
1/129

DYNAMIC PROGRAMMING

AND

PROJECTIONS METHODS

AN ADVANCED COURSE IN THE SCIENCE

AND ART OF DSGE MODELLING

Hyungseok Joo

Ricardo Nunes

Donghyun Park

Centre for International Macroeconomic Studies

School of Economics, University of Surrey

2/129

WHY SHOULD I BOTHER?

All other methods you might know assume recursivity, i.e. the

main results of dynamic programming

All economic models can be expressed as functional equations

Strong presence of non-linearities that induces a very different

behavior of the system when far from the steady state. Example:

models with ZLB, see Braun et al. (2012).

Non-convexity of the problem, implying FOCs are not sufficient.

Example: (heterogeneous agents) models with discrete choices

in labor (work/not work decision) as in Chang and Kim (2007).

3/129

TWO METHODS

We will see two methods for looking at these models:

Dynamic programming

Value function iteration

Policy function iteration

Projections methods

Background: standard numerical methods

4/129

MATERIAL

Review of DP:

[LS] Ljungqvist, L., and T. J. Sargent (2004), Recursive

Macroeconomic Theory, Second Edition, MIT Press

[AC] Adda J., and Cooper (2003) Dynamic Economics:

Quantitative Methods and Applications, MIT Press

[SLP] Stokey, N., R. Lucas and E. Prescott (1989), Recursive

Methods for Economic Dynamics, Harvard University Press

Books on numerical methods:

[Judd] Judd K. (1998), Numerical Methods in Economics, MIT

Press

[MF] Miranda, M. J. and P. L. Fackler (2002), Applied

Computational Economics and Finance, MIT Press

5/129

SOLVING A SIMPLE RBC MODEL

We can present the main idea of dynamic programming techniques by

using a RBC model without uncertainty (for the moment)

Production function:

Yt = F(At,Lt,Kt−1) (1)

Utility function of the representative household

Ut = U(Ct) (2)

6/129

SIMPLIFYING ASSUMPTIONS

ASSUMPTION 1 (UTILITY FUNCTION)
U : R+ → R is bounded, continuously differentiable, strictly

increasing, strictly concave and limC→0 U′ (C) = ∞.

⇒ labor supply is equal to 1

7/129

SIMPLIFYING ASSUMPTIONS (CONT.)

ASSUMPTION 2 (PRODUCTION FUNCTION)
The production function F : R3

+ → R+ is continuously differentiable,

strictly increasing, homogeneous of degree 1 and strictly

quasi-concave, with

FK > 0;FKK < 0;FL > 0;F (A,L,0) = 0 ∀K,L > 0

lim
K→0

FK (A,1,K) = ∞, lim
K→∞

FK (A,1,K) = 0 (Inada conditions)

⇒ interiority and uniqueness of the solution. Cobb-Douglas satisfies

these properties

8/129

RESOURCE CONSTRAINT

Ct +Kt − (1−δ)Kt−1 ≤ F (A,1,Kt−1) (3)

where we have assumed that Gt = 0.

9/129

FIRST WELFARE THEOREM

No market failures

First welfare theorem applies

Competitive equilibrium is Pareto efficient

Benevolent social planner problem: maximize HH discounted

utility subject to resource constraint and law of motion for

capital, K−1 given

10/129

ANOTHER WAY OF WRITING IT...

Define

f (K)≡ F (A,1,K)+(1−δ)K

Rewrite the planner’s problem as

max
{Kt}∞

t=0

∑
∞
t=0 β tU

(
f (Kt−1)−Kt

)
(4)

s.t. 0 ≤ Kt ≤ f (Kt−1) , t = 0,1, ... (5)

K−1 given

11/129

VALUE FUNCTION

Imagine we already solved the problem for any K−1. Define

V (K−1)≡ max
{Kt}∞

t=0

∞

∑
t=0

β
tU

(
f (Kt−1)−Kt

)
s.t. 0 ≤ Kt ≤ f (Kt−1) , t = 0,1, ...

The function V : R+ → R is called the value function.

12/129

RECURSIVE FORMULATION

The planner problem can be rewritten as:

max
C0,K0

U (C0)+β max
{0≤Kt≤f (Kt−1)}∞

t=1

∞

∑
j=0

β
jU

(
f
(
Kt+j−1

)
−Kt+j

)
︸ ︷︷ ︸

V (k1)


s.t. C0 +K0 ≤ f (K−1)

C0,K0 ≥ 0, K−1 > 0 given

V (K0) is the value of the utility from period 1 on, obtained with an

initial capital K0.

13/129

RECURSIVE FORMULATION

The planner problem can be rewritten as:

max
C0,K0

U (C0)+β max
{0≤Kt≤f (Kt−1)}∞

t=1

∞

∑
j=0

β
jU

(
f
(
Kt+j−1

)
−Kt+j

)
︸ ︷︷ ︸

V (K0)


s.t. C0 +K0 ≤ f (K−1)

C0,K0 ≥ 0, K−1 > 0 given

V (K0) is the value of the utility from period 1 on, obtained with an

initial capital K0.

14/129

RECURSIVE FORMULATION

The planner problem can be rewritten as:

max
C0,K0

[
U (C0)+βV (K0)

]
(6)

s.t. C0 +K0 ≤ f (K−1) (7)

C0,K0 ≥ 0, K−1 > 0 given (8)

V (K0) is the value of the utility from period 1 on, obtained with an

initial capital K0.

15/129

RECURSIVE FORMULATION (HERE WE GO!)

It must be that

V (K−1) = max
0≤K0≤f (K−1)

{
U
(
f (K−1)−K0

)
+βV (K0)

}

We don’t need time subscripts, this is a static problem!

V (K) = max
0≤y≤f (K−1)

{
U
(
f (K)− y

)
+βV (y)

}
(9)

The unknown is a function (the value function V), this is a

functional equation or Bellman equation

16/129

STOCHASTIC CASE

At is Markov with discrete support: At ∈
{

Â1, ..., ÂS

}
(just for simplicity, can have continuous support)

Exactly the same!

V (K,A) = max
0≤y≤f (K,A)

U (K,y,A)+β ∑
A′

π
(
A′|A

)
V
(
y,A′) (10)

17/129

VALUE FUNCTION ITERATION

Very general, can potentially solve any model

Pretty slow, becomes unmanageable as the state space increases

Can be adapted to models with time inconsistency, optimal

policy problems and New Keynesian models (see Marcet and

Marimon (2011))

Needs substantial knowledge of general numerical methods,

programming skills and coding time

18/129

HOW TO FIND THE SOLUTION

Algorithm

1 Start from an arbitrary value function V(0)

2 Get V(1) = TV(0),

3 Keep iterating on step 2 until you reach the fixed point V

Contraction mapping theorem: convergence is pointwise

19/129

DISCRETE GRID METHODS

Computers and continuous variables do not love each other

We need to discretize the number of possible choices we have

(grid)

This is a first source of approximation (depends on number of

points)

Define a grid G ≡ {x1, ...,xm}

20/129

VALUE FUNCTION ITERATION ALGORITHM

1 We form an initial guess for the value function for each point on

the grid

2 For any n ≥ 0, compute V(n+1) (·) = TV(n) (·) for any point in the

grid

3 Stop if
∥∥∥V(n+1)−V(n)

∥∥∥< ε

21/129

SOLVING STOCHASTIC GROWTH MODEL

Same as deterministic, except for:

yt = AtF (kt,nt)

where At is a Markov process with transition probability matrix P

22/129

VECTORIZING THE PROBLEM

Productivity shock: [A1,A2]

n grid points for capital [k1,k2, ...,kn]

Define two matrices Uj such that:

Uj (i,h)= u
(
Ajf (ki)+(1−δ)ki − kh

)
, i= 1, ...,n, h= 1, ...,n

23/129

VECTORIZING THE PROBLEM (CONT.)

Define two n×1 vectors Vj, j = 1,2 such that

Vj (i) = Vj
(
ki,Aj

)
, i = 1, ...,n.

Define an operator T
(
[V1,V2]

)
that maps couples of vectors

[V1,V2] into a couple of vectors[TV1,TV2]:

TV1 = max{U1 +βP111V
′
1 +βP121V

′
2}

TV2 = max{U2 +βP211V
′
1 +βP221V

′
2}

24/129

COMPACT FORM

We can write these equations in compact form: TV1

TV2

= max


 U1

U2

+β (P ⊗1)

 V
′
1

V
′
2


 (11)

We can solve by iterating on the operator T until convergence.

25/129

THE CODE

(BTW: now it’s a good time to open Matlab...)

Three files:

parameters.m: contains parameters’ values and the grid

vfi_AM.m: main routine that implements the value function

iteration

figures.m: draws graphs

A do-file makes easy for you to run the code: do_vfi_AM.m

26/129

parameters.m

1 %% set parameter values
2 alpha = 0.40; % production parameter
3 beta = 0.95; % subjective discount factor
4 prob = [.5 .5; .5 .5]; % prob(A(t+1)=Aj | A(t) = Ai)
5 delta = .90; % 1 = depreciation rate
6 A_high = 1.5; % high value for technology
7 A_low = 0.5; % low value for technology
8 convcrit = 1e=7; % convergence criterion (epsilon)
9

10 %% generate capital grid
11 mink = 0.01; % minimum value of the capital grid
12 maxk = 25.01; % maximum value of the capital grid
13 nk = 1000; % number of grid points
14 kgrid = linspace(mink,maxk,nk)'; % the grid (linearly

spaced)
15 ink = kgrid(2) = kgrid(1); % increments

27/129

vfi_AM.m (I)

1 % create the utility function matrices such that, for
2 % zero or negative consumption, utility remains a
3 % large negative number so that such values will never
4 % be chosen as utility maximizing
5
6 cons1 = bsxfun(@minus, A_high*kgrid'.^alpha + delta*

kgrid' ,kgrid);
7 cons2 = bsxfun(@minus, A_low*kgrid'.^alpha + delta*

kgrid' ,kgrid);
8
9 cons1(cons1<=0) = NaN;

10 cons2(cons2<=0) = NaN;
11
12 util1 = log(cons1);
13 util2 = log(cons2);
14
15 util1(isnan(util1)) = =inf;
16 util2(isnan(util2)) = =inf;

28/129

vfi_AM.m (II)

1 %% initialize some variables
2
3 v = zeros(nk,2); % initial guess for value function:
4 % set to zero for simplicity
5 decis = zeros(nk,2);% initial value for policy function
6 metric = 10; % initial value for the convergence metric
7 iter = 0;
8 tme = cputime;
9 [rs,cs] = size(util1);

29/129

vfi_AM.m (III): THE MAIN LOOP

1 while metric > convcrit;
2 contv= beta*v*prob'; % continuation value
3
4 [tv1,tdecis1]=max(bsxfun(@plus,util1,contv(:,1)));
5 [tv2,tdecis2]=max(bsxfun(@plus,util2,contv(:,2)));
6
7 tdecis=[tdecis1' tdecis2'];
8 tv=[tv1' tv2'];
9

10 metric=max(max(abs((tv=v)./tv)));
11 v= tv; % .15*tv+.85*v; %
12 decis= tdecis;%
13 iter = iter+1;
14 metric_vector(iter) = metric;
15 disp(sprintf('iter = %g ; metric = %e', iter,metric

));
16 end;
17 disp(' ');
18 disp(sprintf('computation time = %f', cputime=tme));
19
20 % transform the decision index in capital choice
21 decis=(decis=1)*ink + mink;

30/129

do_vfi_AM.m

1 %% do file for vfi_AM.m
2 clear all
3
4 % load parameters and grid
5 parameters;
6
7 % run the code
8 vfi_AM;
9

10 % generate figures
11 figures;

31/129

PLAYING WITH THE CODE

1 Run the code do_vfi_AM.m. Familiarize with the output and
the graphs. Now, after the line which loads parameter values,
change the value for the discount factor to 0.995, by adding the
following line:

1 beta = 0.995

This line changes the value set in the file parameters.m to a
new value (this is a general way to do comparative statics by
using a baseline set of parameters.) Save this file as
do_vfi_AM_beta.m and run it. What do you notice in the
convergence process? What happens to computational time?
(Why?)

32/129

PLAYING WITH THE CODE (II)

2. We now want to see what happens if we change the number of

gridpoints. Change the code so that the grid has 100 gridpoints.

(Hint: notice that after you set nk=100, then you also have to

modify the variables kgrid and ink, therefore you need to add

those lines too!!!). Save the file as

do_vfi_AM_smallgrid.m and run it. What can you notice?

Now try with 2000 gridpoints, save the file as

do_vfi_AM_largegrid.m, and run it. Do you see any

change?

33/129

PLAYING WITH THE CODE (III)

3. We want to do a series of comparative statics exercises. In order

to do that, we can modify the file do_compstat, which is a

basic structure for this task. Open the file do_compstat.m.

You should see the following lines (I have excluded the lines that

plot the simulated results for brevity):

34/129

PLAYING WITH THE CODE (III)

1
2 %% Generate solution and simulation for case A
3 % load parameters and grid
4 parameters;
5 % solve the model via VFI
6 vfi_AM;
7 % store results in few new variables
8 v_A = v;
9 decis_A = decis;

10 controls_A = controls;
11
12 %% Generate solution and simulation for case B
13 % load parameters and grid
14 parameters;
15 % modify parameters here
16
17 % solve the model via VFI
18 vfi_AM;
19 % store results in few new variables
20 v_B = v;
21 decis_B = decis;
22 controls_B = controls;

35/129

PLAYING WITH THE CODE (III)

This file compares a case A and a case B, where the case A is the

benchmark (i.e. the solution with default parameters), and case B is

the one with the updated parameter value. Notice the line that says:

1 % modify parameters here

We can just put the new value we want to consider there. Then by

running the file we should get the graphs of case A and B and

compare them. As a first try, set delta = 0.8 (notice that this

implies a larger depreciation rate for capital, given the definition of δ

in the code). Save the file as do_compstat_delta.m. Run the do

file, what changes with respect to the benchmark case?

36/129

PLAYING WITH THE CODE (IV)

4. Now let’s change the values for the shock realizations A_high

and A_low. In particular, let’s have a mean-spread

transformation such that the the mean is the same given the i.i.d

hypothesis for the transition matrix. Set A_high=1.25 and

A_low=0.75, save the file as do_compstat_shock.m and

run the code. What can you notice?

37/129

PLAYING WITH THE CODE (V)

5. Let’s now relax the assumption of i.i.d shocks. In order to do

that, we need to change the transition matrix prob by inducing

some persistence in the stochastic process. Modify the matrix in

such a way that each realizations has a probability of repeating

itself in the following period of 95%, i.e. the probability of a

high (low) realization tomorrow given that the realization today

is high (low) is 0.95. Save the file as

do_compstat_persistent.m and run the code. What

conclusions can you draw from the graphs?

38/129

IRREVERSIBLE INVESTMENT

VFI makes easy to incorporate inequality constraints. In order to see

this, modify the code by introducing an irreversibility constraint for

investment, i.e. Kt ≥ (1−δ)Kt−1.

1 Repeat the previous exercise for the model with irreversible

investment. The relevant codes are do_vfi_AM_irrinv.m

and do_compstat_irrinv.m.

39/129

CONVEX ADJUSTMENT COSTS

It is also quite straightforward to introduce convex adjustment costs.

Modify the code by adding the adjustment costs in the form

AC(Kt,Kt−1)≡ ζ (Kt −Kt−1)
2, where ζ is a parameter. Choose

ζ = .25 to begin with, then play with it and see what happens.

40/129

REVERSIBLE VS. IRREVERSIBLE INVESTMENT

Now let’s compare the reversible investment model with the one with

irreversible investment. In order to do that, we use the file

do_compare.m. (Notice that in this case we will have to change

parameters in two points of the code!)

1 Run the code as it is, and look at the graphs. What are the main

differences between the reversible and irreversible investment

models? Check in particular the simulated series of consumption

and investment.

41/129

EXERCISE: REVERSIBLE VS IRREVERSIBLE

INVESTMENT (II)

2. Now let’s how the depreciation rate is crucial. First change the

depreciation rate of capital to delta=0.99. You can do this by

inserting delta=0.99 in the appropriate spaces (remember:

you have two do it twice for this code!!!). Save the new file as

do_compare_delta.m and run it. What do you observe?

Can you explain it intuitively? Now set delta=0.5 (in both

the appropriate spaces!!!) and run the code again. What now?

42/129

EXERCISE: REVERSIBLE VS IRREVERSIBLE

INVESTMENT (III)

3. Let’s see how the model with irreversible investment reacts when

the variance of the shocks is reduced. Set A_high=1.25 and

A_low=0.75, save the file as do_compare_shock.m and

run the code. This must be surprising for you! (Is it?)

43/129

EXERCISE: REVERSIBLE VS IRREVERSIBLE

INVESTMENT (IV)

4. Finally, what about persistence? Set the transition matrix prob

such that each realization has a probability of repeating itself in

the following period of 95%, i.e. the probability of a high (low)

realization tomorrow given that the realization today is high

(low) is 0.95. Save the file as do_compare_persistent.m

and run the code.

44/129

MANY REALIZATIONS OF At (DIFFICULT)

More than two realizations of the shocks: we need to modify the code in
several points

1 we need a new variable that stores the number of realizations of the
shocks (call it num_realiz) in the parameters’ file

2 we need to provide a transition matrix prob which adapts to
num_realiz (for the moment we stick to the i.i.d case for simplicity)
in the parameters’ file

3 we need a vector where we store the actual values for technology shock
realizations in the parameters’ file

4 we need to adapt the way in which we create the matrices Uj (hint: use
the Kronecker product, use Matlab help for the kron command)

5 we need to adjust the way in which we compute the Bellman operator,
in particular for the expectations’ part

6 finally, we must adapt the simulations to the generic case with many
possible realizations of the Markov chain

We can do the same for the model with irreversible investment. The two
solution codes are vfi_AM_general.m and
vfi_AM_irrinv_general.m.

45/129

POLICY FUNCTION ITERATION

Value function iteration is slow, and for many economic

problems computational speed is important

PFI is similar approach, same convergence properties, but faster

Also known as Howard’s improvement algorithm

Remember our problem:

V (K−1)≡ max
{Kt}∞

t=0

∞

∑
t=0

β
tU

(
f (Kt−1)−Kt

)
s.t. 0 ≤ Kt ≤ f (Kt−1) , t = 0,1, ...

46/129

THE ALGORITHM

There are 5 steps:

1 Start with a guess for the policy function K′ = g(0)(K)

2 Calculate the value associated with this policy function:

V(0) (K) =
∞

∑
t=0

β
tU

(
f (Kt−1)−g(0) (Kt−1)

)

47/129

THE ALGORITHM (CONT.)

3 For any n ≥ 0, get a new policy function K′ = g(n+1)(K) by

solving

max
K′

{
U
(
f (K)−K′)+βV(n) (K′)}

4 Calculate the value associated with this policy function:

V(n+1) (x) =
∞

∑
t=0

β
tU

(
f (Kt−1)−g(n+1) (Kt−1)

)

5 Iterate over 3-4. Stop if
∥∥∥V(n+1)−V(n)

∥∥∥< ε

48/129

THE STOCHASTIC GROWTH MODEL

The system is in one of N predetermined positions xi,

i = 1,2, ...,N.

Matrices P where Pij = Prob{xt+1 = xj | xt = xi} are our choice

We can write the Bellman equation as:

v(xi) = max
P∈M

u(xi)+β

N

∑
j=1

Pijv
(
xj
)

In a more compact form:

v = max
P∈M

{u+βPv} (12)

49/129

THE STOCHASTIC GROWTH MODEL (CONT.)

We can rewrite it as as

v = Tv

where T is the operator corresponding to the RHS of (12). Define

another operator B ≡ T − I such that

Bv = max
P∈M

{u+βPv}− v

and therefore we can see the policy function iteration as solving

Bv = 0.

50/129

THE ALGORITHM REFORMULATED

The algorithm becomes:

1 Given P(n), get v(n) from

(
I −βP(n)

)
v(n) = u(n) (13)

2 Find P(n+1) such that

u(n+1)+
(

βP(n+1)− I
)

v(n) = Bv(n) (14)

3 Iterate until convergence

51/129

THE ALGORITHM REFORMULATED (CONT.)

First step is a linear algebra problem:

v(n) =
(

I −βP(n)
)−1

u(n)

52/129

NUMERICAL IMPLEMENTATION

Define the two n×n matrices:

Jh
(
ki,kj

)
=

 1 if g(ki,Ah) = kj

0 o/w


Given k′ = g(k,A), define two vectors Uh such that:

Uh (ki) = u
(
Ahf (ki)+(1−δ)ki −g(ki,Ah)

)

53/129

NUMERICAL IMPLEMENTATION (CONT.)

Assume the policy function is used forever

We can associate the two vectors Vh (ki) as the values associated

with starting from state (ki,Ah): V1

V2

=

 U1

U2

+β

 P11J1 P12J1

P21J2 P22J2


 V1

V2



54/129

SOLVING BY LINEAR ALGEBRA

We can therefore solve for Vh by means of elementary linear algebra

and have:

 V1

V2

=

I −β

 P11J1 P12J1

P21J2 P22J2



−1 U1

U2

 (15)

55/129

ALGORITHM REFORMULATED IN LINEAR

ALGEBRA

1 Given an initial feasible policy function, calculate Uh and find Vh

with

 V1

V2

=

I −β

 P11J1 P12J1

P21J2 P22J2



−1 U1

U2


2 Do one iteration on the Bellman equation, by using value

functions found in step 1, and find a new policy function

3 Iterate until convergence

56/129

pfi_AM.m, PART 1

1 while metric > convcrit;
2 contv= beta*v*prob'; % continuation value
3 [tv1,tdecis1]=max(bsxfun(@plus,util1,contv(:,1)));
4 [tv2,tdecis2]=max(bsxfun(@plus,util2,contv(:,2)));
5
6 tdecis=[tdecis1' tdecis2'];

57/129

pfi_AM.m, PART 2

1 % Build return vectors
2 r1 = zeros(cs,1);
3 r2 = zeros(cs,1);
4 for i=1:cs
5 r1(i) = util1(tdecis1(i),i);
6 r2(i) = util2(tdecis2(i),i);
7 end
8
9 % create matrices Js (see lecture notes)

10 g2=sparse(cs,cs);
11 g1=sparse(cs,cs);
12 for i=1:cs
13 g1(i,tdecis1(i))=1;
14 g2(i,tdecis2(i))=1;
15 end
16 % This is the matrix P (see lecture notes)
17 trans=[prob(1,1)*g1 prob(1,2)*g1; prob(2,1)*g2

prob(2,2)*g2];
18
19 % Linear algebra step to get the value function

associated with P
20 tv(:) = ((speye(2*cs) = beta.*trans))\[r1; r2];

58/129

EXERCISE: IRREVERSIBLE INVESTMENT VS.

ADJUSTMENT COSTS II (THE REVENGE)

Modify the PFI code to analyse the model with irreversible

investment and the model with investment adjustment costs seen in

the section about value function iteration. (Hint: are the modifications

done for the VFI code enough?)

59/129

NUMERICAL METHODS

60/129

NUMERICAL METHODS

The codes presented for VFI and PFI have many drawbacks!!!

Brief introduction to basic numerical tasks

Not exhaustive

References:

1 Miranda and Fackler (2002): good book, simple introduction to

numerical methods with Matlab, comes with a (very useful)

toolbox (we use it in the projection methods codes)

2 Judd (1998): THE BIBLE

61/129

COMPECON TOOLBOX AND LIBM

CompEcon Toolbox: useful numerical routines for the economist

LIBM: another library with efficiently coded routines (created by

Michael Reiter)

Installation: just add them to the Matlab path (if you have some

troubles, please let me know)

62/129

CALCULATING INTEGRALS

∫
I
f (x)w(x)dx ≈

n

∑
i=1

f (xi)wi (16)

Different ways to choose nodes xi and the weights wi

Newton-Cotes methods: approximate f between nodes using low order
polynomials, then sum the integrals of those polynomials (which are
easy to calculate)

trapezoid rule: piecewise linear interpolants
Simpson’s rule: piecewise quadratic interpolants

Gaussian quadrature: chooses nodes and weights by matching some
moments of the distribution
Monte Carlo methods: randomly choose nodes
Replicating a continuous process with one with discrete support, for
example Tauchen’s method

63/129

CALCULATING INTEGRALS

NEWTON-COATES METHODS

Newton-Cotes methods: approximate f between nodes using low

order polynomials, then sum the integrals of those polynomials

(which are easy to calculate)

trapezoid rule: piecewise linear interpolants

[x,w] = qnwtrap(n,a,b);

Simpson’s rule: piecewise quadratic interpolants

[x,w] = qnwsimp(n,a,b);

64/129

CALCULATING INTEGRALS

GAUSSIAN QUADRATURE

Gaussian quadrature: chooses nodes and weights by matching

some moments of the distribution

Gaussian quadrature of order n chooses n quadrature nodes that

satisfy the 2n moment matching conditions:

∫
I
xkw(x)dx =

n

∑
i=1

wixk
i , k = 0, ...,2n−1

If w(x) = 1: Gauss-Legendre quadrature

[x,w] = qnwlege(n,a,b);

integral = w'*log(x)

65/129

CALCULATING INTEGRALS

EXERCISE 3.1: INTEGRALS

1 Calculate the integral of e−x on the interval [−1,1] using the

trapezoid rule.

2 Calculate the integral of |x|
1
2 on the interval [−1,1] using

Simpson’s rule.

3 Calculate the integral of (1+25x2)−1 on the interval [−1,1]

using Gauss-Legendre method.

66/129

CALCULATING INTEGRALS

EXERCISE 3.2: COMPARE THE METHODS

Write a short script that compares the three methods. Calculate the

integral of e−x, |x|
1
2 and (1+25x2)−1 on the interval [−1,1] by hand

(these are pretty easy to calculate). Then use CompEcon commands

and calculate the integrals with 10, 20, 30, 100 nodes for each

method. Save the results in a matrix and then compare the accuracy,

i.e. the difference between the numerical integral and the correct

integral calculated by hand. What can you notice?

67/129

CALCULATING INTEGRALS

EXERCISE 3.2: COMPARE THE METHODS

REMINDER:∫ 1
−1 e−xdx = (−e−x)

∣∣1
−1

∫ 1
−1|x|

1
2 dx =

∫ 0
−1|x|

1
2 dx+

∫ 1
0 |x|

1
2 dx =

(
2
3(−x)

3
2

)∣∣∣0
−1

+
(

2
3 x

3
2

)∣∣∣1
0

and
∫ 1
−1(1+25x2)−1dx =

(
1
5 arctan5x

)∣∣∣1
−1

68/129

CALCULATING INTEGRALS

GAUSSIAN QUADRATURE FOR NORMAL DISTRIBUTION

qnwnorm calculates the nodes and weights for multidimensional

normal distributions

[x,w] = qnwnorm(n,mu,var);

n: number of nodes in each dimension

mu: mean vector

var: variance-covariance matrix.

Calculate the expectations of e−x, with x ∼ N(0,1), and 30 nodes

[x,w] = qnwnorm(30,0,1);

expectations = w'*exp(=x);

69/129

CALCULATING INTEGRALS

NORMAL DISTRIBUTION

Exercise 1 Univariate normal

Calculate the expected value of x−σ , for σ = {0.5,1,2,10} and

x ∼ N(0,1). Use 30 nodes.

Exercise 2 Multivariate normal

Calculate the expected value of ex1+x2 , with x1 and x3 jointly normal

with Ex1 = 3, Ex2 = 4, Var(x1) = 2, Var(x2) = 4, Cov(x1,x2) =−1.

Use 10 nodes in the x1 direction and 15 nodes in the x2 direction.

70/129

NONLINEAR EQUATIONS

BISECTION METHOD

f (x) = 0

Bisection methods: continuous real-valued function on a real interval

[a,b]

Start with two points a1,b1 such that f (a1)< 0, f (b1)> 0

Choose a new point x2 ∈ [a1,b1] and calculate the sign of f (x2).

If positive, now restrict your search to [a1,x2], if negative to

[x2,b1].

f = inline('x^3 = 5');

x = bisect(f,1,2);

71/129

NONLINEAR EQUATIONS

BISECTION METHOD

Exercise 3 Bisection

1. Find the roots of e−x2 − cos(x) over the interval [−4,6].

2. Plot the function over the interval. What can you observe?

72/129

NONLINEAR EQUATIONS

FUNCTION ITERATION

f (x) = 0

Function iteration: f : Rn → Rn

Write the equation as x = g(x)

Guess x(0), calculate x(1) = g(x(0))

Iterate over the recursion x(n+1) = g(x(n)) until convergence

g = inline('x^0.5');

x = fixpoint(g,0.4);

73/129

NONLINEAR EQUATIONS

FUNCTION ITERATION

Exercise 4 Function iteration

Find the roots of e−x2 − cos(x) over the interval [−4,6]. (Hint: first

you have to transform the equation from the form f (x) = 0 into

x = x− f (x)).

74/129

NONLINEAR EQUATIONS

NEWTON’S METHOD

f (x) = 0

Newton’s method: f : Rn → Rn

First order Taylor approximation around x(k):

f (x)≈ f (x(k))+ f ′(x(k))(x− x(k)) = 0

Guess x(0), calculate x(1) = x(0)− [f ′(x(0))]−1f (x(0))

Iterate over the recursion x(n+1) = x(n)− [f ′(x(n))]−1f (x(n)) until

convergence

In CompEcon: newton

75/129

NONLINEAR EQUATIONS

NEWTON’S METHOD

The syntax is slightly more complicated. We need to create a function

file in the form:

[fval,fjac]=f(x,optional additional parameters)

where fjac is the Jacobian of the function.

Then the command is

x = newton(f,x0)

where x0 is an initial guess.

76/129

NONLINEAR EQUATIONS

NEWTON’S METHOD

Exercise 5 Newton method

Find the roots of e−x2 − cos(x) using the Newton method.

77/129

NONLINEAR EQUATIONS

QUASI-NEWTON’S METHODS

f (x) = 0

Like Newton’s method, but use a computable Jacobian (not the exact

one)

Very popular (and my favourite): Broyden’s method

Guess x(0), and A(0), calculate x(1) = x(0)− [A(0)]−1f (x(0))

Update A with the smallest possible change that satisfies the

secant condition: f (x(n+1))− f (x(n)) = A(n+1)(x(n+1)− x(n)) (for

speed: update the inverse of the Jacobian)

Iterate over the recursion x(n+1) = x(n)− [A(n)]−1f (x(n)) until

convergence

78/129

NONLINEAR EQUATIONS

broydn.m

Included in LIBM, very efficient

1 [x, flag] = broydn(fname,xold,TOLF,iadmat,iprint,

varargin);

79/129

NONLINEAR EQUATIONS

QUASI-NEWTON’S METHODS

Exercise 6 Broyden method

1. Find the roots of e−x2 − cos(x) using the Broyden’s method.

Play with the initial guess to see how the solution changes.

80/129

NONLINEAR EQUATIONS

QUASI-NEWTON’S METHODS

Exercise 7 Broyden method

1. Imagine you have a two-periods economy with an initial
amount of savings s0. Therefore, the equations that describe
the intertemporal decision of the agent are given by:

c−σ

1 = β (1+ r)c−σ

2

c1 +
c2

1+ r
= y1 +

y2

1+ r
+ s0

where r = 0.05, σ = 2, β = .99, and y1 = y2 = 1. Solve for the
optimal allocation for different values of the initial savings.
(Hint: write a function that takes as second input a vector of
initial savings, and solve these equations in a vectorized way.

81/129

OPTIMIZATION

DERIVATIVE-FREE METHODS

Golden search: similar to bisection, find the maximum on
interval [a,b]
Start with two points x1,x2 in the interval, such that x1 < x2, and
evaluate f (xi)

If f (x1)≥ f (x2), then the new interval is [a,x2], otherwise is
[x1,b]
Iterate until convergence
Use golden, from CompEcon

1 [x, fval] = golden(fname,a,b,varargin)

Use goldsvec.m, in the LIBM library (from Rn to Rn)

1 [x, fval] = goldsvec(fname,a,b,varargin)

82/129

OPTIMIZATION

DERIVATIVE-FREE METHODS

Exercise 8 Golden Search

1. Use the golden command to maximize the MATLAB

function humps on the interval [−10,10]

2. Use the golden command to maximize the MATLAB

function humps on the interval 0.2,2]. Comment.

83/129

OPTIMIZATION

DERIVATIVE-FREE METHODS

Exercise 9 Golden Search

1. (Difficult) Imagine you have a two-periods economy with an
initial amount of savings s0, per-period CRRA utility function
u(c) = c1−σ

1−σ
, and discount factor β . The intertemporal budget

constraint of the agent is:

c1 +
c2

1+ r
= y1 +

y2

1+ r
+ s0

where r = 0.05, σ = 2, β = .99, and y1 = y2 = 1. Solve for
the optimal allocation for different values of the initial savings
using the goldsvec routine.

84/129

OPTIMIZATION

NEWTON-RAPHSON METHOD

Similar to Newton’s methods for nonlinear equations

Take second order Taylor expansion of the maximand:

f (x)≈ f (x(k))+ f ′(x(k))(x− x(k))+ 1
2(x− x(k))T f ′′(x(k))(x− x(k))

FOCs are: f ′(x(k))+ f ′′(x(k))(x− x(k)) = 0

Hence: x(n+1) = x(n)− [f ′′(x(n))]−1f ′(x(n))

Iterate until convergence

(and guess what: there are of course Quasi-Newton methods that

use a computable Hessian)

Matlab routines in the Optimization Toolbox (e.g. fmincon)

85/129

OPTIMIZATION

”I-AM-IN-DEEP-TROUBLE” PROBLEMS

Once in a while, you will face a very irregular optimization problem

Global methods: line search, pattern search

Genetic algorithms

Simulated annealing

Swarm search optimization

Ad-hoc techniques (problem-specific)

Most of the time: good for finding initial guesses, then use

standard methods

86/129

CURSE OF DIMENSIONALITY

VFI relies on setting up a grid for the state variables

Need many points to get a good approximation,

if N = n. states, and discretize each state in m grid points ⇒

your value function needs to be evaluated in mN points

Memory-intensive task! This is called the curse of

dimensionality.

Several ways to reduce it:

Interpolation of the value function and/or choice variables

Smart choice of gridpoints

Projection methods need substantially less grid points than the

other techniques

87/129

PARALLELIZATION

VFI is an embarrassingly parallelizable algorithm, i.e. the

maximization step can be performed gridpoint by gridpoint

Each single (i.e. one grid point) maximization problem can be

sent to a different processor.

Helpful in problems with high-dimensional state spaces

88/129

PROJECTION METHODS

89/129

PROJECTION METHODS

How do we solve functional equations in general?

Projection methods

Widespread use in macroeconomic theory, no limits to

applications

References: Miranda and Fackler (2002), Judd (1998), Judd

(1992)

90/129

MAIN IDEA

We want to solve a functional equation of the type:

N
(
g(x)

)
= 0 (17)

We can get only an approximation of our solution g(x)

91/129

THE ALGORITHM

1 Approximate the function g(x) as a combination of some simple

functions φi (x): ĝ(x) = ∑
n
i=1 aiφi (x)

2 Calculate the residual function, i.e. an approximated version of

the functional equation: R(x;a)≡
(
N̂ (ĝ)

)
(x)

3 Calculate the projections with some functions pi(x):

Pi (·)≡ ⟨R(·;a) ,pi (·)⟩, i = 1, ...,n

4 Find the vector of coefficients a that solves Pi (·) = 0, i = 1, ...,n.

92/129

FIRST STEP

Choose:

How we approximate the solution:

Usually: a linear combination of some simple functions φi (x) (we

call them basis functions), like polynomials (more details later)

An appropriate concept of distance in order to measure the

accuracy of our calculated solution.

93/129

SECOND STEP

Choose:

a degree of approximation n, i.e. how many basis functions we

want to use.

a computable approximation N̂ for N , if the exact operator is

not directly computable

functions pi, i = 1, ...,n that we will use to calculate the

projections (many times we use the basis functions)

⇒ our approximation is ĝ(x) = ∑
n
i=1 aiφi (x) for any x

Any solution can be summarized by a vector of coefficients a

94/129

THIRD STEP

Compute numerically the approximated policy function

ĝ(x) = ∑
n
i=1 aiφi (x) for a particular guess of a

Compute the so called residual function

R(x;a)≡
(
N̂ (ĝ)

)
(x)

The first guess can be important: it is crucial to start with a good guess

95/129

FOURTH STEP

Calculate the projections

Pi (·)≡ ⟨R(·;a) ,pi (·)⟩, i = 1, ...,n (18)

the typical choice for the inner product used in the calculation of

the projections is, given a weighting function w(x):

⟨f (x),h(x)⟩ ≡
∫

f (x)h(x)w(x)dx

96/129

FIFTH STEP

We look for a that makes Pi (·) equal to zero

We iterate over step 3 and 4 to get a vector of coefficients a that sets

the projections (18) to zero

97/129

CHOICE OF BASIS FUNCTIONS

Ordinary polynomials 1,x,x2,x3, ... However, problematic

Two broad categories: spectral methods and finite element

methods.

Spectral methods: basis functions are almost everywhere

nonzero, continuously differentiable as many time as needed,

imposing smoothness on the approximated function (which

sometimes is not a desirable feature)

Finite element methods: basis functions are zero except for a

small support

98/129

CHEBYCHEV POLYNOMIALS

Spectral method, defined as

Tn (x)≡ cos(narccosx) , x ∈ [−1,1]

and it is possible to generate them with the following recursive law:

Tn+1 (x) = 2xTn (x)−Tn−1 (x)

T0 (x) = 1, T1 (x) = x

They satisfy the following orthogonality condition:

∫ 1

−1
Ti (x)Tj (x)

(
1− x2

)− 1
2

dx = 0, i ̸= j

99/129

CHEBYCHEV POLYNOMIALS (CONT.)

Let zn
l ≡ cos

(
(2l−1)π

2n

)
, l = 1, ...,n be the zeroes of Tn:

Σ
n
l=1Ti

(
zn

l
)

Tj
(
zn

l
)
= 0, i ̸= j

therefore if we use zn
l as gridpoints, we can simplify computation and

convergence is faster

100/129

TENT FUNCTIONS

Finite element method, aka piecewise linear basis

Take an approximation with support in [a,b] and be

h = (a−b)/n. Then, for i = 0,1, ...,n:

φi (x)=



0 a ≤ x ≤ a+(i−1)h

(x− (a+(i−1)h))/h a+(i−1)h ≤ x ≤ a+ ih

1− (x− (a+(i−1)h))/h a+ ih ≤ x ≤ a+(i+1)h

0 a+(i+1)h ≤ x ≤ b

A generalization of those bases is piecewise degree k

polynomials, like Hermite polynomials and cubic splines.

101/129

MULTIDIMENSIONAL STATE SPACE

Use tensor products: if {φi (x)}∞
i=1 is the basis for a function in

one variable, {φi (x)φj (y)}∞
i,j=1 for functions of two variables,

and so on.

Main problem: number of elements increases exponentially.

Various ways to overcome this problem: one is to use complete

polynomials of order k:

Pk ≡

xi1
1 · ... · xin

n

∣∣∣∣∣ n

∑
l=1

il ≤ k,0 ≤ i1, ..., in



102/129

CHOICE OF PROJECTIONS

The choice of functions pi characterizes different approaches

Least squares approach:

min
a
⟨R(x;a) ,R(x;a)⟩

Galerkin method:

Pi (a)≡ ⟨R(x;a) ,φi (x)⟩= 0, i = 1, ...,n

103/129

CHOICE OF PROJECTIONS (CONT.)

Method of moments uses the first n polynomials:

Pi (a)≡ ⟨R(x;a) ,xi−1⟩= 0, i = 1, ...,n

Subdomain method solves

Pi (a)≡ ⟨R(x;a) ,IDi⟩= 0, i = 1, ...,n

where {Di} is a sequence of intervals covering the entire domain

of the function, and IDi is the indicator function for Di.

104/129

CHOICE OF PROJECTIONS (CONT.)

Collocation method chooses n points {xi}n
i=1 in the domain and

solves

R(xi;a) = 0, i = 1, ...,n

This is equivalent to solve

Pi (a)≡ ⟨R(x;a) ,δ (x− xi)⟩= 0, i = 1, ...,n

where δ (·) is the Dirac delta function that is equal to zero

everywhere but in zero, where it takes value 1

105/129

SPEED CONCERNS

Main computational burden is calculating projections

Collocation is very fast; other methods would require the

computation of an integral

Orthogonal collocation chooses collocation nodes as the zeroes

of the basis function: even faster

106/129

COMPECON FOR PROJECTION METHODS

GENERATING FUNCTIONAL SPACES WITH fundefn

fundefn creates a Matlab structured variable that characterizes the

functional space of the basis functions chosen by the programmer.

The syntax is:

fspace = fundefn(bastype,n,a,b,order);

bastype: type of basis function

Chebichev polynomials ('cheb')

splines ('spli')

linear spline basis with finite difference derivatives ('lin')

107/129

COMPECON FOR PROJECTION METHODS

GENERATING FUNCTIONAL SPACES WITH fundefn

fundefn creates a Matlab structured variable that characterizes the

functional space of the basis functions chosen by the programmer.

The syntax is:

fspace = fundefn(bastype,n,a,b,order);

n: vector indicating the degree of approximation along each

dimension

a, b: identify the left and right endpoints for interpolation

intervals for each dimension

order: spline order, default is cubic splines

108/129

COMPECON FOR PROJECTION METHODS

GENERATING FUNCTIONAL SPACES WITH fundefn

Example: generating a functional basis space for 5th degree

Chebychev polynomials for a univariate function in the interval

[−5,6]:

fspace = fundefn('cheb',5,=5,6);

Generating a cubic spline space in two dimensions, with 10 basis

functions in the first dimension and 8 in the second on the interval

{(x1,x2) : −5 ≤ x1 ≤ 6,2 ≤ x2 ≤ 9}:

fspace = fundefn('spli',[10 8],[=5 2], [6 9]);

109/129

COMPECON FOR PROJECTION METHODS

EVALUATING FUNCTIONS WITH funeval

We want to evaluate ĝ(x) = ∑
n
i=1 ciφi (x), given coefficients c and

basis functions {φi (x)}n
i=1

Define a set of points x, a vector of coefficients c and a

functional space fspace:

y = funeval(c,fspace,x);

x is a m× k matrix, where m is the number of points, and k is the

dimensionality of the space.

110/129

COMPECON FOR PROJECTION METHODS

OTHER FUNCTIONS: funbas AND funnode

funbas returns the value of the basis functions calculated in a

particular set of points x

Basis = funbas(fspace,x);

Useful for evaluating a function at x, but with different c

(equivalent to funeval):

Basis = funbas(fspace,x);

y = Basis*c;

111/129

COMPECON FOR PROJECTION METHODS

OTHER FUNCTIONS: funbas AND funnode

funnode computes standard nodes

Example: if Chebychev polynomials are used, we get the

Chebychev’s zeros with

x = funnode(fspace);

112/129

THE STOCHASTIC GROWTH MODEL SOLVED

WITH COLLOCATION

We will solve the SGM with collocation over the first order

conditions

Notice: we assume continuous support for TFP shocks, can be

persistent

u′(ct) = βEt

[
u′(ct+1)

(
αAt+1kα−1

t+1 +1−δ

)]

u′(max(0,Akα +(1−δ)k−g(K,A))) = βE
[
u′(max(0,A′(g(k,A))α+

(1−δ)g(k,A)−g(g(K,A),A′)))
(

αA′(g(k,A))α−1 +1−δ

)]

113/129

OUR OPERATOR N (g(x))

N (g(k,A))≡ u′(max(0,Akα +(1−δ)k))−βE
[
u′(max(0,A′(g(k,A))α+

(1−δ)g(k,A)))
(

αA′(g(k,A))α−1 +1−δ

)]

114/129

PRELIMINARIES: INSTALLING LIBRARIES

LIBM: add it to your Matlab path

CompEcon: add it to your Matlab path with the option "Add

with subfolders"

As a test: launch the file solveSGM.m, and see if you receive an

error message (you shouldn’t)

115/129

THE CODE

Set parameters values and grid for states (in solveSGM.m)

Generates the functional space for the basis functions, and a

"good" initial guess for the coefficients (in solveSGM.m)

Find coefficients that put the residual function (written in the

function focsSGM.m) as close to zero as possible (this is in fact

done by solving nonlinear equations with Broyden’s method, by

the file mainSGM.m)

Test solution accuracy (in mainSGM.m) and then simulate the

model (in solveSGM.m)

116/129

solveSGM.m, PART 1

1 global alpha betta rho sig sigma delta sigeps ;
2 global nQuadr QuadrWeights QuadrPoints;
3 global RoundAppr rounds_approx ;
4
5 %% PARAMETERS:
6 alpha =.4; % production function coefficient
7 delta = .1; % depreciation rate for capital
8 betta = .95; % discount factor
9 sig = 1; % .5;% % CRRA utility (c^(1=sig))/(1=sig)

10 sigma = .05; % S.D. of productivity shock
11 rho = 0;%; .9; % % persistence of productivity shock
12
13 %% create a grid for capital
14 kstar = (1/(alpha*betta) = ...
15 (1=delta)/alpha)^(1/(alpha=1)); %det. steady state
16 k_min = .5*kstar;
17 k_max = 2*kstar;
18
19 %% parameters for quadrature
20 nQuadr = 50; % 100;% %number of quadrature points;
21 % we choose nQuadr high to get smoothness;
22 [QuadrPoints,QuadrWeights] = qnwnorm(nQuadr,0,sigma^2);

117/129

solveSGM.m, PART 2

1 %% Range for shock
2 sigeps = sigma/sqrt(1=rho^2);
3 % Range for shock:
4 A_max = 3*sigeps;
5 A_min = =3*sigeps;
6 %% Parameters for the collocation algorithm
7 rounds_approx = 2; % number of rounds of approximation
8 Order_vector = [5 10; 5 10];%grid points for each round
9 ntest = 100; %gridpoints for testing for each dimension

10
11 %% Approximation type for CompEcon
12 % approxtype = 'lin'; % piecewise linear
13 approxtype = 'cheb'; % chebychev polynomials
14 % approxtype = 'spli'; % splines
15 splineorder = []; % splines' order
16
17 %% parameters for simulations
18 number_series =1; % number of series
19 periods_simulation = 100; % n. periods for simulation
20 k0 = k_min.*ones(number_series,1);
21
22 %% Run main file
23 mainSGM; % solves the model

118/129

mainSGM.m, PART 1

1 for oo = 1: rounds_approx
2 RoundAppr = oo; % round of approximation
3
4 % Range on which we approximate the solution:
5 LowerBound = [k_min A_min];
6 UpperBound = [k_max A_max];
7
8 % Approximation order
9 Order = Order_vector(:,oo);

10
11 % for reference, need this for guess after round 1
12 if oo >= 2
13 fspace_old = fspace;
14 end
15
16 disp(' '); disp(' ');
17 disp(sprintf('RoundAppr %d, # gridpoints = [%d %d]'

,...
18 RoundAppr, Order(1), Order(2)));
19 disp(' ');

119/129

mainSGM.m, PART 2

1 % generate basis function space: we can choose
2 % among chebychev polynomials, splines of
3 % different orders and piecewise linear functions
4 if(strcmp(approxtype,'spli'))
5 fspace = fundefn(approxtype,Order,LowerBound,

UpperBound,splineorder);
6 else
7 fspace = fundefn(approxtype,Order,LowerBound,

UpperBound,[]);
8 end;
9

10 % the following commands create gridpoints
11 nodes = funnode(fspace);
12 Grid = gridmake(nodes);
13
14 % Set initial conditions
15 if (RoundAppr == 1)
16 knext = Grid(:,1);
17 else % if we are at second approx round, we use

the solution of the first round
18 % as initial conditions on the new larger grid
19 knext = funeval(park, fspace_old, Grid);
20 end;

120/129

mainSGM.m, PART 3

1 % generate basis functions Basis at Grid :
2 Basis = funbas(fspace,Grid);
3
4 % set initial value for parameters of the

approximation
5 park = Basis\knext;
6
7 % solve FOCs with Broyden method for nonlinear

equations
8 [park,info] = broydn('focsSGM',park,1e=8,0,1,Grid,

fspace);
9 disp(sprintf(' info = %d',info)); % if info=0,

everything went fine, o/w the Broyden algorithm
didn't converge

10 disp(sprintf(' '));
11
12 end;

121/129

focsSGM.m, PART 1

1 %% FOCS for the stochastic growth model
2
3 function equ = focsSGM(park, Grid,fspace);
4
5 global alpha betta sig rho delta A_bar
6 % global LowerBound UpperBound
7 global nQuadr QuadrWeights QuadrPoints
8
9 LowerBound = fspace.a;

10 UpperBound = fspace.b;
11
12 %rename grid
13 k = Grid(:,1);
14 A = Grid(:,2);
15
16 % evaluate policy functions
17 knext = funeval(park,fspace, Grid);
18 fofk = exp(A).*(k.^alpha) + (1=delta).*k;
19 % c = fofk = knext;
20 c = max(fofk = knext, zeros(length(Grid),1));

122/129

focsSGM.m, PART 2

1 n = length(k);
2 % generate nQuadr replications of the Grid, one for

each realization of shock:
3 Grid_knext = kron(knext,ones(nQuadr,1));
4 % Exp. value of next period A, corresponding to Grid:
5 ExpA = rho*A;
6 % all realizations of next A:
7 GridANext = kron(ExpA,ones(nQuadr,1)) + ...
8 kron(ones(n,1),QuadrPoints);
9 % truncate it to state space:

10 GridANext = min(max(GridANext,LowerBound(2)),UpperBound
(2));

11 GridNext = [Grid_knext GridANext];
12 % calculate variables at t+1
13 knextnext = funeval(park,fspace, GridNext);
14 fofknext = exp(GridANext).*(Grid_knext.^alpha) + (1=

delta).*Grid_knext;
15 cnext = max(fofknext = knextnext, zeros(length(

Grid_knext),1));
16 mucnext = muc(cnext);
17 mpknext = mpk(GridNext);
18 % calculate expectations with quadrature
19 exp_mucnext = (QuadrWeights'*reshape(mpknext.*mucnext,

nQuadr,n))';

123/129

focsSGM.m, PART 3

1 % equation to be solved: Euler equation
2 equ = (muc(c) = betta.*exp_mucnext)./muc(c);
3
4 % avoid strange solutions
5 if (any(cnext<0)) || (any(c<0)) || (any(knext<0)) ||

(any(knextnext<0))
6 equ(1) = 1e100;
7 end;

124/129

EXERCISE

SOLVING THE RBC MODEL WITH COLLOCATION OVER THE BELLMAN EQUATION

Create a code that solves the Belmann equation of the RBC model

with collocation, starting from the code used to solve it with FOCs.

First, write down the different components of your code (which

files you will have to create)

Choose a way to perform the maximization step in the Bellman

operator. (Hint: can you do it with full discretization of the

choice variable?)

125/129

TRICKS AND DIFFICULTIES

CONVERGENCE

There is no theorem guaranteeing convergence

The researcher has to "guide" the convergence process with

ad-hoc solutions

Homotopy methods: start from the solution of a simpler model

and iteratively modify the N operator to match the new, more

complicated model

Bounds for the first iterations

...

126/129

TRICKS AND DIFFICULTIES

DEPENDENCE ON THE INITIAL GUESS

Most of the times, the solution we obtain depends on the initial

guess

Important to get a good guess

Check that we always converge to the same solution even if we

start from different initial guesses

127/129

TRICKS AND DIFFICULTIES

ILL-CONDITIONING

When using nonlinear solvers: Jacobians/Hessians must be

computed

Ill-conditioning is a very frequent problem, no easy fixes

Smart choice of gridpoints and more rounds of approximation

usually help

128/129

TRICKS AND DIFFICULTIES

SPEED CONSIDERATIONS AND MODELS WITH LARGE STATE SPACES

In high dimensional models, speed is a concern

Recent work shows that projection methods work well even in

these models

Malin, Krueger and Kubler (2011): use Smoliak algorithm to

smartly choose gridpoints

Judd, Maliar and Maliar (2010): simulated ergodic grid methods

Guess a solution, simulate the solution many times

From the simulated points, find k clusters, and use the centroids

of each cluster as your grid points.

Solve with collocation on the k grid points.

Iterate until convergence

129/129

