \left(\frac{Y}{H}\right),$$

the percentage change in aggregate labor productivity.

15 Data on Cross-Sectional U.S. Inequality

- PSID: Wages, hours and earnings, 1967-1996:
 - data for heads of households (males and females)
 - approximately 2,400 observation/year
 - hourly wage defined as annual earnings / annual hours worked
 - sample averages- age: 37.5, years of education: 12.1, hourly wage: 14.8, annual hours worked: 2,100
- CEX: Consumption
 - Krueger-Perri data on household consumption
 - nondurables + imputation for durables

16 Calibration

- Preference parameters
 - Risk aversion coefficient $\gamma = 2$
 - Inverse of labor supply elasticity $\sigma = 2$, Frisch elasticity = 0.5 (Frisch = 1 in the Cobb-Douglas case)
- Process for wages
 - $-\,$ Estimate exactly the simple permanent/transitory process adopted in the economic model
 - Wage dispersion increases from 0.25 to 0.35
 - Transitory component accounts for approx. 1/3 of total dispersion
 - Two components equally important in accounting for rise in wage dispersion

Quantitative Welfare Analysis: Wage Process Approach

Welfare change of rise in wage dispersion (%)			Welfare gain from completing markets
Separable Preferences			
ω_{CM}	ω_{AUT}	ω_{IM}	$\chi_{IM \to CM}$
+2.54 (+2.50)	-8.29 (-8.75)	-3.06 (-3.13)	+29.2 (+24.8)
Volat. Level -2.50 5.00	Volat. Level -6.25 -2.50	Volat. Level -4.38 +1.25	Volat. Level +8.3 +16.5

17 Comments on Welfare Numbers

- Substantial losses from rise in wage inequality in incomplete-markets economy
 - Large gains with complete markets due to increases in productivity
 - Larger losses in autarky \Rightarrow welfare losses with incomplete markets
 - Positive level effect is larger under Cobb-Douglas specification because of larger Frisch elasticity
 - Overall welfare effects are similar under both preference specifications
- Welfare gains from completing markets are huge
 - Under both preference specifications 2/3 of these potential gains come from increased productivity

18 Quantitative Welfare Analysis: Observables Approach

- Assume $\gamma = \sigma = 2$
- From the PSID sample:

$$\Delta cov (\log h, \log w) \approx 0.012$$

$$\Delta var(\log h) \approx 0.01$$

- From the CEX:
 - Krueger and Perri (2003): $\Delta var(\log c) \approx 0.01$
 - Attanasio, Battistin, Ichimura (2003): $\Delta var(\log c) \approx 0.05$

18.1 Results from Observables Approach

$$\omega \simeq \Delta cov\left(\log h, \log w\right) - \frac{\gamma}{2} \cdot \Delta var\left(\log c\right) - \frac{\sigma}{2} \cdot \Delta var\left(\log h\right) \in [-4.8\%, -0.8\%]$$

- \bullet Midpoint is -2.8% compared to -3.1% using the wage-based approach
- Two approaches give similar answers because positive predictions of the model for evolution of cross-sectional dispersion are broadly consistent with the data

19 The Role of Improved Assortative Matching in TFP Growth

- In our PSID sample, labor productivity ratio of aggregate earnings to aggregate hours increased by 13% from 1975 to 1995
- Covariance between hours and wages increased by 1.2%
- Thus more efficient allocation of time can account for about 1/10th of the increase in labor productivity over the period
- ▶ Remark: There has been a large rise in non-employment for workers at the bottom of the wage distribution over this period (eg Juhn 1992, Murphy and Topel 1997, JMP 2002)

By excluding non-workers, we may underestimate the rise in allocative efficiency - we are currently investigating this using aggregate data

20 A Simple Policy Example: Complete Wage Compression

- Welfare costs of incomplete insurance markets are huge
- Is wage compression a sensible policy response?
- Complete wage compression can be implemented with a revenue-neutral system of wage taxes and subsidies s.t. $w_{i,t} = 1 \,\forall i, t$
- The associated welfare change can be computed using the formula for ω_{IM} , setting $\Delta v_{\epsilon} = -v_{\epsilon}$ and $\Delta v_{\alpha} = -v_{\alpha}$
- When $v_{\alpha} = 0.22$ and $v_{\epsilon} = 0.13$ the implied welfare gains are worth 16% of consumption

21 Conclusions

- Presented a rich model of consumption and labor supply that can be solved analytically
- Analyzed welfare effects of increased inequality
 - More risk means more need for insurance, but also better productive opportunities (endogenous labor supply is key)
 - Increase in insurable risk is always good, and better the more flexible is labor supply
 - Increase in uninsurable (permanent) risk is worse the larger is risk aversion and the lower is labor elasticity
- Big numbers: our welfare estimates are 2-3 orders of magnitude bigger than commonly-estimated welfare costs of business-cycles