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Series Editors’ Introduction

The Econometric and Tinbergen Institutes Lectures deal with
topics in econometrics with important policy implications.
The lectures cover a wide range of topics and are not con-
fined to any one area or sub-discipline. Leading international
scientists in the field of econometrics in which applications
play a major role are invited to give three-day lectures on a
topic to which they have contributed significantly.

The rise in the use and development of Dynamic Stochastic
General Equilibrium (DSGE) models for macroeconomic fore-
casting and policy analysis has been spectacular in the past
twenty years in academia and professional organizations. The
present book written by Ed Herbst and Frank Schorfheide,
leading researchers in this field, is very timely. It contains a
clear introduction using basic New Keynesian Phillips curve
models and continues to explore the inherent nonlinear struc-
ture of DSGE models. It covers a range of very novel simula-
tion based Bayesian algorithms to handle such models. Here
the reader is taken to the frontiers of modern science in the
field of DSGE modeling.

This book no doubt stimulates further research in the
DSGE class of models to analyze such modern economic is-
sues as slow and imbalanced international growth, risk of
deflation, and interconnectedness between real and financial
sectors. This leads to the specification of a more appropriate
and effective mix of fiscal and monetary policy to battle the
issues mentioned.

The editors of the series are indebted to the Tinbergen In-
stitute for continued support.

Herman K. van Dĳk and Philip Hans Franses
Econometric and Tinbergen Institutes

Erasmus School of Economics



Preface

The first papers that used Bayesian techniques to estimate
dynamic stochastic general equilibrium (DSGE) models were
published about fifteen years ago: DeJong, Ingram, and White-
man (2000), Schorfheide (2000), and Otrok (2001). The DSGE
models at the time were relatively small in terms of the num-
ber of parameters and hidden states, and were estimated
with, by today’s standards, fairly simple versions of Metropolis-
Hastings (MH) or importance sampling algorithms. Since then,
DSGE models have grown in size, in particular the ones that
are used by central banks for prediction and policy analysis.
The celebrated Smets and Wouters (2003, 2007) has more
than a dozen hidden states and thirty-six estimated param-
eters. The Smets-Wouters model forms the core of the lat-
est vintage of DSGE models which may add a housing sec-
tor, search frictions in the labor market, or a banking sector
and financial frictions to the basic set of equations. Each of
these mechanisms increases the state space and the param-
eter space of the DSGE model.

The goal of this book is to assess the accuracy of the ‘‘stan-
dard’’ Bayesian computational techniques that have been ap-
plied in the DSGE model literature over the past fifteen years
and to introduce and explore ‘‘new’’ computational tools that
improve the accuracy of Monte Carlo approximations of pos-
terior distributions associated with DSGE models. The reader
will quickly notice that the tools are not really new (which is
why we used quotation marks) but the application of some
of these tools is: they are imported from the engineering and
statistical literature and tailored toward Bayesian estimation
of DSGE models. This book is based on a series of lectures on
Recent Theory and Applications of DSGE Models which were
presented as Econometric and Tinbergen Institutes Lectures
at the Erasmus University Rotterdam in June 2012, but the
material has evolved significantly since then.

The target audience of the book includes macroeconomists



in academia and central banks who are interested in applying
state-of-the-art computational techniques to estimate DSGE
models; econometricians who are interested in the Bayes-
ian estimation of state-space models and nonlinear Monte
Carlo filtering techniques and want to learn more about DSGE
model applications in empirical macroeconomics; and PhD
students who would like to conduct research at the interface
of econometrics and macroeconomics.

The book has three parts. The first part consists of an
introduction to DSGE modeling and Bayesian inference. We
present a small-scale New Keynesian model, show how it
can be solved, and turn it into a state-space model that is
amenable to Bayesian estimation. Readers unfamiliar with
DSGE models might have to consult a macroeconomics text-
book or survey paper for more detailed background informa-
tion on the specification, the solution, and the application of
DSGE models. For readers unfamiliar with Bayesian econo-
metrics, we provide a primer on Bayesian Inference. While
this primer is not a substitute for a thorough textbook treat-
ment, it shows in the context of a linear Gaussian regres-
sion model how a prior distribution is combined with a like-
lihood function to obtain a posterior distribution. Based on
this posterior distribution one can derive point estimators,
interval estimators, or solve more complicated decision prob-
lems. Moreover, we provide an introduction to important com-
putational techniques, such as direct sampling, importance
sampling, and Metropolis-Hastings algorithms.

The second part of the book is devoted to Bayesian com-
putations for linearized DSGE models with Gaussian shocks.
Thus, we focus on models for which the likelihood function
can be evaluated with the Kalman filter. The starting point
is the Random-Walk MH algorithm, which is the most widely
used algorithm for Bayesian estimation of DSGE models in
the literature. We discuss several refinements to this algo-
rithm before proceeding with Sequential Monte Carlo (SMC)
methods. While SMC algorithms are popular in the statistical
literature, there are hardly any applications to the estimation
of DSGE models. We provide a detailed discussion of how
to tune these algorithms for DSGE model applications and
examine their accuracy. The performance of MH and SMC



algorithms is compared in three empirical applications.
The last part of the book focuses on computations for

DSGE models solved with nonlinear techniques. The main
difference is that the likelihood function can no longer be
evaluated with the Kalman filter. Instead, the likelihood eval-
uation requires a nonlinear filter and we will focus on se-
quential Monte Carlo filters (also called particle filters). To
avoid any disappointments, we hasten to point out that we
do not estimate any nonlinear DSGE models in this book. In-
stead, we apply the particle filters to linear Gaussian DSGE
models for which the Kalman filter delivers the exact likeli-
hood function. This allows us to assess the accuracy of par-
ticle filter approximations. In doing so, we begin with likeli-
hood evaluations conditional on a fixed parameter vector and
subsequently embed the particle filter approximations of the
likelihood function into MH and SMC algorithms to conduct
posterior inference for DSGE model parameters.

In writing this book we greatly benefited (directly and in-
directly) from interactions with colleagues and graduate stu-
dents. We owe thanks to all of them but would like to mention
a few names specifically: the series editor Herman van Dĳk
and two anonymous reviewers; our colleagues Frank Diebold,
Jesus Fernandez-Villaverde, and Elmar Mertens; current Penn
students Ross Askanazi, Jacob Warren, and the Spring 2015
Econ 722 class, who carefully combed through an earlier
version of the manuscript; former Penn students Luigi Bo-
cola, Mark Bognanni, Minchul Shin, and Dongho Song; and
our collaborators on other DSGE-related projects Boragan
Aruoba and Marco Del Negro. Schorfheide gratefully acknowl-
edges financial support from the National Science Founda-
tion. Finally, a big thanks to our wives, Sarah and Perlita, for
their continued support of this project despite all the tolls it
took on weeknights and weekends.

Edward Herbst, Washington DC 2015
Email: ed.herbst@gmail.com
Web: edherbst.net

Frank Schorfheide, Philadelphia 2015
Email: schorf@ssc.upenn.edu
Web: sites.sas.upenn.edu/schorf

mailto:ed.herbst@gmail.com
http://www.edherbst.net
mailto:schorf@ssc.upenn.edu
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Part I

Introduction to DSGE Modeling and

Bayesian Inference



Chapter 1

DSGE Modeling

Estimated dynamic stochastic general equilibrium (DSGE)
models are now widely used by academics to conduct em-
pirical research macroeconomics as well as by central banks
to interpret the current state of the economy, to analyze the
impact of changes in monetary or fiscal policy, and to gener-
ate predictions for key macroeconomic aggregates. The term
DSGE model encompasses a broad class of macroeconomic
models that span the real business cycle models of Kydland
and Prescott (1982) and King, Plosser, and Rebelo (1988) as
well as the New Keynesian models of Rotemberg and Wood-
ford (1997) or Christiano, Eichenbaum, and Evans (2005),
which feature nominal price and wage rigidities and a role for
central banks to adjust interest rates in response to inflation
and output fluctuations. A common feature of these models
is that decision rules of economic agents are derived from
assumptions about preferences and technologies by solving
intertemporal optimization problems. Moreover, agents po-
tentially face uncertainty with respect to aggregate variables
such as total factor productivity or nominal interest rates set
by a central bank. This uncertainty is generated by exogenous
stochastic processes that may shift technology or generate
unanticipated deviations from a central bank’s interest-rate
feedback rule.

The focus of this book is the Bayesian estimation of DSGE
models. Conditional on distributional assumptions for the ex-
ogenous shocks, the DSGE model generates a likelihood func-
tion, that is, a joint probability distribution for the endoge-
nous model variables such as output, consumption, invest-
ment, and inflation that depends on the structural parame-
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ters of the model. These structural parameters characterize
agents’ preferences, production technologies, and the law of
motion of the exogenous shocks. In a Bayesian framework,
this likelihood function can be used to transform a prior dis-
tribution for the structural parameters of the DSGE model
into a posterior distribution. This posterior is the basis for
substantive inference and decision making. Unfortunately, it
is not feasible to characterize moments and quantiles of the
posterior distribution analytically. Instead, we have to use
computational techniques to generate draws from the poste-
rior and then approximate posterior expectations by Monte
Carlo averages.

In Section 1.1 we will present a small-scale New Keyne-
sian DSGE model and describe the decision problems of firms
and households and the behavior of the monetary and fiscal
authorities. We then characterize the resulting equilibrium
conditions. This model is subsequently used in many of the
numerical illustrations. Section 1.2 briefly sketches two other
DSGE models that will be estimated in subsequent chapters.

1.1 A Small-Scale New Keynesian DSGE Model

We begin with a small-scale New Keynesian DSGE model that
has been widely studied in the literature (see Woodford (2003)
or Gali (2008) for textbook treatments). The particular spec-
ification presented below is based on An and Schorfheide
(2007). The model economy consists of final goods produc-
ing firms, intermediate goods producing firms, households,
a central bank, and a fiscal authority. We will first describe
the decision problems of these agents, then describe the law
of motion of the exogenous processes, and finally summarize
the equilibrium conditions. The likelihood function for a lin-
earized version of this model can be quickly evaluated, which
makes the model an excellent showcase for the computational
algorithms studied in this book.

1.1.1 Firms

Production takes place in two stages. There are monopolis-
tically competitive intermediate goods producing firms and

7 16:08:35 UTC
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perfectly competitive final goods producing firms that aggre-
gate the intermediate goods into a single good that is used
for household and government consumption. This two-stage
production process makes it fairly straightforward to intro-
duce price stickiness, which in turn creates a real effect of
monetary policy.

The perfectly competitive final good producing firms com-
bine a continuum of intermediate goods indexed by j ∈ [0, 1]
using the technology

Yt =

(∫ 1

0

Yt(j)
1−νdj

) 1
1−ν

. (1.1)

The final good producers take input prices Pt(j) and output
prices Pt as given. The revenue from the sale of the final
good is PtYt and the input costs incurred to produce Yt are∫ 1

0
Pt(j)Yt(j)dj. Maximization of profits

Πt = Pt

(∫ 1

0

Yt(j)
1−νdj

) 1
1−ν

−
∫ 1

0

Pt(j)Yt(j)dj, (1.2)

with respect to the inputs Yt(j) implies that the demand for
intermediate good j is given by

Yt(j) =

(
Pt(j)

Pt

)−1/ν

Yt. (1.3)

Thus, the parameter 1/ν represents the elasticity of demand
for each intermediate good. In the absence of an entry cost,
final good producers will enter the market until profits are
equal to zero. From the zero-profit condition, it is possible
to derive the following relationship between the intermediate
goods prices and the price of the final good:

Pt =

(∫ 1

0

Pt(j)
ν−1
ν dj

) ν
ν−1

. (1.4)

Intermediate good j is produced by a monopolist who has
access to the following linear production technology:

Yt(j) = AtNt(j), (1.5)

7 16:08:35 UTC
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where At is an exogenous productivity process that is com-
mon to all firms and Nt(j) is the labor input of firm j. To
keep the model simple, we abstract from capital as a factor or
production for now. Labor is hired in a perfectly competitive
factor market at the real wage Wt.

In order to introduce nominal price stickiness, we assume
that firms face quadratic price adjustment costs

ACt(j) =
φ

2

(
Pt(j)

Pt−1(j)
− π

)2

Yt(j), (1.6)

where φ governs the price rigidity in the economy and π is the
steady state inflation rate associated with the final good. Un-
der this adjustment cost specification it is costless to change
prices at the rate π. If the price change deviates from π, the
firm incurs a cost in terms of lost output that is a quadratic
function of the discrepancy between the price change and π.
The larger the adjustment cost parameter φ, the more reluc-
tant the intermediate goods producers are to change their
prices and the more rigid the prices are at the aggregate level.
Firm j chooses its labor input Nt(j) and the price Pt(j) to
maximize the present value of future profits

Et
[ ∞∑
s=0

βsQt+s|t

(
Pt+s(j)

Pt+s
Yt+s(j) (1.7)

−Wt+sNt+s(j)−ACt+s(j)
)]
.

Here, Qt+s|t is the time t value of a unit of the consumption
good in period t + s to the household, which is treated as
exogenous by the firm.

1.1.2 Households

The representative household derives utility from consump-
tion Ct relative to a habit stock (which is approximated by
the level of technology At)1 and real money balances Mt/Pt.

1This assumption ensures that the economy evolves along a balanced
growth path even if the utility function is additively separable in consump-
tion, real money balances, and leisure.

7 16:08:35 UTC
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The household derives disutility from hours worked Ht and
maximizes

Et
[ ∞∑
s=0

βs
(

(Ct+s/At+s)
1−τ − 1

1− τ (1.8)

+χM ln

(
Mt+s

Pt+s

)
− χHHt+s

)]
,

where β is the discount factor, 1/τ is the intertemporal elas-
ticity of substitution, and χM and χH are scale factors that
determine steady state money balances and hours worked.
We will set χH = 1. The household supplies perfectly elastic
labor services to the firms, taking the real wage Wt as given.
The household has access to a domestic bond market where
nominal government bonds Bt are traded that pay (gross)
interest Rt. Furthermore, it receives aggregate residual real
profits Dt from the firms and has to pay lump-sum taxes Tt.
Thus, the household’s budget constraint is of the form

PtCt +Bt +Mt + Tt (1.9)
= PtWtHt +Rt−1Bt−1 +Mt−1 + PtDt + PtSCt,

where SCt is the net cash inflow from trading a full set of
state-contingent securities.

1.1.3 Monetary and Fiscal Policy

Monetary policy is described by an interest rate feedback rule
of the form

Rt = R∗ 1−ρR
t RρRt−1e

εR,t , (1.10)

where εR,t is a monetary policy shock and R∗t is the (nominal)
target rate:

R∗t = rπ∗
( πt
π∗

)ψ1
(
Yt
Y ∗t

)ψ2

. (1.11)

Here r is the steady state real interest rate (defined below),
πt is the gross inflation rate defined as πt = Pt/Pt−1, and π∗

is the target inflation rate. Y ∗t in (1.11) is the level of output
that would prevail in the absence of nominal rigidities.

We assume that the fiscal authority consumes a fraction ζt
of aggregate output Yt, that is Gt = ζtYt, and that ζt ∈ [0, 1]

7 16:08:35 UTC
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follows an exogenous process specified below. The govern-
ment levies a lump-sum tax Tt (subsidy) to finance any short-
falls in government revenues (or to rebate any surplus). The
government’s budget constraint is given by

PtGt +Rt−1Bt−1 +Mt−1 = Tt +Bt +Mt. (1.12)

1.1.4 Exogenous Processes

The model economy is perturbed by three exogenous pro-
cesses. Aggregate productivity evolves according to

lnAt = ln γ+lnAt−1 +ln zt, ln zt = ρz ln zt−1 + εz,t. (1.13)

Thus, on average technology grows at the rate γ and zt cap-
tures exogenous fluctuations of the technology growth rate.
Define gt = 1/(1− ζt), where ζt was previously defined as the
fraction of aggregate output purchased by the government.
We assume that

ln gt = (1− ρg) ln g + ρg ln gt−1 + εg,t. (1.14)

Finally, the monetary policy shock εR,t is assumed to be se-
rially uncorrelated. The three innovations are independent of
each other at all leads and lags and are normally distributed
with means zero and standard deviations σz, σg, and σR, re-
spectively.

1.1.5 Equilibrium Relationships

We consider the symmetric equilibrium in which all interme-
diate goods producing firms make identical choices so that
the j subscript can be omitted. The market clearing condi-
tions are given by

Yt = Ct +Gt +ACt and Ht = Nt. (1.15)

Because the households have access to a full set of state-
contingent claims, it turns out that Qt+s|t in (1.7) is

Qt+s|t = (Ct+s/Ct)
−τ (At/At+s)

1−τ . (1.16)

7 16:08:35 UTC
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Thus, in equilibrium households and firms are using the
same stochastic discount factor. Moreover, it can be shown
that output, consumption, interest rates, and inflation have
to satisfy the following optimality conditions:

1 = βEt

[(
Ct+1/At+1

Ct/At

)−τ
At
At+1

Rt
πt+1

]
(1.17)

1 = φ(πt − π)

[(
1− 1

2ν

)
πt +

π

2ν

]
(1.18)

−φβEt
[(

Ct+1/At+1

Ct/At

)−τ
Yt+1/At+1

Yt/At
(πt+1 − π)πt+1

]

+
1

ν

[
1−

(
Ct
At

)τ]
.

Equation (1.17) is the consumption Euler equation which re-
flects the first-order condition with respect to the govern-
ment bonds Bt. In equilibrium, the household equates the
marginal utility of consuming a dollar today with the dis-
counted marginal utility from investing the dollar, earning
interest Rt, and consuming it in the next period. Equation
(1.18) characterizes the profit maximizing choice of the in-
termediate goods producing firms. The first-order condition
for the firms’ problem depends on the wage Wt. We used the
households’ labor supply condition to replace Wt by a func-
tion of the marginal utility of consumption. In the absence of
nominal rigidities (φ = 0) aggregate output is given by

Y ∗t = (1− ν)1/τAtgt, (1.19)

which is the target level of output that appears in the mone-
tary policy rule (1.11).

In Section 2.1 of Chapter 2 we will use a solution tech-
nique for the DSGE model that is based on a Taylor series
approximation of the equilibrium conditions. A natural point
around which to construct this approximation is the steady
state of the DSGE model. The steady state is attained by set-
ting the innovations εR,t, εg,t, and εz,t to zero at all times.
Because technology lnAt evolves according to a random walk
with drift ln γ, consumption and output need to be detrended

7 16:08:35 UTC
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for a steady state to exist. Let ct = Ct/At and yt = Yt/At, and
y∗t = Y ∗t /At. Then the steady state is given by

π = π∗, r =
γ

β
, R = rπ∗, (1.20)

c = (1− ν)1/τ , y = gc = y∗.

Steady state inflation equals the targeted inflation rate π∗;
the real rate depends on the growth rate of the economy γ
and the reciprocal of the households’ discount factor β; and
finally steady state output can be determined from the aggre-
gate resource constraint. The nominal interest rate is deter-
mined by the Fisher equation; the dependence of the steady
state consumption on ν reflects the distortion generated by
the monopolistic competition among intermediate goods pro-
ducers. We are now in a position to rewrite the equilibrium
conditions by expressing each variable in terms of percentage
deviations from its steady state value. Let x̂t = ln(xt/x) and
write

1 = βEt
[
e−τĉt+1+τĉt+R̂t−ẑt+1−π̂t+1

]
(1.21)

0 =
(
eπ̂t − 1

) [(
1− 1

2ν

)
eπ̂t +

1

2ν

]
(1.22)

−βEt
[(
eπ̂t+1 − 1

)
e−τĉt+1+τĉt+ŷt+1−ŷt+π̂t+1

]
+

1− ν
νφπ2

(
1− eτĉt

)
eĉt−ŷt = e−ĝt − φπ2g

2

(
eπ̂t − 1

)2
(1.23)

R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t (1.24)
+(1− ρR)ψ2 (ŷt − ĝt) + εR,t

ĝt = ρg ĝt−1 + εg,t (1.25)
ẑt = ρz ẑt−1 + εz,t. (1.26)

The equilibrium law of motion of consumption, output, inter-
est rates, and inflation has to satisfy the expectational differ-
ence equations (1.21) to (1.26).
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1.2 Other DSGE Models Considered in This Book

In addition to the small-scale New Keynesian DSGE model, we
consider two other models: the widely used Smets-Wouters
(SW) model, which is a more elaborate version of the small-
scale DSGE model that includes capital accumulation as well
as wage rigidities, and a real business cycle model with a de-
tailed characterization of fiscal policy. We will present a brief
overview of these models below and provide further details as
needed in Chapter 6.

1.2.1 The Smets-Wouters Model

The Smets and Wouters (2007) model is a more elaborate
version of the small-scale DSGE model presented in the pre-
vious section. In the SW model capital is a factor of intermedi-
ate goods production, and in addition to price stickiness the
model features nominal wage stickiness. In order to generate
a richer autocorrelation structure, the model also includes
investment adjustment costs, habit formation in consump-
tion, and partial dynamic indexation of prices and wages to
lagged values. The model is based on work by Christiano,
Eichenbaum, and Evans (2005), who added various forms of
frictions to a basic New Keynesian DSGE model in order to
capture the dynamic response to a monetary policy shock as
measured by a structural vector autoregression (VAR). In turn
(the publication dates are misleading), Smets and Wouters
(2003) augmented the Christiano-Eichenbaum-Evans model
by additional exogenous structural shocks (among them price
markup shocks, wage markup shocks, preference shocks,
and others) to be able to capture the joint dynamics of Euro
Area output, consumption, investment, hours, wages, infla-
tion, and interest rates.

The Smets and Wouters (2003) paper has been highly influ-
ential, not just in academic circles but also in central banks
because it demonstrated that a modern DSGE model that is
usable for monetary policy analysis can achieve a time series
fit that is comparable to a less restrictive vector autoregres-
sion (VAR). The 2007 version of the SW model contains a
number of minor modifications of the 2003 model in order
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to optimize its fit on U.S. data. We will use the 2007 model
exactly as it is presented in Smets and Wouters (2007) and
refer the reader to that article for details. The log-linearized
equilibrium conditions are reproduced in Appendix A.1. By
now, the SW model has become one of the workhorse models
in the DSGE model literature and in central banks around
the world. It forms the core of most large-scale DSGE models
that augment the SW model with additional features such as
a multi-sector production structure or financial frictions. Be-
cause of its widespread use, we will consider its estimation in
this book.

1.2.2 A DSGE Model for the Analysis of Fiscal Policy

In the small-scale New Keynesian DSGE model and in the
SW model, fiscal policy is passive and non-distortionary. The
level of government spending as a fraction of GDP is assumed
to evolve exogenously and an implicit money demand equa-
tion determines the amount of seignorage generated by the
interest rate feedback rule. Fiscal policy is passive in the
sense that the government raises lump-sum taxes (or dis-
tributes lump-sum transfers) to ensure that its budget con-
straint is satisfied in every period. These lump-sum taxes are
non-distortionary, because they do not affect the decisions of
households and firms. The exact magnitude of the lump-sum
taxes and the level of government debt are not uniquely de-
termined, but they also do not matter for macroeconomic out-
comes. Both the small-scale DSGE model and the SW model
were explicitly designed for the analysis of monetary policy
and abstract from a realistic representation of fiscal policy.

In order to provide a careful and realistic assessment of
the effects of exogenous changes in government spending and
tax rates, a more detailed representation of the fiscal sector
is necessary. An example of such a model is the one studied
by Leeper, Plante, and Traum (2010). While the authors ab-
stract from monetary policy, they allow for capital, labor, and
consumption tax rates that react to the state of the economy,
in particular the level of output and debt, and are subject to
exogenous shocks, which reflect unanticipated changes in fis-
cal policy. In addition to consumption, investment, and hours
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worked, the model is also estimated based on data on tax rev-
enues, government spending, and government debt to iden-
tify the parameters of the fiscal policy rules. The estimated
model can be used to assess the effect of counterfactual fiscal
policies.

We selected the fiscal policy model because during and af-
ter the 2007–09 recession, the DSGE model-based analysis of
government spending and tax changes has received consid-
erable attention and because the model gives rise to compli-
cated, multi-modal posterior distributions which require so-
phisticated posterior samplers – such as the ones discussed
in this book – to implement the Bayesian estimation. For a de-
tailed model description we refer the reader to Leeper, Plante,
and Traum (2010). The log-linearized equilibrium conditions
are reproduced in Appendix A.2.
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Chapter 2

Turning a DSGE Model into a

Bayesian Model

Formally, a Bayesian model consists of a joint distribution of
data Y and parameters θ. In the context of a DSGE model
application Y might comprise time series for GDP growth,
inflation, and interest rates, and θ stacks the structural pa-
rameters that, for instance, appeared in the description of
the small-scale DSGE model in Section 1.1 of Chapter 1.
Throughout this book we will represent distributions by den-
sities and denote the joint distribution by p(Y, θ). The joint
distribution can be factored into a distribution of the data
given the parameters, p(Y |θ), and a prior distribution p(θ).
The density p(Y |θ) as function of θ is called likelihood func-
tion. In a Bayesian framework the likelihood function is used
to update a priori beliefs about the parameter vector θ, rep-
resented by the prior p(θ), in view of the sample information
Y . After the updating, the state of knowledge about the pa-
rameter vector θ is summarized by the posterior distribution
p(θ|Y ) and Bayes Theorem provides the formal link between
prior distribution, likelihood function, and posterior distribu-
tion.

In order to turn the DSGE models of Chapter 1 into Bayes-
ian models, we need to specify a probability distribution for
the innovations of the exogenous shock processes, solve for
the equilibrium law of motion of the endogenous variables
conditional on the DSGE model parameter vector θ, develop
an algorithm that evaluates the likelihood function p(Y |θ)
for a given set of data Y and parameter vector θ, and spec-
ify a prior distribution for the DSGE model parameters. We
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will subsequently illustrate these steps in the context of the
small-scale New Keynesian DSGE model that was introduced
in Section 1.1.

There exist a wide variety of numerical techniques to solve
DSGE models (approximately). Throughout this book we will
focus on a technique that involves the log-linearization of the
equilibrium conditions and the solution of the resulting lin-
ear rational expectations difference equations. This method is
described in Section 2.1. The approximate solution takes the
form of a vector autoregressive process for the model vari-
ables, which is driven by the innovations to the exogenous
shock processes, and is used as a set of state-transition equa-
tions in the state-space representation of the DSGE model.
The state-transition equations are augmented by a set of mea-
surement equations that express observed macroeconomic
and financial time series used to estimate the DSGE model
as function of the (potentially unobserved) state variables. To
complete the specification of the empirical model, we make
a distributional assumption for the exogenous shock innova-
tions. Under the assumption that these innovations are nor-
mally distributed, the log-linearized DSGE model takes the
form of a linear Gaussian state-space model with system ma-
trices that are highly nonlinear functions of the structural
parameter vector θ.

The state-space representation of the DSGE model and the
evaluation of the likelihood function are described in Sec-
tion 2.2. The evaluation of the likelihood function associated
with the state-space representation of the DSGE model re-
quires a filter that integrates out the hidden state variables
of the DSGE model. We first present a general characteriza-
tion of the filtering algorithm. If the DSGE model is solved by
a linear approximation technique and the innovations to the
exogenous shock processes are assumed to be Gaussian, as is
the case for the DSGE models considered in this book, then
the filtering problem simplifies considerably and the likeli-
hood function can be evaluated with the Kalman filter. Thus,
we also provide a summary of the Kalman filter recursions.
Finally, we discuss the specification of prior distributions p(θ)
in Section 2.3.
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2.1 Solving a (Linearized) DSGE Model

Log-linearization and straightforward manipulation of Equa-
tions (1.21) to (1.23) yield the following representation for
the consumption Euler equation, the New Keynesian Phillips
curve, and the monetary policy rule:

ŷt = Et[ŷt+1]− 1

τ

(
R̂t − Et[π̂t+1]− Et[ẑt+1]

)
(2.1)

+ĝt − Et[ĝt+1]

π̂t = βEt[π̂t+1] + κ(ŷt − ĝt)
R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t + (1− ρR)ψ2 (ŷt − ĝt) + εR,t

where
κ = τ

1− ν
νπ2φ

. (2.2)

Iterating the consumption Euler equation forward implies
that output is a function of the sum of expected future real re-
turns on bonds. Provided prices are sticky, the central bank is
able to influence aggregate output by manipulating the real
rate indirectly through adjustments of the nominal interest
rate. The New Keynesian Phillips curve links inflation to real
activity. Iterating the New Keynesian Phillips curve forward
implies that inflation is a function of the expected discounted
sum of the future output gap ŷt − ĝt. Recall that we previ-
ously defined the (detrended) output in the absence of nom-
inal rigidities as y∗t = (1 − ν)1/τAtgt or ŷ∗t = ĝt in log-linear
terms. If we call ŷ∗t potential output, then ŷt − ĝt = ŷt − ŷ∗t
can be interpreted as an output gap.

Equations (2.1) combined with the law of motion of the
exogenous shocks in (1.25) and (1.26) form a linear rational
expectations system that determines the evolution of

xt = [ŷt, π̂t, R̂t, εR,t, ĝt, ẑt]
′.

In order to solve for the law of motion of xt it is convenient to
augment xt by the expectations Et[ŷt+1] and Et[π̂t+1], defin-
ing the n× 1 vector

st =
[
x′t,Et[ŷt+1],Et[π̂t+1]

]′
. (2.3)
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We are now in a position to cast the log-linearized DSGE
model in the canonical linear rational expectations form that
underlies the solution method proposed by Sims (2002):1

Γ0st = Γ1st−1 + Ψεt + Πηt, (2.4)

where εt = [εz,t, εg,t, εR,t]
′. The vector ηt captures one-step-

ahead rational expectations forecast errors. To write the equi-
librium conditions of the small-scale New Keynesian model in
the form of (2.4), we begin by replacing Et[ĝt+1] and Et[ẑt+1] in
the first equation of (2.1) with ρg ĝt and ρz ẑt, respectively. We
then introduce expectational errors for inflation and output.
Let

ηy,t = yt − Et−1[ŷt], ηπ,t = πt − Et−1[π̂t], (2.5)

and define ηt = [ηy,t, ηπ,t]. Using these definitions, the set of
equations (2.1), (1.25), (1.26), and (2.5) can be written as (2.4).
The system matrices Γ0, Γ1, Ψ, and Π are functions of the
DSGE model parameters θ.

For the linearized equilibrium conditions (2.1) to char-
acterize a solution to the underlying dynamic programming
problems of the households and firms in the DSGE model, a
set of transversality conditions needs to be satisfied. It turns
out that these conditions are satisfied if the law of motion
is non-explosive. This stability requirement restricts the set
of solutions to (2.4). Depending on the system matrices Γ0,
Γ1, Ψ, and Π the system may have no non-explosive solution
(non-existence), exactly one stable solution (uniqueness), or
many stable solutions (indeterminacy). Sims (2002) provides
a general method to construct stable solutions for the canon-
ical system (2.4). The system can be transformed through
a generalized complex Schur decomposition (QZ) of Γ0 and
Γ1. There exist n × n matrices Q, Z, Λ, and Ω, such that
Q′ΛZ ′ = Γ0, Q′ΩZ ′ = Γ1, QQ′ = ZZ ′ = I, and Λ and Ω are
upper-triangular. Let wt = Z ′st and pre-multiply (2.4) by Q

1There exist many alternative solution methods for linear rational expecta-
tions systems, e.g., Blanchard and Kahn (1980), Binder and Pesaran (1997),
Anderson (2000), Klein (2000), Christiano (2002), and King and Watson
(1998). Each of these solution methods is associated with its own canoni-
cal form of the rational expectations system.
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to obtain:[
Λ11 Λ12

0 Λ22

] [
w1,t

w2,t

]
(2.6)

=

[
Ω11 Ω12

0 Ω22

] [
w1,t−1

w2,t−1

]
+

[
Q1

Q2

]
(Ψεt + Πηt).

The second set of equations can be rewritten as:

w2,t = Λ−1
22 Ω22w2,t−1 + Λ−1

22 Q2(Ψεt + Πηt). (2.7)

Without loss of generality, we assume that the system is or-
dered and partitioned such that them×1 vector w2,t is purely
explosive, where 0 ≤ m ≤ n.

A non-explosive solution of the LRE model (2.4) for st exists
if w2,0 = 0 and for every l× 1 vector of structural shock inno-
vations εt, one can find a k× 1 vector of rational expectations
errors ηt that offsets the impact of εt on w2,t:

Q2Ψ︸︷︷︸
m×l

εt︸︷︷︸
l×1

+Q2Π︸︷︷︸
m×k

ηt︸︷︷︸
k×1

= 0︸︷︷︸
m×1

. (2.8)

Ifm = k and the matrixQ2Π is invertible, then the unique set
of expectational errors that ensure the stability of the system
is given by

ηt = −
(
Q2Π

)−1
Q2Ψεt.

In general, it is not guaranteed that the vector ηt need is
uniquely determined by εt. An example of non-uniqueness (or
indeterminacy) is the case in which the number of expecta-
tion errors k exceeds the number of explosive components m
and (2.8) does not provide enough restrictions to uniquely de-
termine the elements of ηt. In this case it is possible to intro-
duce expectation errors (martingale difference sequences) ζt
that are unrelated to the fundamental uncertainty εt without
destabilizing the system. Using a singular value decomposi-
tion of Q2Π of the form:

Q2Π = U1︸︷︷︸
m×r

D11︸︷︷︸
r×r

V ′1︸︷︷︸
r×k

,

we can express

ηt = (−V1D
−1
11 U

′
1Q2Ψ + V2M1)εt + V2M2ζt, (2.9)
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where V2 is a matrix composed of orthonormal columns that
are orthogonal to V1 (this matrix is a by-product of the singu-
lar value decomposition of Q2Π), M1 is an arbitrary (k−r)× l
matrix, and M2 is an arbitrary (k− r)× p matrix. The matri-
ces M1 and M2 and the vector of so-called sunspot shocks ζt
capture the potential multiplicity of non-explosive solutions
(indeterminacy) of (2.8). A derivation of (2.9) is provided in
Lubik and Schorfheide (2003).

The overall set of non-explosive solutions (if it is non-
empty) to the linear rational expectations system (2.4) can
be obtained from st = Zwt, (2.7), and (2.9). If the system has
a unique stable solution, then it can be written as a VAR in
st:

st = Φ1(θ)st−1 + Φε(θ)εt. (2.10)

Here the coefficient matrices Φ1(θ) and Φε(θ) are functions
of the structural parameters of the DSGE model. The vector
autoregressive representation in (2.10) forms the basis for our
empirical model.

2.2 The Likelihood Function

In order to construct a likelihood function, we have to re-
late the model variables st in (2.3) to a set of observables yt.
Thus, the specification of the empirical model is completed
by a set of measurement equations. For the small-scale New
Keynesian DSGE model we assume that the time period t in
the model corresponds to one quarter and that the following
observations are available for estimation: quarter-to-quarter
per capita GDP growth rates (YGR), annualized quarter-to-
quarter inflation rates (INFL), and annualized nominal inter-
est rates (INT). The three series are measured in percentages
and their relationship to the model variables is given by the
following set of equations:

Y GRt = γ(Q) + 100(ŷt − ŷt−1 + ẑt) (2.11)
INFLt = π(A) + 400π̂t

INTt = π(A) + r(A) + 4γ(Q) + 400R̂t.
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The parameters γ(Q), π(A), and r(A) are related to the steady
states of the model economy as follows:

γ = 1 +
γ(Q)

100
, β =

1

1 + r(A)/400
, π = 1 +

π(A)

400
.

The structural parameters are collected in the vector θ. Since
in the first-order approximation the parameters ν and φ are
not separately identifiable, we express the model in terms of
κ, defined in (2.2). Let

θ = [τ, κ, ψ1, ψ2, ρR, ρg, ρz, (2.12)

r(A), π(A), γ(Q), σR, σg, σz]
′.

More generically, the measurement equation (2.11) can be
expressed as

yt = Ψ0(θ) + Ψ1(θ)t+ Ψ2(θ)st + ut, (2.13)

where we allow for a vector of measurement errors ut.2

Equations (2.10) and (2.13) provide a state-space repre-
sentation for the linearized DSGE model. The challenge in
evaluating the likelihood function is that the states st are (at
least partially) unobserved. Let Xt1:t2 = {xt1 , xt1+1, . . . , xt2}.
The state-space representation provides a joint density for the
observations and latent states given the parameters:

p(Y1:T , S1:T |θ) =
T∏
t=1

p(yt, st|Y1:t−1, S1:t−1, θ) (2.14)

=

T∏
t=1

p(yt|st, θ)p(st|st−1, θ),

where p(yt|st, θ) and p(st|st−1, θ) represent the measurement
and state-transition equations, respectively. However, Bayes-
ian Inference has to be based on the likelihood function that

2The DSGE model solution method implies that certain linear combina-
tions of model variables, namely w2,t in (2.7), are equal to zero. If some
elements of w2,t only depend on variables that can be measured in the data,
this implication is most likely violated. To cope with this problem, one can
either limit the number of observables included in yt, as we do in the New
Keynesian model, or include so-called measurement errors as, for instance,
in Sargent (1989), Altug (1989), and Ireland (2004).
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is constructed only from the observables, p(Y1:T |θ), which
means that the hidden states S1:T have to be integrated out.
A filter generates the sequence of conditional distributions
st|Y1:t and densities p(yt|Y1:t−1, θ). In turn, the desired like-
lihood function can be obtained as:

p(Y1:T |θ) =

T∏
t=1

p(yt|Y1:t−1, θ). (2.15)

Algorithm 1 (Generic Filter)

Let p(s0|Y1:0, θ) = p(s0|θ). For t = 1 to T :

1. From iteration t− 1 we have p(st−1|Y1:t−1, θ).

2. Forecasting t given t− 1:

(a) Transition equation:

p(st|Y1:t−1, θ)

=

∫
p(st|st−1, Y1:t−1, θ)p(st−1|Y1:t−1, θ)dst−1

(b) Measurement equation:

p(yt|Y1:t−1, θ)

=

∫
p(yt|st, Y1:t−1, θ)p(st|Y1:t−1, θ)dst

3. Updating with Bayes Theorem. Once yt becomes avail-
able:

p(st|Y1:t, θ) = p(st|yt, Y1:t−1, θ)

=
p(yt|st, Y1:t−1, θ)p(st|Y1:t−1, θ)

p(yt|Y1:t−1, θ)
.

If the DSGE model is log-linearized and the errors are
Gaussian, then the distributions that appear in Algorithm 1
are Gaussian. In this case the Kalman filter can be used
to recursively compute the means and covariance matrices
of these distributions and thereby to evaluate the likelihood
function. Thus, to complete the model specification we make
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the following distributional assumptions about the distribu-
tion of the structural innovations εt, the measurement errors
ut, and the initial state s0:

εt ∼ iidN(0,Σε), ut ∼ iidN(0,Σu), (2.16)
s0 ∼ N

(
s̄0|0, P0|0

)
.

In stationary models it is common to assume that s̄0|0 and
P0|0 correspond to the invariant distribution associated with
the law of motion of st in (2.10). The four conditional distri-
butions in the description of Algorithm 1 for a linear Gaus-
sian state-space model are summarized in Table 2.1. De-
tailed derivations can be found in textbook treatments of the
Kalman filter, e.g., Hamilton (1994) or Durbin and Koopman
(2001).

2.3 Priors

Bayesian Inference combines the likelihood function with a
prior distribution to form a posterior distribution. Prior dis-
tributions are used to describe the state of knowledge about
the parameter vector θ before observing the sample Y . They
play an important role in the estimation of DSGE models be-
cause they allow researchers to incorporate information not
contained in the estimation sample into the empirical anal-
ysis. For concreteness, consider the small-scale New Keyne-
sian DSGE model with parameter vector θ defined in (2.12).
The specification of a joint probability distribution for a 13-
dimensional parameter vector may appear to be a daunting
task.

As a first step in the elicitation of a prior distribution, it
is useful to group the elements of θ into three different cate-
gories (see Del Negro and Schorfheide (2008)). The first group,
denoted by θ(ss), contains parameters that affect the steady
state of the DSGE model. In the small-scale New Keynesian
model θ(ss) = [r(A), π(A), γ(Q)]′. These three parameters de-
termine the steady state real interest rate, inflation rate, and
overall growth rate of the economy. The second group of pa-
rameters characterizes the law of motion of the exogenous
shock processes: θ(exo) = [ρg, ρz, σg, σz, σR]′. Finally, the last
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( ȳ t|t−

1
,F

t|
t−

1

)
ȳ
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group of parameters controls the endogenous propagation
mechanisms without affecting the steady state of the model:
θ(endo) = [τ, κ, ψ1, ψ2, ρR]′.

Once the parameters are grouped into the three categories,
one can contemplate a priori plausible ranges for these pa-
rameters. While priors could in principle be formed by pure
introspection, in reality most priors (as well as most model
specifications) are based on some empirical observations. To
indicate this dependence on non-sample (meaning other than
Y ) information, we could write p(θ|X 0) instead of p(θ), but for
notational convenience we omit the dependence on X 0. The
tacit assumption underlying posterior inference with a prior
that is constructed (at least in part) from non-sample infor-
mation is that p(Y |X 0, θ) ≈ p(Y |θ), that is, the two sources of
information are approximately independent conditional on θ.
This assumption is a reasonable approximation if the obser-
vations in X 0 pre-date the observations in Y or if Y consists
of macroeconomic time series and X 0 contains micro-level
data from an overlapping time period.

Priors for θ(ss) are often based on pre-sample averages. For
instance, if the estimation sample starts in 1983:I, the prior
distribution for r(A), π(A), and γ(Q) may be informed by data
from the 1970s. Priors for θ(endo) may be partly based on mi-
croeconometric evidence. For instance, in a version of the New
Keynesian model that replaces the quadratic price adjust-
ment costs with a Calvo mechanism (intermediate good pro-
ducers can re-optimize their prices with an exogenous proba-
bility 1−ζp and are unable to change their prices with proba-
bility ζp), the slope of the Phillips curve κ is related to the fre-
quency of price changes, which can be measured from micro-
level data. Rı́os-Rull, Schorfheide, Fuentes-Albero, Kryshko,
and Santaeulalia-Llopis (2012) provide a very detailed discus-
sion of the prior elicitation for a Frisch labor supply elasticity
(a parameter that is implicitly set to infinity in the small-scale
New Keynesian DSGE model).

Priors for θ(exo) are the most difficult to specify, because
the exogenous processes tend to be unobserved. Del Negro
and Schorfheide (2008) suggest to elicit priors for θ(exo) indi-
rectly. Conditional on θ(ss) and θ(endo), the exogenous shock
parameters determine the volatility and persistence of yt.
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Thus, beliefs—possibly informed by pre-sample observations—
about the volatility, autocorrelations, and cross-correlation of
output growth, inflation, and interest rates, could be mapped
into beliefs about the persistence and volatility of the exoge-
nous shocks. This could be achieved by an iterative procedure
in which (i) a prior for θexo is specified; (ii) draws are gener-
ated from this prior; (iii) data yt are simulated from the DSGE
model and sample moments are computed based on the sim-
ulated trajectories; (iv) the plausibility of the prior predictive
distribution of the sample moment is assessed and the prior
for θ is adjusted until the prior predictive distribution of the
sample moment is consistent with the prior beliefs.

After one has determined a plausible range for each of the
DSGE model parameters, one has to represent the a priori
beliefs by probability distributions. In most applications in
the DSGE model literature, researchers start by choosing a
family of probability distributions for each element of θ. Dis-
tributions are often chosen based on the domain of the pa-
rameters. For instance, prior distributions for parameters on
the real line could be Normal, priors for non-negative param-
eters could be log Normal, Gamma, or Inverse Gamma, and
priors for parameters on a bounded interval could follow a
truncated normal or a Beta distribution. The distributions
are typically parameterized such that the plausible range for
each parameter corresponds to a 90% or 95% credible inter-
val. A joint prior distribution for θ could then be obtained from
the product of marginal distributions, possibly truncated to
ensure the existence of a unique stable DSGE model solution
over the domain of the prior.

Generating prior distributions for a high-dimensional pa-
rameter vector as the product of marginal distributions could
have undesirable consequences. While each of the marginal
distributions may appear plausible in view of the non-sample
information X 0, the joint prior may place a lot of mass on
parameter combinations that imply implausible dynamics of
the DSGE model. For instance, in the SW model the capital-
output ratio and the consumption-output ratio are compli-
cated functions of the households’ discount factor, the capital
share parameter in a Cobb-Douglas production function, and
the capital depreciation rate. Seemingly plausible marginal
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distributions for these three parameters could generate an
implausible (i.e., inconsistent with pre-sample evidence) prior
distribution for the implied steady state ratios. This problem
can be partly circumvented by re-parameterizing the DSGE
model in terms of steady states rather than θ(ss).

In general, it is good practice to generate draws from the
prior distribution of θ; compute important transformations of
θ such as steady-state ratios and possibly impulse-response
functions or variance decompositions; and examine the im-
plied prior distributions for economically important nonlinear
transformations of θ. Moreover, as mentioned above, condi-
tional on the draws of θ from the prior, one should simulate
trajectories for yt from the DSGE model and calculate sample
moments of interest to understand the implications of the θ
prior. In an informal iterative procedure, the prior for θ could
be respecified until the implied prior for important param-
eter transformations and the sample moments of simulated
data have the desired features. To some extent, such an it-
erative procedure can be replaced by the approach proposed
in Del Negro and Schorfheide (2008), which represents be-
liefs about steady states and the dynamics of the endogenous
variables through artificial dummy observations.

Table 2.2 summarizes the prior distribution that we will
use for the estimation of the small-scale New Keynesian DSGE
model. Similar priors have been used elsewhere in the empir-
ical DSGE model literature. The priors for the steady state
parameters are based on averages of output growth, infla-
tion, and interest rates from a pre-1983:I sample. While pre-
sample averages determine the location of the prior distribu-
tion, e.g., its mean, some judgment is required in the spec-
ification of the standard deviations. The prior standard de-
viations partly reflect estimation uncertainty and partly data
uncertainty. For instance, estimates of average inflation and
real rates are sensitive to the choice of interest and inflation
rate series.

The prior credible interval for the risk-aversion parame-
ter τ covers logarithmic preferences and a risk-aversion of
up to τ = 3. It excludes the very large values that are of-
ten used in the asset-pricing literature because we are not
trying to match the equity premium with this model. We as-
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Table 2.2: Prior Distribution

Name Domain Prior
Density Para (1) Para (2)

Steady State Related Parameters θ(ss)

r(A) R+ Gamma 0.50 0.50
π(A) R+ Gamma 7.00 2.00
γ(Q) R Normal 0.40 0.20

Endogenous Propagation Parameters θ(endo)

τ R+ Gamma 2.00 0.50
κ [0, 1] Uniform 0.00 1.00
ψ1 R+ Gamma 1.50 0.25
ψ2 R+ Gamma 0.50 0.25
ρR [0, 1) Uniform 0.00 1.00

Exogenous Shock Parameters θ(exo)

ρG [0, 1) Uniform 0.00 1.00
ρZ [0, 1) Uniform 0.00 1.00
100σR R+ InvGamma 0.40 4.00
100σG R+ InvGamma 1.00 4.00
100σZ R+ InvGamma 0.50 4.00

Notes: Marginal prior distributions for each DSGE model parameter.
Para (1) and Para (2) list the means and the standard deviations
for Beta, Gamma, and Normal distributions; the upper and lower
bound of the support for the Uniform distribution; s and ν for the
Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs

2/2σ2

.
The joint prior distribution of θ is truncated at the boundary of the
determinacy region.

sume a uniform distribution for the slope coefficient κ of the
Phillips curve, which covers both very flat as well as very steep
Phillips curves. The priors for the parameters of the monetary
policy rule are loosely centered around values typically asso-
ciated with the Taylor rule. While many researchers use Beta
distributions centered around 0.8 or 0.9 for the autocorrela-
tion coefficients of the exogenous shocks, we are using uni-
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form distributions for the small-scale New Keynesian model.
Finally, the distributions for the innovation standard devia-
tions of the exogenous shock processes are chosen to obtain
realistic magnitudes for the volatilities of output growth, in-
flation, and interest rates. The low degree of freedom of the
inverse Gamma distributions creates fairly dispersed priors
for the σ-s. The joint prior distribution is the product of the
marginal densities. The domain of the prior is truncated to
ensure that the linearized rational expectations model has a
unique stable solution.
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Chapter 3

A Crash Course in Bayesian Inference

In a Bayesian setting the calculus of probability is used to
characterize and update an individual’s state of knowledge or
degree of beliefs with respect to quantities such as model pa-
rameters or future observations. The prior distribution p(θ)
discussed in the previous section is meant to describe the
initial state of knowledge about the model parameter vec-
tor θ—before observing the sample Y , e.g., data on output
growth, inflation, and nominal interest rates. The Bayesian
approach prescribes consistency among the beliefs held by
an individual and their reasonable relation to any kind of ob-
jective data. Learning about θ takes place by updating the
prior distribution in light of the data Y . The likelihood func-
tion p(Y |θ) summarizes the information about the parameter
contained in the sample Y . According to Bayes Theorem, the
conditional distribution of θ given Y is given by

p(θ|Y ) =
p(Y |θ)p(θ)
p(Y )

. (3.1)

This distribution is called posterior distribution. The term in
the denominator is called marginal likelihood. It is defined as

p(Y ) =

∫
p(Y |θ)p(θ)dθ (3.2)

and normalizes the posterior density such that it integrates
to one.

In a nutshell, Bayesian inference amounts to character-
izing properties of the posterior distribution p(θ|Y ). Unfor-
tunately, for many interesting models, including the DSGE
models considered in this book, it is not possible to evaluate
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the moments and quantiles of the posterior p(θ|Y ) analyt-
ically. In general, we are only able to numerically evaluate
the prior density p(θ) and the likelihood function p(Y |θ). In
order to compute posterior quantiles and moments of func-
tions h(θ) we have to rely on numerical techniques. Through-
out this book we will use posterior samplers that generate
sequences of draws θi, i = 1, . . . , N from p(θ|Y ). The algo-
rithms are designed such that they only require the evalua-
tion of prior density and likelihood function, which appear in
the numerator of (3.1), but not the marginal likelihood that
appears in the denominator. We will show that (Monte Carlo)
averages of these draws typically satisfy a strong law of large
numbers (SLLN) and often also a central limit theorem (CLT).
The SLLN provides a formal justification for using averages of
posterior draws to approximate posterior means and the CLT
gives a characterization of the accuracy of this approximation.

While this chapter is not meant to be a substitute for
a textbook treatment of Bayesian econometrics (see, for in-
stance, Koop (2003), Lancaster (2004), or Geweke (2005)), we
nonetheless try to provide a self-contained review of Bayes-
ian inference and decision making. We begin in Section 3.1
with a discussion of Bayesian inference for a simple autore-
gressive (AR) model, which takes the form of a Gaussian
linear regression. For this model, the posterior distribution
can be characterized analytically and closed-form expressions
for its moments are readily available. Draws from the poste-
rior distribution can be easily generated using a direct sam-
pling algorithm. Section 3.2 discusses how to turn poste-
rior distributions—or draws from posterior distributions—into
point estimates, interval estimates, forecasts, and how to
solve general decision problems. In Section 3.3 we modify
the parameterization of an AR(1) model to introduce some
identification problems. Lack of or weak identification of key
structural parameters is a common occurrence in the context
of DSGE models. In our AR(1) example the posterior distri-
bution of the parameter of interest becomes non-Gaussian,
and sampling from this posterior is now less straightforward.
We proceed by introducing two important posterior samplers.
In Chapters 4 and 5 we will employ variants of these sam-
plers to implement the Bayesian analysis of DSGE models.
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Section 3.4 focuses on importance sampling, whereas Sec-
tion 3.5 provides an introduction to the Metropolis-Hastings
algorithm.

3.1 The Posterior of a Linear Gaussian Model

We illustrate some of the mechanics of Bayesian inference in
the context of the following AR(p) model:

yt = θ1yt−1 +. . .+θpyt−p+ut, ut|Y1:t−1 ∼ iidN(0, 1), (3.3)

for t = 1, . . . , T . Let θ = [θ1, . . . , θp]
′. Conditional on the initial

observations y1−p:0 the likelihood function is of the form

p(Y1:T |Y1−p:0, θ) (3.4)

=
T∏
t=1

p(yt|Y1:t−1, Y1−p:0, θ)

= (2π)−T/2 exp

{
−1

2
(Y −Xθ)′(Y −Xθ)

}
,

where Y1:t = {y1, . . . , yt} and the T ×1 matrices Y and X are
composed of the elements yt and x′t = [yt−1, . . . , yt−p]. Let I
denote the identity matrix. Suppose the prior distribution is
of the form

θ ∼ N
(

0, τ2I
)

(3.5)

with density

p(θ) = (2πτ2)−p/2 exp

{
− 1

2τ2
θ′θ

}
. (3.6)

The hyperparameter τ controls the variance of the prior dis-
tribution and can be used to illustrate the effect of the prior
variance on the posterior distribution.

According to Bayes Theorem the posterior distribution of θ
is proportional (∝) to the product of prior density and likeli-
hood function

p(θ|Y ) ∝ p(θ)p(Y |θ). (3.7)

To simplify the notation we dropped Y1−p:0 from the condi-
tioning set and we replaced y1:t by the matrix Y . Absorbing
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terms that do not depend on θ into the proportionality con-
stant, the right-hand side of (3.7) can be written as

p(θ)p(Y |θ) ∝ exp

{
− 1

2
[Y ′Y − θ′X ′Y − Y ′Xθ (3.8)

−θ′X ′Xθ − τ−2θ′θ]

}
.

Straightforward algebraic manipulations let us express the
exponential term as

Y ′Y − θ′X ′Y − Y ′Xθ − θ′X ′Xθ − τ−2θ′θ (3.9)
=

(
θ − (X ′X + τ−2I)−1X ′Y

)′(
X ′X + τ−2I

)
×
(
θ − (X ′X + τ−2I)−1X ′Y

)
+Y ′Y − Y ′X(X ′X + τ−2I)−1X ′Y.

Note that the terms in the last line of (3.9) do not depend
on θ and after taking an exponential transformation can be
absorbed in the proportionality constant in (3.8). Because the
term in the second line of (3.9) is a quadratic function of θ,
we can deduce that the posterior distribution is Normal

θ|Y ∼ N (θ̄, V̄θ). (3.10)

The posterior mean and covariance matrix are given by

θ̄ = (X ′X + τ−2I)−1X ′Y, V̄θ = (X ′X + τ−2I)−1.

The posterior mean of θ can be expressed as a weighted
average of the maximum likelihood estimator (MLE), given by
θ̂mle = (X ′X)−1X ′Y , and the prior mean, which is equal to
zero:

θ̄ = (X ′X + τ−2I)−1
(
X ′Xθ̂mle + τ−2 · 0

)
. (3.11)

The weights depend on the information contents of the like-
lihood function, X ′X, and the prior precision τ−2. To better
understand the properties of the posterior distribution, we
can conduct two thought experiments. In the first thought
experiment we hold the data fixed and consider a change
in the prior distribution. A decrease in the prior variance
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τ shifts the posterior mean toward the prior mean and re-
duces the posterior variance. Vice versa, an increase in τ
makes the prior distribution more diffuse and shifts the pos-
terior mean toward the maximum of the likelihood function.
As τ −→ ∞, the posterior variance approaches the negative
inverse Hessian of the log-likelihood function evaluated at the
MLE, which is given by (X ′X)−1. In the second thought ex-
periment, we hold the prior distribution fixed and increase
the sample size. If |θ| < 1, then X ′X/T is convergent in prob-
ability as the sample size T −→ ∞. Suppose we divide the
terms in parentheses on the right-hand side of (3.11) by T ,
then we can deduce that the discrepancy between the poste-
rior mean and the MLE converges in probability to zero. Thus,
the influence of the prior distribution on the posterior mean
vanishes as the sample size increases.

In our derivation of the posterior distribution we have de-
liberately ignored all the normalization constants and only
focused on terms that depend on θ. This approach served us
well because based on the general shape of the posterior den-
sity we were able to determine that it belongs to the family
of Gaussian densities, for which the normalization constants
are well known. We can use this information to easily derive
the marginal data density p(Y ) that appears in the denomi-
nator of Bayes Theorem in (3.1). Write

p(Y ) =
p(Y |θ)p(θ)
p(θ|Y )

(3.12)

= exp

{
−1

2
[Y ′Y − Y ′X(X ′X + τ−2I)−1X ′Y ]

}
×(2π)−T/2|1 + τ2X ′X|−1/2.

The second expression on the right-hand side is obtained by
replacing p(Y |θ), p(θ), and p(θ|Y ) in the first line by (3.4),
(3.6), and the probability density function (pdf) of the Gaus-
sian posterior distribution in (3.10), respectively.

The exponential term in (3.12) measures the goodness-of-
fit, whereas |1+τ2X ′X| is a penalty for model complexity. If τ
is close to zero, our model has essentially no free parameters
because the tight prior distribution forces the posterior to be
close to zero as well. In this case the goodness-of-fit term
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tends to be small but the penalty for model complexity is
also small. If, on the other hand, τ is large, then the good-
ness-of-fit term is large, as it approximately equals (minus)
the sum of squared residuals from an OLS regression. The
penalty tends to be large as well. Thus, neither specifications
with a very concentrated prior or a very diffuse prior tend to
be associated with a high marginal data density.

Now suppose that τ is fixed and the sample size T tends to
infinity. In this case 1/τ2 is negligible and the goodness-of-fit
term corresponds to the sum-of-squared residuals associated
with the MLE estimator. Under the assumption that the au-
toregressive process is stationary and X ′X/T

a.s.−→ E[xtx
′
t],

we can approximate the log penalty term as −(1/2) ln |1 +
τ2X ′X| ≈ −(p/2) lnT − (1/2) ln |1/T + τ2E[xtx

′
t]|. The com-

bination of the log goodness-of-fit term with the dominat-
ing term of the penalty, −(p/2) lnT , delivers the Schwarz
(1978) model selection criterion, which penalizes models by
the number of estimated parameters. Thus, the marginal data
density incorporates a penalty for estimated model parame-
ters. Marginal data density plays an important role in the
computation of posterior model probabilities. A detailed dis-
cussion will be provided in the next section.

To economize on notation we often abbreviate posterior
distributions p(θ|Y ) by π(θ) and posterior expectations of a
function h(θ) by

Eπ[h] = Eπ[h(θ)] =

∫
h(θ)π(θ)dθ =

∫
h(θ)p(θ|Y )dθ. (3.13)

The remainder of this book focuses on comparing algorithms
that generate draws {θi}Ni=1 from posterior distributions of
parameters in DSGE models. These draws can then be trans-
formed into objects of interest, h(θi), and a Monte Carlo av-
erage of the form

h̄N =
1

N

N∑
i=1

h(θi) (3.14)

may be used to approximate the posterior expectation of Eπ[h].
For the approximation to be useful, it should satisfy a a SLLN
and a CLT. In the simple linear regression model with Gaus-
sian posterior given by (3.10) it is possible to sample directly
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from the posterior distribution and obtain independently and
identically distributed (iid) draws from π(·).
Algorithm 2 (Direct Sampling) For i = 1 to N , draw θi from
N
(
θ̄, V̄θ

)
.

Provided that Vπ[h(θ)] < ∞ we can deduce from Kol-
mogorov’s SLLN and the Lindeberg-Levy CLT that

h̄N
a.s.−→ Eπ[h]√

N
(
h̄N − Eπ[h]

)
=⇒ N

(
0,Vπ[h(θ)]

)
. (3.15)

Thus, the posterior variance of h(θ), scaled by 1/N , deter-
mines the accuracy of the Monte Carlo approximation. In the
context of DSGE models, direct iid sampling from the poste-
rior is generally infeasible and the variance of the Monte Carlo
approximation is (much) larger than Vπ[h(θ)]/N . Below, we
will use the ratio of the actual variance to the infeasible vari-
ance Vπ[h(θ)]/N as a measure of efficiency of an algorithm.

3.2 Bayesian Inference and Decision Making

The posterior distribution p(θ|Y ) summarizes the information
about θ after having observed the data Y and can be used for
inference and decision making. From a Bayesian perspective
it is optimal to make decisions that minimize the posterior
expected loss of the decision maker. It turns out that many
inferential problems, e.g., point or interval estimation, can be
restated as decision problems. Let L(h(θ), δ) denote the loss
function under which the decision δ is evaluated.1 We are
interested in deriving the decision rule δ∗(Y ) that minimizes
the posterior expected loss. In the remainder of this section
we provide a brief overview of a decision-theoretic approach
to Bayesian inference. A textbook treatment is provided by
Robert (1994).

The posterior expected loss associated with a decision rule
δ(Y ) is given by

ρ
(
δ(Y )|Y

)
=

∫
Θ

L
(
h(θ), δ(Y )

)
p(θ|Y )dθ. (3.16)

1Alternatively, the loss function could depend on future or counterfactual
values of yt, i.e., L(y∗, δ).
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Note that in this calculation the observations Y are fixed and
we are integrating over the unknown parameter θ under the
posterior distribution. A Bayes decision is a decision that min-
imizes the posterior expected loss:

δ∗(Y ) = argminδ∈D ρ
(
δ|Y
)
. (3.17)

Because all calculations are conditional on Y , we simply write
δ instead of δ(Y ) from now on. For some decision problems,
e.g., point estimation under a quadratic loss function (see
below), it is possible to solve for δ∗ analytically, expressing
the optimal decision as a function of moments or quantiles of
the posterior distribution of θ. A Monte Carlo approximation
can then be used to evaluate δ. For other decision problems it
might not be feasible to derive δ∗ analytically. In these cases
one can replace the posterior risk for each choice of δ by a
Monte Carlo approximation of the form

ρ̄N
(
δ|Y
)

=
1

N

N∑
i=1

L
(
h(θi), δ

)
, (3.18)

where the θi’s are draws from the posterior p(θ|Y ). If the
draws are generated by importance sampling, then the losses
have to be reweighted using the importance weights as in
(3.49) below. A numerical approximation to the Bayes deci-
sion δ∗(·) is then given by

δ∗N (Y ) = argminδ∈D ρ̄N
(
δ(·)|Y

)
. (3.19)

According to the frequentist large sample theory for extremum
estimators (see for instance the textbook treatment in van der
Vaart (1998)), δ∗N (Y )

a.s.−→ δ∗(Y ) provided that ρ̄N
(
δ|Y
)

con-
verges to ρ

(
δ|Y
)

uniformly in δ as N −→∞.

3.2.1 Point Estimation

Suppose that h(θ) is scalar. The most widely used loss func-
tions are the quadratic loss function L2

(
h(θ), δ) =

(
h(θ)−δ

)2
and the absolute error loss function L1

(
h(θ), δ

)
=
∣∣h(θ)− δ

∣∣.
The Bayes estimator associated with the quadratic loss func-
tion is the posterior mean Eπ[θ] which can be approximated
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by the Monte Carlo average

h̄N =
1

N

N∑
i=1

h(θi). (3.20)

The Bayes estimator associated with the absolute error loss
function is the posterior median, which can be approximated
by the sample median of the posterior draws h(θi).

3.2.2 Interval Estimation

Casting an interval estimation problem into a decision-theo-
retic framework requires a bit more work, because Bayesian
interval estimates have to satisfy a constraint on the posterior
coverage probability. Suppose that h(θ) is scalar. In this case
the interval estimate could correspond to a single connected
interval or a collection of disjoint intervals. In the former case,
it consists of a lower bound δl and an upper bound δu. Let
δ = [δl, δu]′ and consider the following two-player game be-
tween the econometrician and an adversary. The econometri-
cian chooses δ and the adversary chooses a scalar parameter
λ ∈ R−. The econometrician’s loss function is

LE(θ, δ, λ) (3.21)
= max

λ∈R−
(δu − δl) + λ

(
I{δl ≤ h(θ) ≤ δu} − (1− α)

)
and the adversary’s loss function is

LA(θ, δ, λ) = −λ
(
I{δl ≤ h(θ) ≤ δu} − (1− α)

)
, (3.22)

where I{x ≤ a} is the indicator function that equals one
if x ≥ a and equals zero otherwise. If δl ≤ θ ≤ δu then
the factor post-multiplying λ is positive for α > 0 and the
adversary minimizes his loss by setting λ = 0. Vice versa, if
h(θ) is outside of the interval [δl, δu], then the best choice for
the adversary is to set λ = −∞. The econometrician has an
incentive to choose a short interval that covers h(θ).

Now suppose neither player knows h(θ) and both players
minimize their posterior expected loss under the same distri-
bution p(h(θ)|Y ). Taking the optimal choice of the adversary

7 16:09:09 UTC



38 • Chapter 3

as given, the posterior risk of the econometrician is given by

ρ(δl(Y ), δu(Y )|Y ) (3.23)
= (δu − δl) + max

λ∈R−
λ
(
P(δl ≤ h(θ) ≤ δu|Y )− (1− α)

)
.

The interval [δl(Y ), δu(Y )] that minimizes the posterior risk
in (3.23) is the shortest connected interval with coverage prob-
ability 1−α. The shortest connected interval can be computed
based on equally weighted draws as follows: sort the draws
h(θi) in ascending order to obtain the sequence h(i); for i = 1
to bNαc minimize h(bN(1−α)c+i) − h(i) with respect to i.

To allow for disjoint credible intervals, the difference δu−δl
in the above loss function has to be replaced by the sum
of the lengths of the disjoint intervals. The credible interval
that minimizes the posterior risk under the loss function that
penalizes the total length of the disjoint segments has the
property that p(δl|Y ) = p(δu|Y ) = κ. It is called the highest-
posterior-density (HPD) set because the density of all values
of θ that are included in this set exceeds the threshold κ. The
HPD set is formally defined as CSHPD =

{
h |p(h|Y ) ≥ κ

}
.

The threshold κ is chosen to guarantee that the set has a 1−α
coverage probability. If the posterior density is multi-modal
then the HPD interval may consist of disjoint segments. If it
does, the combined length of the disjoint intervals is smaller
than the length of the shortest connected interval.

In practice researchers often replace the shortest connected
credible interval or the HPD interval by equal-tail-probability
sets that satisfy∫ δl

−∞
p(h|Y )dθ =

∫ ∞
δu

p(h|Y )dθ = α/2.

While these intervals tend to be longer than the other two
intervals, they are easier to compute because δl and δu are
simply the α/2 and 1− α/2 quantiles which can be obtained
by solving the simplified quantile regression problem

θ̂τ = argminq

[
(1− τ)

1

N

∑
h(θi)<q

(q − h(θi)) (3.24)

+τ
1

N

∑
h(θi)≥q

(h(θi)− q)
]
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for τ = α/2 and τ = 1 − α/2. The quantiles can also be
computed directly by sorting the posterior draws θi.

3.2.3 Forecasting

In forecasting applications the argument h(θ) of the loss func-
tion is replaced by a future observation yT+h: L(yT+h, δ).
Moreover, the expected loss is computed under the posterior
predictive distribution p(yT+h|Y1:T ). By setting p = 1 in (3.3)
we obtain the AR(1) model and can write

yT+h = θhyT +
h−1∑
s=0

θsuT+h−s, (3.25)

which implies that the h-step ahead conditional distribution
of yT+h is

yT+h|(Y1:T , θ) ∼ N
(
θhyT ,

1− θh
1− θ

)
. (3.26)

To simplify the subsequent notation, we dropped the initial
observations y0 from the conditioning set. The posterior pre-
dictive density of yT+h is obtained by integrating out θ using
the posterior distribution p(θ|Y ):

p(yT+h|Y1:T ) =

∫
p(yT+h|yT , θ)p(θ|Y1:T )dθ. (3.27)

Draws from the predictive distribution can be easily generated
with the following algorithm:

Algorithm 3 (Sampling from Predictive Distribution) For
each draw θi from the posterior distribution p(θ|Y1:T ) sample
a sequence of innovations uiT+1, . . . , u

i
T+h and compute yiT+h

as a function of θi, uiT+1, . . . , u
i
T+h, and Y1:T , e.g., according

to (3.25).

Moments and quantiles of the predictive distribution can
be approximated based on the draws yiT+h. The posterior ex-
pected loss is given by

ρ
(
δ|Y1:T

)
=

∫
yT+h

L(yT+h, δ)p(yT+h|Y1:T )dyT+h, (3.28)
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which can be approximated by the Monte Carlo average

ρ̄(δ|Y1:T ) =
1

N

N∑
i=1

L(yiT+h, δ) (3.29)

under suitable regularity conditions. The convergence of this
Monte Carlo average can be studied using the decomposition

ρ̄(δ|Y1:T )− ρ(δ|Y1:T ) (3.30)

=
1

N

N∑
i=1

L(yiT+h, δ)− E[L(yiT+h, δ)|θi, Y1:T ]

+
1

N

N∑
i=1

E[L(yiT+h, δ)|θi, Y1:T ]− ρ(δ|Y ).

The first term is a Monte Carlo average of a function of the
yiT+h draws conditional on the {θi}Ni=1 draws generated by
Algorithm 3 and the second term is a Monte Carlo average of
functions of θi. Point and interval predictions can be easily
obtained by following the steps in the preceding subsections.

3.2.4 Model Selection and Averaging

The Bayesian framework is well suited to account for model
uncertainty. In the context of the AR(p) model introduced in
Section 3.1, there is uncertainty about the number of lags p.
In the context of a DSGE model, a researcher might be un-
certain whether price stickiness, wage stickiness, informa-
tional frictions, or monetary frictions are quantitatively im-
portant for business cycle fluctuations and policy interven-
tions. To capture model uncertainty, a researcher can assign
prior probabilities γj,0 to models Mj , j = 1, . . . , J , which are
then updated in view of the data Y . The posterior model prob-
abilities are given by

γj,T =
γj,0p(Y |Mj)∑J
j=1 γj,0p(Y |Mj)

, (3.31)

where

p(Y |Mj) =

∫
p(Y |θ(j),Mj)p(θ(j)|Mj)dθ(j)
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is the marginal data density associated with model Mj . In the
context of the AR(p) model, a formula for the marginal data
density was given in (3.12). For models that cannot be cast in
the form of a linear Gaussian regression model, the evalua-
tion of the marginal data density often imposes computational
challenges. We will discussion numerical approximations of
p(Y |Mj) in more detail in subsequent chapters.

The log marginal data density can be interpreted as the
sum of one-step-ahead predictive scores. Adding time sub-
scripts, we can write

ln p(Y |Mj) (3.32)

=
T∑
t=1

ln

∫
p(yt|θ(j), Y1:t−1,Mj)p(θ(j)|Y1:t−1,Mj)dθ(j).

The summands on the right-hand side provide a decomposi-
tion of the one-step-ahead predictive densities, which high-
lights that the inference about θ(j) is based on time t − 1
information, when making the prediction for yt. The predic-
tive score is small, whenever the predictive density assigns
a low value to the observed yt. If the predictive distribution
is Gaussian, then the log score is a function of the mean-
squared prediction error.

It is beyond the scope of this book to provide a general dis-
cussion of the use of posterior model probabilities for model
comparison. An excellent survey is provided by Kass and
Raftery (1995). We simply highlight a few issues that are
important in DSGE model applications. Once the posterior
model probabilities have been obtained, they can be used for
model selection or averaging. Bayesian model selection typi-
cally refers to the solution of a decision problem in which the
loss associated with selecting the correct model is zero and
the loss associated with choosing an incorrect model is one. It
can be verified that the solution that minimizes the posterior
expected loss is to select the model with the highest poste-
rior probability. Bayesian model selection assumes that the
model space is complete, in the sense that one of the mod-
els included in the calculation of the posterior probabilities
is believed to be the correct one. If one among the J models
is randomly selected to generate a sequence of observations

7 16:09:09 UTC



42 • Chapter 3

Y1:T , then under fairly general conditions the posterior proba-
bility assigned to that model will converge to one as T −→∞.
An early version of this result for general linear regression
models was proved by Halpern (1974). The result has subse-
quently been extended to other model classes and to account
for misspecification of all models M1, . . . ,Mj . For instance,
Fernandez-Villaverde and Rubio-Ramirez (2004) show in the
context of DSGE models that if all models are misspecified,
the model that is closest in Kullback-Leibler distance to the
‘‘true’’ data generating process will asymptotically receive pos-
terior probability one.

Bayesian model averaging (BMA) refers to a procedure in
which posterior distributions from a single model are replaced
by the mixture of distribution obtained by averaging across
all available models, using the posterior model probabilities
as weights. BMA was advocated by Leamer (1978) as a way of
accounting for model uncertainty. Hoeting, Madigan, Raftery,
and Volinsky (1999) provide a review of BMA techniques. Sup-
pose that hj(θ(j)) transforms the model-specific parameters
into a common object, e.g., the impulse response to a mone-
tary policy shock, then we can form

p(h|Y ) =
J∑
j=1

γj,T p(hj(θ(j))|Y,Mj). (3.33)

Similarly, the predictive distribution for a future observation
yT+h takes the form

p(yT+h|Y1:T ) =
J∑
j=1

γj,T p(yT+h|Y1:T ,Mj). (3.34)

Forecasting applications of Bayesian model averaging in the
econometrics literature include, among others, Min and Zell-
ner (1993) and Wright (2008). For example, Del Negro, Hase-
gawa, and Schorfheide (2014) compare density forecasts from
a Bayesian model average of DSGE models with and without
financial frictions to forecasts obtained by using alternative
methods of combining predictive densities.
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3.3 A Non-Gaussian Posterior of a Set-Identified Model

Unfortunately, in most applications posterior distributions
are non-Gaussian and direct sampling is often impossible.
Before studying the complicated posterior distributions that
arise in DSGE model applications, we will take an intermedi-
ate step and consider a stylized set-identified model that leads
to a non-Gaussian posterior distribution for its parameter θ.
Considering an illustrative example in which point identifi-
cation of θ fails is useful, because there are many DSGE
model applications in which some of the structural param-
eters are difficult to identify or not at all identifiable. Identifi-
cation problems in DSGE models typically come in two vari-
eties: (i) local identification problems in which the likelihood
function is fairly flat in certain directions of the parameter
space; (ii) global identification problems in which the likeli-
hood function is multi-modal. The example in this section is
designed to showcase a problem in which the information in
the likelihood function can at most deliver a lower and an
upper bound on the parameter θ. The resulting posterior dis-
tribution is non-Gaussian and it remains non-Gaussian as
the sample size increases. In Section 3.4 we will use the pos-
terior of the set-identified model to illustrate the importance
sampling algorithm.

Suppose that yt follows an AR(1) process with autoregres-
sive coefficient that we now denote by φ. However, unlike in
Section 3.1, we now assume that the object of interest is not
the autoregressive parameter, but instead a parameter θ that
can be bounded based on φ as follows:

φ ≤ θ and θ ≤ φ+ 1. (3.35)

Strictly speaking, the parameter θ is set identified. The inter-
val Θ(φ) = [φ, φ + 1] is called the identified set and in this
simple example its length is equal to one. To complete the
model specification we specify a prior for θ conditional on φ
of the form

θ|φ ∼ U [φ, φ+ 1]. (3.36)

The joint posterior distribution of θ and φ can be character-
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ized as follows:

p(θ, φ|Y ) = p(φ|Y )p(θ|φ, Y ) ∝ p(Y |φ)p(θ|φ)p(φ). (3.37)

Because θ does not enter the likelihood function, we can de-
duce that

p(φ|Y ) =

∫
p(θ, φ|Y )dθ ∝

∫
p(Y |φ)p(θ|φ)p(φ)dθ

∝ p(Y |φ)p(φ).

The second line follows from
∫
p(θ|φ)dθ = 1 for all φ. There-

fore,

p(φ|Y ) =
p(Y |φ)p(φ)∫
p(Y |φ)p(φ)dφ

, (3.38)

that is, the conditional distribution of θ|φ has no influence on
the posterior distribution of φ. Moreover,

p(θ|φ, Y ) ∝ p(θ, φ|Y ) ∝ p(Y |φ)p(θ|φ)p(φ)

∝ p(θ|φ).

Because p(θ|φ) is a properly normalized conditional density,
we deduce that

p(θ|φ, Y ) = p(θ|φ), (3.39)

that is, the distribution of θ conditional on φ is not updated
in view of the sample information Y , because the parameter
θ does not enter the likelihood function.

According to (3.10) the posterior distribution of the AR(1)
parameter φ (recall that the AR(1) model is now parameterized
in terms of φ: yt = φyt−1 +ut) takes the form φ|Y ∼ N(φ̄, V̄φ).
We showed in (3.39) that the posterior distribution of θ condi-
tional on φ is simply equal to the prior distribution of θ, which
is uniform on the set Θ(φ) (see (3.36)). Thus, the marginal
posterior distribution of θ is given by

π(θ) =

∫
p(φ|Y )I{φ ≤ θ ≤ φ+ 1}dφ (3.40)

=

∫ θ

θ−1

p(φ|Y )dφ

= ΦN

(
θ − φ̄√
V̄φ

)
− ΦN

(
θ − 1− φ̄√

V̄φ

)
,
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Figure 3.1: Posterior Distribution for Set-Identified Model. The figure
depicts the posterior distribution π(θ) in (3.40) for φ̄ = −0.5 and V̄φ
equal to 1/4 (dotted), 1/20 (dashed), and 1/100 (solid).

where ΦN (x) is the cumulative density function of a N(0, 1)
and I{x ≤ a} is the indicator function that equals one if
x ≤ a.

Figure 3.1 depicts the posterior of θ for three choices of
V̄φ. If the posterior variance of the reduced-form parameter
φ is large, the posterior looks almost Gaussian. However, as
V̄φ decreases, the posterior starts to resemble the shape of
a step function that increases from zero to one at θ = −0.5
and then drops to zero around θ = 0.5. The flatness of the
posterior density on the interval [φ̄, φ̄ + 1] gets more pro-
nounced as the sample size increases and the uncertainty
about the parameter φ vanishes. In this stylized example, it
is possible to sample from the posterior distribution of θ di-
rectly by first sampling φi ∼ N

(
φ̄, V̄φ

)
and then sampling

θi|φi ∼ U
[
φi, φi + 1

]
. This scheme generates iid draws from

the joint posterior (φ, θ)|Y . The θi draws can then be used to
construct Monte Carlo approximations for moments associ-
ated with the marginal posterior distribution θ|Y . As an al-
ternative to direct sampling we will use the posterior in (3.40)
to illustrate the importance sampling algorithm introduced in
the next section. Importance sampling is an important build-
ing block of the sequential Monte Carlo algorithm considered
in Chapter 5.
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3.4 Importance Sampling

Instead of attempting to sample directly from the posterior
π(θ) in (3.40), we could approximate π(·) by using a different,
tractable density g(θ) that is easy to sample from and then
reweight the draws. This approach is called importance sam-
pling, a term due to Hammersley and Handscomb (1964) who
were among the first to propose the method. Kloek and van
Dĳk (1978) introduced importance sampling into the econo-
metrics literature, and Geweke (1989) studies the asymptotic
properties of importance sampling approximations. Because
in many applications the posterior density can only be eval-
uated up to a constant of proportionality, we write

π(θ) =
f(θ)

Z
. (3.41)

Typically, f(θ) corresponds to the product of likelihood func-
tion and prior density p(Y |θ)p(θ) in the numerator of Bayes
Theorem (3.1) and Z corresponds to the marginal likelihood
p(Y ) in the denominator. We subsequently describe the im-
portance sampling algorithm, discuss the convergence of pos-
terior mean approximations as the number of draws from this
algorithm tends to infinity, and provide a numerical illus-
tration based on the set-identified model introduced in Sec-
tion 3.3. The basic idea of importance sampling is, of course,
completely unrelated to the identification problem discussed
in the previous section. In Chapter 5 we will embed an im-
portance sampler in a more general sequential Monte Carlo
algorithm that allows us to generate draws from very compli-
cated DSGE model posteriors.

3.4.1 The Importance Sampling Algorithm

Importance sampling (IS) is based on the following identity:

Eπ[h(θ)] =

∫
h(θ)π(θ)dθ =

1

Z

∫
Θ

h(θ)
f(θ)

g(θ)
g(θ)dθ. (3.42)

Because Eπ[1] = 1 we can deduce that the normalization
constant Z is given by

Z =

∫
Θ

f(θ)

g(θ)
g(θ)dθ. (3.43)
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The ratio
w(θ) =

f(θ)

g(θ)
(3.44)

is called the (unnormalized) importance weight. We can also
define a normalized importance weight as

v(θ) =
w(θ)∫

w(θ)g(θ)dθ
=

w(θ)∫
Zπ(θ)dθ

=
w(θ)

Z
. (3.45)

It is straightforward to verify based on (3.42) and the defini-
tion in (3.44) that

Eπ[h(θ)] =

∫
v(θ)h(θ)g(θ)dθ. (3.46)

The importance sampling algorithm generates iid draws from
the proposal density g(θ). These draws are reweighted byw(θ)
and the average of the importance weights can be used to
approximate the normalization constant Z.

Algorithm 4 (Importance Sampling)

1. For i = 1 to N , draw θi
iid∼ g(θ) and compute the unnor-

malized importance weights

wi = w(θi) =
f(θi)

g(θi)
. (3.47)

2. Compute the normalized importance weights

W i =
wi

1
N

∑N
i=1 w

i
. (3.48)

An approximation of Eπ[h(θ)] is given by

h̄N =
1

N

N∑
i=1

W ih(θi). (3.49)

Note that according to our definitions W i is different from
v(θi). W i is normalized by the sample average of the unnor-
malized weights wi, whereas v(θ) is normalized by the popu-
lation normalization constant Z. By construction, the sample
average 1

N

∑N
i=1W

i = 1.
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3.4.2 Convergence and Accuracy

Throughout this book we will discuss the accuracy of Monte
Carlo approximations of posterior moments. In practice, one
can assess the accuracy by computing a Monte Carlo approx-
imation h̄N multiple times and examine its variability across
repeated runs of the posterior sampler. If h̄N satisfies a CLT
and the number of draws N is sufficiently large, then the
variance across repeated runs of the algorithm (provided this
variance is finite for the given N ) will approximately coincide
with the asymptotic variance implied by the CLT. Moreover,
this variance will decay at rate 1/N . Combined with some
information about the run time of the posterior sampler, the
user will be able to trade off computational accuracy and time.
We provide a discussion of CLTs for various posterior sam-
plers and use repeated independent runs to document their
accuracy in practical application. We start with a relatively
detailed derivation of a CLT for the importance sampler and
then, in later chapters, provide a more informal discussion
for the more elaborate posterior samplers.

If Eg[|hf/g|] < ∞ and Eg[|f/g|] < ∞, see Geweke (1989),
the Monte Carlo estimate h̄N defined in (3.49) converges al-
most surely (a.s.) to Eπ[h(θ)] as N −→ ∞. In Chapter 5 we
will refer to the collection of pairs {(θi,W i)}Ni=1 as a particle
approximation of π(θ). The accuracy of the approximation is
driven by the ‘‘closeness’’ of g(·) to f(·) and is reflected in the
distribution of the weights. If the distribution of weights is
very uneven, the Monte Carlo approximation h̄ is inaccurate.
Uniform weights arise if g(·) ∝ f(·), which means that we are
sampling directly from π(θ).

The limit distribution of the Monte Carlo approximation
can be derived as follows. Define the population analogue of
the normalized importance weights as v(θ) = w(θ)/Z and
write

h̄N =
1
N

∑N
i=1(wi/Z)h(θi)

1
N

∑N
i=1(wi/Z)

=
1
N

∑N
i=1 v(θi)h(θi)

1
N

∑N
i=1 v(θi)

. (3.50)

Now consider a first-order Taylor series expansion in terms of
deviations of the numerator from Eπ[h] and deviations of the
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denominator around 1:
√
N(h̄N − Eπ[h]) (3.51)

=
√
N

(
1

N

N∑
i=1

v(θi)h(θi)− Eπ[h]

)

−Eπ[h]
√
N

(
1

N

N∑
i=1

v(θi)− 1

)
+ op(1)

= (I)− Eπ[h] · (II) + op(1).

Provided that supθ π(θ)/g(θ) < ∞ and Eg[h2] < ∞, we can
apply a multivariate extension of the Lindeberg-Levy CLT to
the terms (I) and (II). Using straightforward but tedious
algebra it can be shown that the variances and covariance of
(I) and (II) are given by

Vg[hv] = Eπ[(π/g)h2]− E2
π[h],

Vg[v] = Eπ[(π/g)]− 1,

COVg(hv, v) =
(
Eπ[(π/g)h]− Eπ[h]

)
.

In turn we can deduce that
√
N(h̄N − Eπ[h]) =⇒ N

(
0,Ω(h)

)
, (3.52)

where
Ω(h) = Vg[(π/g)(h− Eπ[h])].

We can now define the following inefficiency factor (relative to
iid sampling):2

InEff∞ =
Ω(h)

Vπ[h]
. (3.53)

Here the ∞ subscript indicates that the inefficiency factor is
computed based on the ratio of asymptotic variances.

While the inefficiency factor can in principle be less than
one, it is typically greater than one. Using a crude approxima-
tion (see, e.g., Liu (2001)), one can factorize Ω(h) as follows:

Ω(h) ≈ Vπ[h]
(
Vg[π/g] + 1

)
, (3.54)

2To compute the asymptotic inefficiency factor for a particular application
we rely on estimates of Ω(h) and Vπ , but we will not make a notational
distinction between the ‘‘true’’ asymptotic inefficiency factor and an estimate
of it.
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which implies that

InEff∞ ≈ 1 + Vg[π/g]. (3.55)

The approximation of the asymptotic inefficiency factor is in-
dependent of the function h(·) and highlights that the larger
the variance of the importance weights, the less accurate the
Monte Carlo approximation relative to the accuracy that could
be achieved with an iid sample from the posterior.

3.4.3 A Numerical Illustration

Figure 3.2 provides a numerical illustration of the impor-
tance sampling algorithm in the context of the posterior den-
sity (3.40) associated with the set-identified model in Sec-
tion 3.3. Panel (i) depicts the posterior density for φ̄ = −0.5
and V̄ = 100. We consider two importance sampling densi-
ties. Both are centered at θ = 0.5. The first density (‘‘concen-
trated’’) has a variance of 0.125, whereas the second density
(‘‘diffuse’’) has a larger variance of 0.5. The concentrated im-
portance sampling density assigns a very small probability to
the interval [−0.5,−0.25] which has a large probability under
the posterior distribution.

The accuracy of the importance sampling approximations
are illustrated in Panels (ii) and (iii) as a function of the num-
ber of draws N . We depict the asymptotic inefficiency fac-
tor InEff∞ defined in (3.53) as well as a simulation-based
inefficiency factor InEffN in which we replace the asymp-
totic variance of the importance sampler by a finite sam-
ple estimate computed from multiple runs of the algorithm.
More specifically, we run the importance sampling algorithm
Nrun = 1, 000 times and compute the variance of the Monte
Carlo approximations of Eπ[θ] and Eπ[θ2] across the runs, de-
noted by V[h̄N ]. We divide this variance by Vπ[h]/N so that
it is on the same scale as the asymptotic inefficiency factor:

InEffN =
V[h̄N ]

Vπ[h]/N
. (3.56)

In general, the asymptotic approximation is very accurate. A
comparison between Panels (ii) and (iii) highlights that the
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(i) Importance Sampling Densities
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(ii) Inefficiency Factors for Concentrated IS Density
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Figure 3.2: IS Approximations of Eπ[θ] and Eπ[θ2]. Panel (i) de-
picts the posterior density π(θ) (solid) as well as two importance
sampling densities (‘‘concentrated’’ (dashed) and ‘‘diffuse’’ (dotted))
g(θ). Panels (ii) and (iii) depict large sample inefficiency factors
InEff∞ = Ω(h)/Vπ[h] (dashed) as well as their small sample ap-
proximations (solid) based on Nrun = 1, 000. We consider h(θ) = θ

(triangles) and h(θ) = θ2 (circles). The solid line (no symbols) depicts
the approximate inefficiency factor 1 + Vg[π/g].

approximation with the ‘‘concentrated’’ importance sampling
density is a lot less accurate than the approximation obtained
with the ‘‘diffuse’’ importance sampling densities, which does
a much better job of covering the tails of the posterior dis-
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tribution. Finally, we also plot the approximate asymptotic
inefficiency factor defined in (3.55), which provides a crude
measure of accuracy.

To ensure that the importance sampling algorithm deliv-
ers accurate approximations of posterior moments, it is im-
portant that the importance density g is well-tailored toward
the target distribution π. Equation (3.55) highlights that one
has to choose g to achieve a small variance of the impor-
tance weights. In applications with approximately elliptical
posterior, a good importance density can be obtained by cen-
tering a fat-tailed t distribution at the mode of π and using
a scaled version of the inverse Hessian of lnπ at the mode
to align the contours of the importance density with the con-
tours of the posterior π. However, for highly irregular and
non-elliptical posteriors, other approaches of generating an
efficient g may be necessary. The sequential Monte Carlo al-
gorithm discussed in Chapter 5 constructs the importance
densities in a sequential manner.

3.5 Metropolis-Hastings Algorithms

The Metropolis-Hastings (MH) algorithm belongs to the class
of Markov chain Monte Carlo (MCMC) algorithms. The algo-
rithm constructs a Markov chain such that the stationary
distribution associated with this Markov chain is unique and
equals the posterior distribution of interest. A first version
of such an algorithm had been constructed by Metropolis,
Rosenbluth, Rosenbluth, Teller, and Teller (1953) to solve a
minimization problem and was later generalized by Hastings
(1970). Tierney (1994) proved important convergence results
for MCMC algorithms and Monte Carlo averages computed
based on their output. Chib and Greenberg (1995) provide an
excellent introduction to MH algorithms. Detailed textbook
treatments can be found, for instance, in Robert and Casella
(2004) or Geweke (2005).

While the importance sampler generates a sequence of in-
dependent draws from the posterior distribution π(θ), the MH
algorithm generates a sequence of serially correlated draws.
As long as the correlation in the Markov chain is not too
strong, Monte Carlo averages of these draws can accurately
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approximate posterior means of h(θ). We subsequently in-
troduce a generic MH algorithm, show why the target poste-
rior distribution arises as an invariant distribution under the
Markov chain generated by the MH algorithm, analytically
solve for the Markov transition kernel of the MH algorithm in
a very simple example, and provide a numerical illustration.

3.5.1 A Generic MH Algorithm

A key ingredient of the MH algorithm is a proposal distribu-
tion q(ϑ|θi−1), which potentially depends on the draw θi−1 in
iteration i− 1 of the algorithm. The proposed draw is always
accepted if it raises the posterior density (relative to θi−1) and
it is sometimes accepted even if it lowers the posterior den-
sity. If the proposed draw is not accepted, then the chain does
not move and θi = θi−1. The indexacceptance probability is
chosen to ensure that the distribution of the draws converges
to the target posterior distribution. The algorithm takes the
following form:

Algorithm 5 (Generic MH Algorithm) For i = 1 to N:

1. Draw ϑ from a density q(ϑ|θi−1).

2. Set θi = ϑ with probability

α(ϑ|θi−1) = min

{
1,

p(Y |ϑ)p(ϑ)/q(ϑ|θi−1)

p(Y |θi−1)p(θi−1)/q(θi−1|ϑ)

}
and θi = θi−1 otherwise.

Because p(θ|Y ) ∝ p(Y |θ)p(θ) we can replace the poste-
rior densities in the calculation of the acceptance probabili-
ties α(ϑ|θi−1) by the product of likelihood and prior, which
does not require the evaluation of the marginal data den-
sity p(Y ). Algorithm 5 describes how to generate a parameter
draw θi conditional on a parameter draw θi−1. Thus, implic-
itly it characterizes a Markov transition kernel K(θ|θ̃), where
the conditioning value θ̃ corresponds to the parameter draw
from iteration i− 1.
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3.5.2 An Important Property of the MH Algorithm

The probability theory underlying the convergence of Monte
Carlo averages constructed from the output of the MH algo-
rithm is considerably more complicated than the theory for
the importance sampler. The key questions are the following:
(i) suppose that θ0 is generated from some arbitrary density
g(·) and θN is obtained by iterating the Markov transition ker-
nel forward N times, then is it true that θN is approximately
distributed according to p(θ|Y ) and the approximation error
vanishes as N −→ ∞? (ii) Suppose that (i) is true, is it also
true that sample averages of θi, i = 1, . . . , N satisfy a SLLN
and a CLT?

For Algorithm 5 to generate a sequence of draws from the
posterior distribution p(θ|Y ) a necessary condition is that the
posterior distribution is an invariant distribution under the
transition kernel K(·|·), that is,

p(θ|Y ) =

∫
K(θ|θ̃)p(θ̃|Y )dθ̃. (3.57)

Thus, if θi−1 is a draw from the posterior distribution p(θ|Y )
then θi is also a draw from this distribution. We will limit
our theoretical analysis of the general MH algorithm to the
verification of this invariance property. For a comprehensive
exposition of the convergence theory for Markov chains and
MCMC algorithms, we refer the interested reader to Tierney
(1994) or textbook treatments such as Robert and Casella
(2004) or Geweke (2005).

Verifying the invariance property is relatively straightfor-
ward. The transition kernel can be expressed as follows:

K(θ|θ̃) = u(θ|θ̃) + r(θ̃)δθ̃(θ). (3.58)

Here u(θ|θ̃) is the density kernel (note that u(θ|·) does not
integrate to one) for accepted draws:

u(θ|θ̃) = α(θ|θ̃)q(θ|θ̃). (3.59)

Recall from Algorithm 5 above that q(·|·) is the density for the
proposed draw and α(·|·) is the probability that the draw is
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accepted. The term r(θ̃) is the probability that conditional on
θ̃ the proposed draw will be rejected:

r(θ̃) =

∫ [
1− α(θ|θ̃)

]
q(θ|θ̃)dθ = 1−

∫
u(θ|θ̃)dθ. (3.60)

Here 1 − α(θ|θ̃) is the rejection probability of the proposed
draw θ and q(θ|θ̃) describes the distribution of the proposed
draw given θ̃. If the proposed draw is rejected, then the al-
gorithm sets θi = θi−1, which means that conditional on the
rejection, the transition density degenerates to a pointmass
at θ = θ̃, which is captured by the Dirac delta function δθ̃(θ)
in (3.58).3

The MH step is constructed to be reversible in the following
sense. Conditional on the sampler not rejecting the proposed
draw, the density associated with a transition from θ̃ to θ is
identical to the density associated with a transition from θ to
θ̃:

p(θ̃|Y )u(θ|θ̃) (3.61)

= p(θ̃|Y )q(θ|θ̃) min

{
1,
p(θ|Y )/q(θ|θ̃)
p(θ̃|Y )/q(θ̃|θ)

}
= min

{
p(θ̃|Y )q(θ|θ̃), p(θ|Y )q(θ̃|θ)

}
= p(θ|Y )q(θ̃|θ) min

{
p(θ̃|Y )/q(θ̃|θ)
p(θ|Y )/q(θ|θ̃)

, 1

}
= p(θ|Y )u(θ̃|θ).

Using the reversibility result, we can now verify the invariance
property in (3.57):∫

K(θ|θ̃)p(θ̃|Y )dθ̃ (3.62)

=

∫
u(θ|θ̃)p(θ̃|Y )dθ̃ +

∫
r(θ̃)δθ̃(θ)p(θ̃|Y )dθ̃

=

∫
u(θ̃|θ)p(θ|Y )dθ̃ + r(θ)p(θ|Y )

= p(θ|Y ).

3The Dirac delta function has the property that δθ̃(θ) = 0 for θ 6= θ̃ and∫
δθ̃(θ)dθ = 1.
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The second equality follows from (3.61) and the properties of
the Dirac delta function. The last equality follows from (3.60).

The invariance property in (3.58) is by no means sufficient
to guarantee that the Monte Carlo average of draws h(θi)
from Algorithm 5 converges to the posterior expectation Eπ[h].
In particular, one needs to ensure that the transition kernel
K(·|·) has a unique invariant distribution, that repeated ap-
plication of the transition kernel leads to convergence to the
unique invariant distribution regardless of the chain’s initial-
ization, and that the autocorrelation of the draws θi gener-
ated by the Markov chain decays sufficiently fast such that
sample averages converge to population means. Rather than
providing a general treatment of convergence, we will examine
a specific example, in which we can solve for the transition
kernel analytically.

3.5.3 An Analytical Example

Suppose the parameter space is discrete and θ can only take
two values: τ1 and τ2. The posterior distribution then simpli-
fies to two probabilities which we denote as πl = P{θ = τl|Y },
l = 1, 2. The proposal distribution in Algorithm 5 can be rep-
resented as a two-stage Markov process with transition ma-
trix

Q =

[
q11 q12

q21 q22

]
, (3.63)

where qlk is the probability of drawing ϑ = τk conditional on
θi−1 = τl. For illustrative purposes, we will assume that

q11 = q22 = q, q12 = q21 = 1− q

and that the posterior distribution has the property

π2 > π1.

We now derive a transition matrix for the Markov chain
generated by Algorithm 5. Suppose that θi−1 = τ1. Then with
probability q, ϑ = τ1. The probability that this draw will be
accepted is

α(τ1|τ1) = min

{
1,
π1/q

π1/q

}
= 1.
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With probability 1− q the proposed draw is ϑ = τ2. The prob-
ability that this draw will be rejected is

1− α(τ2|τ1) = 1−min

{
1,
π2/(1− q)
π1/(1− q)

}
= 0

because we previously assumed that π2 > π1. Thus, the prob-
ability of a transition from θi−1 = τ1 to θi = τ1 is

k11 = q · 1 + (1− q) · 0 = q.

Using similar calculations for the three other possible transi-
tions it can be verified that the Markov transition matrix for
the process {θi}Ni=1 is given by

K =

[
k11 k12

k21 k22

]
(3.64)

=

[
q (1− q)

(1− q)π1

π2
q + (1− q)

(
1− π1

π2

) ]
.

Straightforward calculations reveal that the transition ma-
trix K has two eigenvalues λ1 and λ2:

λ1(K) = 1, λ2(K) = q − (1− q) π1

1− π1
. (3.65)

The eigenvector associated with λ1(K) determines the invari-
ant distribution of the Markov chain, which, as we have seen
in Section 3.5.2, equals the posterior distribution. Provided
that the second eigenvalue is different from one, the posterior
is the unique invariant distribution of the Markov chain. The
persistence of the Markov chain is characterized by the eigen-
value λ2(K). In fact, we can represent the Markov chain by
an AR(1) process (see, for instance, Hamilton (1994)). Define
the transformed parameter

ξi =
θi − τ1
τ2 − τ1

, (3.66)

which takes the values 0 or 1. ξi follows the first-order au-
toregressive process

ξi = (1− k11) + λ2(K)ξi−1 + νi. (3.67)
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Conditional on ξi−1 = j − 1, j = 1, 2, the innovation νi has
support on kjj and (1− kjj), its conditional mean is equal to
zero, and its conditional variance is equal to kjj(1− kjj).

The persistence of the Markov chain depends on the pro-
posal distribution, which in our discrete example is charac-
terized by the probability q. One could easily obtain an iid
sample from the posterior by setting q = π1 (which implies
λ2(K) = 0). While in general it is not feasible to tailor the
proposal density to generate serially uncorrelated draws, the
goal of MCMC design is to keep the persistence of the chain
as low as possible. As q approaches one, the autocorrelation
of the Markov chain increases and converges to one. In the
limit, if q = 1, then θi = θ1 for all i and the equilibrium
distribution of the chain is no longer unique.

As in Section 3.4, we will now examine the convergence of
Monte Carlo averages of h(θi). Based on the autoregressive
representation in (3.67) it is straightforward to compute the
autocovariance function of ξi, which then can be converted
into the autocovariance function of h(θi):

COV(h(θi), h(θi−l)) (3.68)

=
(
h(τ2)− h(τ1)

)2
π1(1− π1)

(
q − (1− q) π1

1− π1

)l
= Vπ[h]

(
q − (1− q) π1

1− π1

)l
.

Defining the Monte Carlo estimate

h̄N =
1

N

N∑
i=1

h(θi) (3.69)

we deduce from a central limit theorem for dependent random
variables that

√
N(h̄N − Eπ[h]) =⇒ N

(
0,Ω(h)

)
, (3.70)

where Ω(h) is now the long-run covariance matrix

Ω(h) = lim
L−→∞

Vπ[h]

(
1 + 2

L∑
l=1

L− l
L

(
q − (1− q) π1

1− π1

)l)
.
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In turn, the asymptotic inefficiency factor is given by

InEff∞ =
Ω(h)

Vπ[h]
(3.71)

= 1 + 2 lim
L−→∞

L∑
l=1

L− l
L

(
q − (1− q) π1

1− π1

)l
.

For q = π1 the inefficiency factor is one. For q > π1 the ineffi-
ciency factor is greater than one because the draws are pos-
itively correlated, whereas for q < π1 the algorithm produces
negatively correlated draws which lead to an inefficiency fac-
tor that is less than one.

3.5.4 A Numerical Illustration

We now provide a numerical illustration using the discrete
example, assuming that the posterior takes the form of a
Bernoulli distribution (τ1 = 0, τ2 = 1) with π1 = 0.2. To assess
the effectiveness of different MH settings, we vary q ∈ [0, 1).
Panel (i) of Figure 3.3 displays the autocorrelations up to 9
lags for q = {0, 0.2, 0.5, 0.99}. When q = 0.99 the chain gen-
erated by the MH algorithm is extremely autocorrelated. Ac-
cording to (3.64) the probability of moving from θi−1 = τ1 to
θi = τ2 is 1 − q, or 0.01. Similarly, the probability of moving
from θi−1 = τ2 to θi = τ1 is (1 − q)π1/π2 = 0.0025. Thus, if
the initial draw is θ0 = τ1, one would expect 100 draws be-
fore encountering τ2. However, recall that 80% of the realized
draws from the invariant distribution should be τ2.

Intuitively, the high autocorrelation reflects the fact that
it will take a high number of draws to accurately reflect the
target distribution, or that the chain is ‘‘moving’’ extremely
slowly around the parameter space. This will manifest itself in
a high variance of Monte Carlo estimates, as we will see below.
If q = 0.5, then the autocorrelation is substantially weaker
than under the q = 0.99 sampler, but still positive. If θi−1 =
τ1, the sampler will set θi = τ1 with probability greater than
π1 = 0.2, inducing a positive autocorrelation in the chain. If
q = π1 = 0.2, the autocorrelation is exactly equal to zero.
Finally, if q = 0, the MH chain actually has a negative first-
order autocorrelation. For θi−1 = τ1 the probability of τ1 for θi
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0 1 2 3 4 5 6 7 8 9

0.0

0.5

1.0

q = 0.00
q = 0.20

q = 0.50
q = 0.99

(ii) Asymptotic Inefficiency InEff∞

0.0 0.2 0.4 0.6 0.8 1.0
10−1

100

101

102

q

(iii) Small-Sample Variance
V[h̄N ] versus HAC Estimates
of Ω(h)

10−4 10−3 10−2
10−5

10−4

10−3

10−2

10−1

Figure 3.3: Performance of Discrete MH Algorithm for π1 = 0.2.
Panel (iii) depicts the small-sample variance V[h̄N ] computed across
Nrun = 50 MCMC runs (x-axis) versus HAC estimates of Ω(h)/N

(y-axis) computed for each chain based on (3.72) with L = 400.
Circles are q = 0, triangles are q = 0.2, squares are q = 0.5, stars
are q = 0.99. The solid line represents the 45-degree line.

is zero, which is much less than one would expect under iid
draws. Induced negative autocorrelation can actually serve to
reduce Monte Carlo variance relative to theoretical variance,
which the next panel highlights.

Panel (ii) depicts the inefficiency factor InEff∞ as a func-
tion of q. The horizontal line indicates an inefficiency factor of
one. The y coordinates are rescaled in log terms. Consistent
with the autocorrelations discussed above, for large values
of q, the variance of Monte Carlo estimates of h drawn from
the MH chain are much larger than the variance of estimates
derived from iid draws. Indeed, when q = 0.99 the variance
is about 100 times larger. As q moves closer to π1 the rela-
tive variance shrinks. Indeed, when q = π1 the Monte Carlo
estimates from the MH sampler and an iid sampler have the
same variance, as the chain generated by the MH sampler
mimics the iid sampler. Finally, if q < π1, the Monte Carlo
variance from the MH sampler is smaller than that under iid
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draws. While the reduction in MC variance found for q < π1

is obviously desirable, it is unrealistic in practice. The design
of a good MH sampler—here, this amounts to picking q—is
highly dependent on the target distribution, indexed by π1.
Unfortunately, the reason one often resorts to MCMC tech-
niques is that important features of the target distribution,
i.e, π1, are not well understood.

In an environment where asymptotic variances are not
known in closed form, it is difficult to know when the chain
generated by an MH algorithm has converged. There are many
diagnostics available for this, some of which we will discuss
in more detail in the next section. At the heart of most of
the measures, though, is whether the empirical variability
of an estimate computed across many runs of an MH sam-
pler is consistent with estimates within each chain. With an
eye toward between-chain and within-chain measurement,
we run Nrun = 50 replications of the MH sampler for q =
{0, 0.2, 0.5, 0.99}. The length of each simulation isN = 1, 000.
We set h(θ) = θ, i.e., we are interested in the variance of
Monte Carlo estimates of the mean of the distribution. For
each replication, we compute an estimate of Ω(h)/N , using
a simple Newey-West heteroskedastic- and autocorrelation-
consistent (HAC) estimator,

HAC[h̄] =
1

N

(
γ̂0 + 2

L∑
l=1

(
1− l

L+ 1

)
γ̂l

)
, (3.72)

where γl = COV(h(θi), h(θi−l)), with L set to 400. We also
compute an estimate of the variance of h̄N across the fifty
replications, denoted by V[h̄N ]. Panel (iii) of Figure 3.3 ex-
amine the relationships between these two estimates. The y-
coordinate of the dots represents the HAC estimates for each
q, while the x-coordinate indicates an estimate of the small-
sample variance V[h̄N ] for each q. The solid line gives the
45-degree line. One can see that relative ordering for the q-s
is preserved in small samples, with q = 0 having the lowest
small-sample variance and q = 0.99 having the highest. More
importantly, the small-sample variance for each of the sim-
ulators is bracketed by the HAC estimates, indicated by the
solid line bisecting the dots for each q. That is, the within-
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chain estimates appear consistent with the between-chain
measures, though on average the HAC estimator underesti-
mates the variance of the Monte Carlo approximation.
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Estimation of Linearized DSGE Models



Chapter 4

Metropolis-Hastings Algorithms for

DSGE Models

To date, the most widely used method to generate draws from
posterior distributions of a DSGE model is the random walk
MH (RWMH) algorithm. This algorithm is a special case of
the generic Algorithm 5 introduced in Section 3.5 in which
the proposal distribution q(ϑ|θi−1) can be expressed as the
random walk ϑ = θi−1 + η and η is drawn from a distri-
bution that is centered at zero. We introduce a benchmark
RWMH algorithm in Section 4.1 and apply it to the small-scale
New Keynesian DSGE model in Section 4.2. The DSGE model
likelihood function in combination with the prior distribution
presented in Section 2.3 leads to a posterior distribution that
has a fairly regular elliptical shape. In turn, the draws from
a simple RWMH algorithm can be used to obtain an accurate
numerical approximation of posterior moments.

Unfortunately, in many other applications, in particular
those involving medium- and large-scale DSGE models, the
posterior distributions could be very non-elliptical. Irregularly
shaped posterior distributions are often caused by identifi-
cation problems or misspecification. The DSGE model may
suffer from a local identification problem that generates a
posterior that is very flat in certain directions of the parame-
ter space, similar to the posterior encountered in the simple
set-identified model of Section 3.3. Alternatively, the poste-
rior may exhibit multimodal features. Multimodality could be
caused by the data’s inability to distinguish between the role
of a DSGE model’s external and internal propagation mech-
anisms. For instance, inflation persistence can be generated
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by highly autocorrelated cost-push shocks or by firms’ inabil-
ity to frequently re-optimize their prices in view of fluctuating
marginal costs. We use a very stylized state-space model to
illustrate these challenges for posterior simulators in Sec-
tion 4.3.

In view of the difficulties caused by irregularly shaped pos-
terior surfaces, we review a variety of alternative MH samplers
in Section 4.4. These algorithms differ from the RWMH algo-
rithm in two dimensions. First, they use alternative proposal
distributions q(ϑ|θi−1). In general, we consider distributions
of the form

q(·|θi−1) = pt(·|µ(θi−1),Σ(θi−1), ν), (4.1)

where pt(·) refers to the density of a student-t distribution.
Thus, our exploration of proposal densities concentrates on
different ways of forming the location parameter µ(·) and the
scale matrix Σ(·). For ν = ∞ this notation nests Gaussian
proposal distributions. The second dimension in which we
generalize the algorithm is blocking, i.e., we group the pa-
rameters into subvectors, and use a Block MH sampler to
draw iteratively from conditional posterior distributions.

While the alternative MH samplers are designed for irregu-
lar posterior surfaces for which the simple RWMH algorithm
generates inaccurate approximations, we illustrate the per-
formance gains obtained through these algorithms using the
simple New Keynesian DSGE model in Section 4.5. Simi-
lar to the illustrations in Section 3.5, we evaluate the ac-
curacy of the algorithms by computing the variance of Monte
Carlo approximations across multiple chains. Our simula-
tions demonstrate that careful tailoring of proposal densities
q(ϑ|θi−1) as well as blocking the parameters can drastically
improve the accuracy of Monte Carlo approximations. Finally,
Section 4.6 takes a brief look at the numerical approximation
of marginal data densities that are used to compute posterior
model probabilities.

In Section 3.5, we showed directly that the Monte Carlo es-
timates associated with the discrete MH algorithm satisfied a
SLLN and CLT for dependent, identically distributed random
variables. All of the MH algorithms here give rise to Markov
chains that are recurrent, irreducible, and aperiodic for the
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target distribution of interest. These properties are sufficient
for a SLLN to hold. However, validating conditions for a CLT
to hold is much more difficult and beyond the scope of this
book.

4.1 A Benchmark Algorithm

The most widely used MH algorithm for DSGE model appli-
cations is the random walk MH (RWMH) algorithm. The mean
of the proposal distribution in (4.1) is simply the current lo-
cation in the chain and its variance is prespecified:

µ(θi−1) = θi−1 and Σ(θi−1) = c2Σ̂. (4.2)

The name of the algorithm comes from the random walk form
of the proposal, which can be written as

ϑ = θi−1 + η,

where η is mean zero with variance c2Σ̂. Given the symmetric
nature of the proposal distribution, the acceptance probabil-
ity becomes

α = min

{
p(ϑ|Y )

p(θi−1|Y )
, 1

}
.

A draw, ϑ, is accepted with probability one if the posterior at
ϑ has a higher value than the posterior at θi−1. The probabil-
ity of acceptance decreases as the posterior at the candidate
value decreases relative to the current posterior.

To implement the RWMH, the user still needs to specify ν,
c, and Σ̂. For all of the variations of the RWMH we implement,
we set ν = ∞ in (4.1), that is, we use a multivariate normal
proposal distribution in keeping with most of the literature.
Typically, the choice of c is made conditional on Σ̂, so we first
discuss the choice for Σ̂. The proposal variance controls the
relative variances and correlations in the proposal distribu-
tion. As we have seen in Section 3.5, the sampler can work
very poorly if q is strongly at odds with the target distribu-
tion. This intuition extends to the multivariate setting here.
Suppose θ comprises two parameters, say β and δ, that are
highly correlated in the posterior distribution. If the variance
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of the proposal distribution does not capture this correlation,
e.g., the matrix Σ̂ is diagonal, then the draw ϑ is unlikely to
reflect the fact that if β is large then δ should also be large,
and vice versa. Therefore, p(ϑ|Y ) is likely to be smaller than
p(θi−1|Y ), and so the proposed draw will be rejected with high
probability. As a consequence, the chain will have a high re-
jection rate, exhibit a high autocorrelation, and the Monte
Carlo estimates derived from it will have a high variance.

A good choice for Σ̂ seeks to incorporate information from
the posterior, to potentially capture correlations discussed
above. Obtaining this information can be difficult. A popular
approach, used in Schorfheide (2000), is to set Σ̂ to be the
negative of the inverse Hessian at the mode of the log poste-
rior, θ̂, obtained by running a numerical optimization routine
before running MCMC. Using this as an estimate for the co-
variance of the posterior is attractive, because it can be viewed
as a large sample approximation to the posterior covariance
matrix as the sample size T −→∞. There exists a large liter-
ature on the asymptotic normality of posterior distributions.
Fundamental conditions can be found, for instance, in John-
son (1970).

Unfortunately, in many applications the maximization of
the posterior density is tedious and the numerical approx-
imation of the Hessian may be inaccurate. These problems
may arise if the posterior distribution is very non-elliptical
and possibly multimodal, or if the likelihood function is re-
placed by a non-differentiable particle filter approximation
(see Chapter 8). In both cases, a (partially) adaptive approach
may work well: First, generate a set of posterior draws based
on a reasonable initial choice for Σ̂, e.g., the prior covariance
matrix. Second, compute the sample covariance matrix from
the first sequence of posterior draws and use it as Σ̂ in a
second run of the RWMH algorithm. In principle, the covari-
ance matrix Σ̂ can be adjusted more than once. However, Σ̂
must be fixed eventually to guarantee the convergence of the
posterior simulator. Samplers which constantly (or automat-
ically) adjust Σ̂ are known as adaptive samplers and require
substantially more elaborate theoretical justifications.

Instead of strictly following one of the two approaches of
tuning Σ̂ that we just described, we use an estimate of the
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posterior covariance, Vπ[θ], obtained from an earlier estima-
tion in the subsequent numerical illustrations. While this ap-
proach is impractical in empirical work, it is useful for the
purpose of comparing the performance of different posterior
samplers, because it avoids a distortion due to a mismatch
between the Hessian-based estimate and the posterior co-
variance. Thus, it is a best-case scenario for the algorithm.
To summarize, we examine the following variant of the RWMH
algorithm:

RWMH-V : Σ̂ = Vπ[θ].

The final parameter of the algorithm is the scaling factor c.
This parameter is typically adjusted to ensure a ‘‘reasonable’’
acceptance rate. Given the opacity of the posterior, it is dif-
ficult to derive a theoretically optimal acceptance rate. If the
sampler accepts too frequently, it may be making very small
movements, resulting in large serial correlation and a high
variance of the resulting Monte Carlo estimates. Similarly, if
the chain rejects too frequently, it may get stuck in one region
of the parameter space, again resulting in accurate estimates.
However, for the special case of a target distribution which is
multivariate normal, Roberts, Gelman, and Gilks (1997) have
derived a limit (in the size of parameter vector) optimal accep-
tance rate of 0.234. Most practitioners target an acceptance
rate between 0.20 and 0.40. The scaling factor c can be tuned
during the burn-in period or via pre-estimation chains. We
will discuss the relationship between the accuracy of Monte
Carlo approximations and the choice of c in more detail in
Section 4.2.2.

4.2 The RWMH-V Algorithm at Work

We now apply the RWMH-V algorithm to the estimation of
the small-scale New Keynesian model introduced in Chap-
ter 1.1. The model is solved using a log-linear approximation
as described in Chapter 2.1. This model has been previously
used to illustrate the Bayesian analysis of DSGE models by
An and Schorfheide (2007). We begin with this DSGE model
on account of its simplicity. We can be confident that all of
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Figure 4.1: Observables for the Small-Scale Model. Output growth
per capita is measured in quarter-on-quarter (Q-o-Q) percentages.
Inflation is CPI inflation in annualized Q-o-Q percentages. Federal
funds rate is the average annualized effective funds rate for each
quarter.

our samplers converge to the posterior in reasonable time, al-
lowing us to execute the estimation repeatedly under various
configurations of the posterior samplers and to concentrate
on the variance of the Monte Carlo approximations of poste-
rior moments as a measure of success. In later chapters, we
will examine more elaborate models where some simulators
have trouble replicating key features of the posterior. The New
Keynesian DSGE model is estimated based on three observ-
ables: quarterly per capita GDP growth, quarterly inflation,
and the annualized federal funds rate, whose measurement
equations were defined in Equation (2.13). The observations
(see Appendix for detailed definitions) used in the estimation
range from 1983:I to 2002:IV, giving us a total of T = 80 ob-
servations. The three time series are plotted in Figure 4.1. We
use the prior distribution presented in Table 2.2.
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Figure 4.2: Convergence of Monte Carlo Average τ̄N|N0
. The x-axis

indicates the number of draws N .

4.2.1 Burn-in and Computation of Posterior Estimates

In general, the initial draws obtained from an MH algorithm
do not reflect the posterior distribution. Indeed, there may
be a large number of draws before the sampler has ‘‘con-
verged,’’ that is, when a draw from the Markov chain has
approximately the same distribution as a direct draw from
the posterior. For this reason, it is common practice to drop
a substantial part (say the first N0 draws) of the initial sim-
ulations of the MH chain, known as the burn-in. Figure 4.2
depicts

θ̄N |N0
=

1

N −N0

N∑
i=N0+1

θi

as a function of N for multiple runs of the RWMH-V algo-
rithm and three choices of N0 for a particular element of θ,
namely, the risk-aversion parameter τ . Initial draws are gen-
erated from the prior distribution. The dispersion of initial
recursive mean after burn-in corresponds roughly to poste-
rior variance to the extent that the chain converged to its
equilibrium distribution afterN0 draws. Each recursive mean
appears to approach the same limit point. For the remainder
of this section we set N = 100, 000 and N0 = 50, 000.

While the draws generated by the posterior simulator rep-
resent the joint posterior distribution of the parameter vector
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Table 4.1: Posterior Estimates of DSGE Model Parameters

Mean [0.05, 0.95] Mean [0.05,0.95]
τ 2.83 [ 1.95, 3.82] ρr 0.77 [ 0.71, 0.82]
κ 0.78 [ 0.51, 0.98] ρg 0.98 [ 0.96, 1.00]
ψ1 1.80 [ 1.43, 2.20] ρz 0.88 [ 0.84, 0.92]
ψ2 0.63 [ 0.23, 1.21] σr 0.22 [ 0.18, 0.26]
r(A) 0.42 [ 0.04, 0.95] σg 0.71 [ 0.61, 0.84]
π(A) 3.30 [ 2.78, 3.80] σz 0.31 [ 0.26, 0.36]
γ(Q) 0.52 [ 0.28, 0.74]

Notes: We generated N = 100, 000 draws from the posterior and
discarded the first 50,000 draws. Based on the remaining draws we
approximated the posterior mean and the 5th and 95th percentiles.

θ, researchers typically start the empirical analysis by report-
ing summary statistics for the marginal posterior distribution
of each parameter. The draws for individual elements of the
vector θ, say the draws of the risk aversion parameter τ i,
i = 1, . . . , N , approximate the marginal posterior distribu-
tion of that particular parameter. Table 4.1 provides poste-
rior mean parameter estimates and 90% credible intervals.
Instead of computing HPD intervals, we report the 5th and
the 95th percentiles of the posterior distribution, which can
be easily obtained after sorting the posterior draws for each
parameter (see Chapter 3). The estimated annualized steady
state growth rate of the economy is 2%, the estimated steady
state inflation rate for the sample period is 3.3%, and the im-
plied steady state nominal interest rate is 5.8%. The risk aver-
sion parameter τ is estimated to be 2.83. The estimated slope
of the New Keynesian Phillips curve is fairly large, κ̄ = 0.78,
implying a low degree of price rigidity and a small effect of
monetary policy shocks on output. The central bank reacts
strongly to inflation movements as well as to deviations of
output from flexible price output.

7 16:09:24 UTC



Metropolis-Hastings Algorithms for DSGE Models • 73

4.2.2 The Effect of Scaling the Proposal Covariance Matrix

Given the widespread use of the RWMH-V algorithm, it is in-
structive to investigate the effect of the scaling constant c. To
do so, we run the benchmark RWMH-V algorithm for different
choices of c. For each choice of c, we run Nrun = 50 Monte
Carlo chains. Unlike before, the chains are now initialized
with draws from the posterior distribution (obtained from a
preliminary estimation of the DSGE model). Nonetheless, we
still use a burn-in period equal to half of the chain length.
Here we are taking for granted that for all but the very ex-
treme choices of c the runs have converged to the posterior;
detailed examination of the draws generated by each chain
confirms this.

The results for the risk-aversion parameter τ are depicted
in Figure 4.3. The acceptance rate of the RWMH-V sampler is
decreasing in c. If c is small, the proposed random walk steps
of the sampler are tiny and the probability that the proposed
draws are accepted is very high. As c increases, the average
proposed step sizes get larger and the probability of accep-
tance decreases because it becomes more likely to propose a
parameter value that is associated with a low posterior den-
sity. We measure the variance of the Monte Carlo approxima-
tion using estimates of InEff∞ (HAC[τ̄ ]/(Vπ[τ ]/N)) and the
small-sample inefficiency factor InEffN = V[τ̄ ]/(Vπ[τ ]/N),
where V[τ̄ ] is the small-sample variance of τ̄ across the mul-
tiple chains.

The two inefficiency measures are very similar and indicate
that the accuracy of the posterior mean approximation has a
U-shape as a function of c. The minimum, i.e., the highest
precision, is attained for c = 0.5. Intuitively, for small values
of c, the serial correlation and hence the inefficiency factors
are large because the step-sizes are very small. For very large
values of c the serial correlation is high because the probabil-
ity that a proposed parameter draw is rejected, i.e., θi = θi−1,
is very high. The bottom panel of Figure 4.3 depicts the rela-
tionship between the acceptance rate and the accuracy of the
Monte Carlo approximation. For the posterior mean of τ the
Monte Carlo approximation error is smallest for acceptance
rates between 20% and 40%. While Figure 4.3 focuses on τ ,
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Figure 4.3: Effect of Scaling on Accuracy. Results are for posterior
mean of τ , based on Nrun = 50 independent Markov chains. Panel
(i): The acceptance rate (average across multiple chains), HAC-based
estimate of InEff∞[τ̄ ] (average across multiple chains), and InEffN [τ̄ ]

are shown as a function of the scaling constant c. Panel (ii): InEffN [τ̄ ]

versus the acceptance rate α̂.
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the results for the other parameters are qualitatively similar.

4.2.3 Transformations of Parameters: Impulse Responses

The parameter draws θi can be transformed into other statis-
tics of interest h(θi). For instance, the DSGE model can be
used to study the propagation of exogenous shocks. Condi-
tional on a parameter vector θ, it is straightforward to com-
pute impulse response functions (IRFs) from the state-space
representation of the DSGE model given by (2.10) and (2.13).
The mapping from the parameters to the IRFs is an example
of a function h(θ) that is of interest in many DSGE model
applications. (Pointwise) Bayesian inference for IRFs can be
implemented by first converting each draw θi into h(θi) and
then computing posterior means and credible intervals for
each element of the h(·) vector. Results for the small-scale
DSGE model are depicted in Figures 4.4 and 4.5. The first
figure shows the response of the exogenous shock processes
ĝt and ẑt to one-standard deviation innovations. Both shocks
follow AR(1) processes, but the government spending shock
(ρ̄g = 0.98) is much more persistent than the technology
growth shock (ρ̄z = 0.88). The three columns of Figure 4.5 in-
dicate the responses to the government spending shock εg,t,
the technology growth shock εz,t, and the monetary policy
shock εR,t, respectively. The three rows depict the responses
of output, inflation, and interest rates to the three shocks. The
solid lines depict posterior mean responses and the shaded
areas are 90% credible bands.

The log-linearized equilibrium conditions for the small-
scale DSGE model were summarized in (2.1). A positive gov-
ernment spending (or, more generally, demand) shock raises
output, but leaves inflation and interest rates unchanged. In
this simple model, consumption deviations from the stochas-
tic trend, ĉt, is the difference between output deviations ŷt
and the government spending shock ĝt. Moreover, ĝt equals
potential output, i.e., the output that would prevail in the ab-
sence of price rigidities, and ĉt = ŷt − ĝt can be interpreted
as the output gap. If the log-linearized equilibrium conditions
are rewritten in terms of ĉt, then the government spending
shock drops out of the Euler equation, the New Keynesian
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Figure 4.4: Impulse Responses of Exogenous Processes. The figure
depicts pointwise posterior means and 90% credible bands. The re-
sponses are in percent relative to the initial level.

Phillips curve, and the monetary policy rule. This implies that
the government spending shock only affects output, but not
the output gap, i.e., consumption, inflation, and interest rate.

In response to a technology growth shock ẑt, output and
consumption react proportionally, i.e., ŷ = ĉt. While the level
of output will adjust to the new level of technology in the
long run, expectations of increasing productivity lead agents
to increase consumption initially by more than ẑt, meaning
that ŷt = ĉt > 0. According to the Phillips curve, the positive
output gap is associated with an increase in inflation, which
in turn triggers a rise in interest rate. In the long run, the
levels of output and consumption rise permanently while both
inflation and interest rates revert back to their steady state
values.

Finally, an unanticipated increase in nominal interest rates
raises the real rate because inflation is slow to adjust. Ac-
cording to the Euler equation, current consumption is mi-
nus the sum of future expected real rates, which means that
consumption and output fall. According to the price setting
equation, a drop in output and consumption leads to a fall
in inflation. Our Phillips curve slope estimate κ̂ = 0.78 im-
plies that the output response is smaller than the inflation
response.
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Figure 4.5: Impulse Responses of Endogenous Variables. The figure
depicts pointwise posterior means and 90% credible bands. The re-
sponses of output are in percent relative to the initial level, whereas
the responses of inflation and interest rates are in annualized per-
centages.

In the remainder of this chapter, we will not focus on pos-
terior estimates per se but rather on the accuracy with which
various posterior samplers can generate approximations of
posterior moments.

4.3 Challenges Due to Irregular Posteriors

The benchmark RWMH-V algorithm performed well on the
posterior distribution of the small-scale New Keynesian DSGE
model. Unfortunately, as the size of the DSGE model in-
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creases (in terms of number of structural parameters and
number of observables in the measurement equation) or if the
DSGE model is estimated under a more diffuse prior distri-
bution, the performance of the RWMH-V algorithm often de-
teriorates. The advanced computational techniques that we
will present subsequently provide an important alternative
to the benchmark algorithm in cases in which the posterior
distribution is very non-elliptical. Irregular posterior distri-
butions tend to arise if the DSGE model is too stylized to be
able to fit the data (misspecification) or if its parameters lack
identification.

This subsection focuses on irregularities arising from iden-
tification problems. Whereas the early literature on DSGE
model estimation paid little attention to identification (be-
cause the models seemed to be tightly parameterized com-
pared to, say, VARs), researchers eventually began to real-
ize that estimation objective functions, including the likeli-
hood function, are often uninformative with respect to im-
portant structural parameters. Canova and Sala (2009), for
instance, documented identification problems in popular New
Keynesian DSGE models. These identification problems may
arise from the data set’s inability to distinguish endogenous
sources of persistence in DSGE models, e.g., due to price ad-
justment costs, from exogenous sources of persistence, i.e.,
highly correlated exogenous shocks. Moreover, they may arise
from the rational expectations equilibrium logic of the model.
A large coefficient ψ1 on inflation in the monetary policy rule
of the small-scale New Keynesian DSGE model implies a low
volatility of inflation in equilibrium. If, in turn, the observed
inflation volatility is very low, it becomes very difficult to de-
termine the policy rule coefficient precisely.

Subsequent work by Iskrev (2010) and Komunjer and Ng
(2011) provides criteria that allow researchers to check ex
ante whether the parameters of a DSGE model are locally
identifiable in population. These criteria are important for
Bayesian analysis because if it turns out that certain pa-
rameters are not locally identifiable, the researcher may want
to add external information (not contained in the estimation
sample Y ) to sharpen inference and should use extra care en-
suring that the output of the posterior simulator is accurate.
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We now highlight some of the challenges for Bayesian com-
putations arising from local or global identification issues.
For illustrative purposes, consider the following stylized state-
space model discussed in Schorfheide (2010):

yt = [1 1]st, st =

[
φ1 0
φ3 φ2

]
st−1 +

[
1
0

]
εt, (4.3)

where
εt ∼ iidN(0, 1).

The mapping between some structural parameters θ = [θ1, θ2]′

and the reduced-form parameters φ = [φ1, φ2, φ3]′ is assumed
to be

φ1 = θ2
1, φ2 = (1− θ2

1), φ3 − φ2 = −θ1θ2. (4.4)

We further assume that the structural parameters are re-
stricted to the unit square:

0 ≤ θ1 ≤ 1, 0 ≤ θ2 ≤ 1.

The first state, s1,t, looks like a typical exogenous driving
force of a DSGE model, e.g., total factor productivity, while
the second state s2,t evolves like an endogenous state vari-
able, e.g., the capital stock, driven by the exogenous process
and past realizations of itself. The mapping from structural
to reduced-form parameters is chosen to highlight the iden-
tification problems endemic to DSGE models. First, θ2 is not
identifiable if θ1 is 0, because θ2 enters the model only multi-
plicatively. Second, letting L denote the lag operator with the
property that Lyt = yt−1, we can write the law of motion of yt
as a restricted ARMA(2,1) process:(

1− θ2
1L
)(

1− (1− θ2
1)L
)
yt =

(
1− θ1θ2L

)
εt. (4.5)

Given θ1 and θ2, we obtain an observationally equivalent pro-
cess by switching the values of the two roots of the autore-
gressive lag polynomial. Choose θ̃1 and θ̃2 such that

θ̃1 =
√

1− θ2
1, θ̃2 = θ1θ2/θ̃1.
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Figure 4.6: Posteriors for Stylized State-Space Model. Intersections
of the solid lines indicate parameter values that were used to gener-
ate the data from which the posteriors are constructed. Left panel:
θ1 = 0.1 and θ2 = 0.5. Right panel: θ1 = 0.8, θ2 = 0.3.

This observational equivalence can cause a bimodality in the
likelihood function.

Figure 4.6 depicts posterior contours for two hypothetical
posteriors based on T = 200 observations each. Both pos-
teriors are based on a prior distribution that is uniform on
the unit square. The contours in the left panel highlight the
local identification problem that arises if θ1 is close to zero.
The data underlying the posterior were generated by setting
θ1 = 0.1 and θ2 = 0.5. Given the small value of θ1, it is diffi-
cult to identify θ2. Thus, the posterior is very flat in the direc-
tion of θ2. The contours depicted in the right panel highlight
the global identification problem. We simulated observations
based on θ = [0.8, 0.3]′. This parameterization is observation-
ally equivalent to θ = [0.6, 0.4]′.

For the MH algorithm to be efficient, the posterior on the
left requires that the algorithm tries to make relatively large
steps in the θ2 direction and small steps in the θ1 direction. As
discussed in Section 4.1, this can be achieved by aligning the
contours of the proposal density of the RWMH-V algorithm
with the contours of the posterior. Sampling from the poste-
rior depicted in the right panel is considerably more challeng-
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ing, because the sampler has to travel from one modal region
to the other, crossing a valley. This turns out to be difficult for
the benchmark RWMH-V algorithm. Blocking, i.e., sampling
from the posterior of θ2|(θ1, Y ) and θ1|(θ2, Y ), can help and
so can a more careful tailoring of the proposal densities for
the conditional distributions.

4.4 Alternative MH Samplers

The benchmark RWMH algorithm can be improved in two
directions. First, it is often helpful to split the parameters
into blocks, and sample from the posterior distribution of
each block, conditional on the most recent draws of all the
other parameters. Block MH algorithms are discussed in Sec-
tion 4.4.1. Second, one can tailor the proposal distribution to
reduce the persistence in the Markov chain. We consider two
algorithms that have this feature: the Metropolis-Adjusted
Langevin algorithm in Section 4.4.2 and the Newton MH al-
gorithm in Section 4.4.3. This list is not exhaustive. For in-
stance, Kohn, Giordani, and Strid (2010) propose an adaptive
MH algorithm in which the proposal distribution is a mixture
of a random walk proposal, an independence proposal, and a
t-copula estimated from previous draws of the chain. While
this is a promising approach, it requires the user to specify a
large set of tuning parameters, which may be daunting to the
applied macroeconomist.

4.4.1 Block MH Algorithm

Despite a careful choice of the proposal distribution q(·|θi−1),
it is natural that the efficiency of the MH algorithm decreases
as dimension of the parameter vector θ increases. This prob-
lem is particularly pronounced for the RWMH-V algorithm, as
we will see below. The success of the proposed random walk
move decreases as the dimension d of the parameter space
increases. One way to alleviate this problem is to break the
parameter vector into blocks. Suppose the dimension of the
parameter vector θ is d. A partition of the parameter space, B,
is a collection of Nblocks sets of indices. These sets are mutu-
ally exclusive and collectively exhaustive. Call the subsectors
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that correspond to the index sets θb, b = 1, . . . , Nblocks. In the
context of a sequence of parameter draws, let θib refer to the
bth block of ith draw of θ and let θi<b refer to the ith draw of
all of the blocks before b and similarly for θi>b. Algorithm 6
describes a generic block MH algorithm.

Algorithm 6 (Block MH Algorithm) Draw θ0 ∈ Θ and then
for i = 1 to N :

1. Create a partition Bi of the parameter vector into Nblocks
blocks θ1, . . . , θNblocks via some rule (perhaps probabilis-
tic), unrelated to the current state of the Markov chain.

2. For b = 1, . . . , Nblocks:

(a) Draw ϑb ∼ q(·|
[
θi<b, θ

i−1
b , θi−1

≥b

]
).

(b) With probability,

α = max

{
p(
[
θi<b, ϑb, θ

i−1
>b

]
|Y )q(θi−1

b , |θi<b, ϑb, θi−1
>b )

p(θi<b, θ
i−1
b , θi−1

>b |Y )q(ϑb|θi<b, θi−1
b , θi−1

>b )
, 1

}
,

set θib = ϑb, otherwise set θib = θi−1
b .

In order to make the Block MH algorithm operational, the
researcher has to decide how to allocate parameters to blocks
in each iteration and how to choose the proposal distribution
q(·|

[
θi<b, θ

i−1
b , θi−1

>b

]
) for parameters of block b.

In general, the optimal block structure is not known out-
side of a few special cases—discussed in, for example, Roberts
and Sahu (1997). A good rule of thumb, however, is that we
want the parameters within a block, say, θb, to be as cor-
related as possible, while we want the parameters between
blocks, say, θb and θ−b, to be ‘‘as independent as possi-
ble,’’ according to Robert and Casella (2004). The intuition
for this rule is the following: if θ1 and θ2 are independent,
then sampling p(θ1|θ2) and p(θ2|θ1) iteratively will directly
produce draws from p(θ1, θ2), because p(θ1|θ2) = p(θ1) and
p(θ2|θ1) = p(θ2). On the other hand, if θ1 and θ2 are of
the same dimension and perfectly correlated, then sampling
p(θ1|θ2) amounts to solving a deterministic function for θ1 in
θ2. The subsequent draw from P (θ2|θ1) will amount to solving
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for θ2 as a function of θ1, that is, θ2 will be the same value as
before and the chain will not move throughout the parameter
space. Unfortunately, picking the ‘‘optimal’’ blocks to mini-
mize dependence across blocks requires a priori knowledge
about the posterior and is therefore often infeasible.

The first three papers in the DSGE model literature to
consider blocking were Curdia and Reis (2009), Chib and
Ramamurthy (2010), and Herbst (2011). Curdia and Reis
(2009) group the parameters by type: economic—those re-
lated to agents’ preferences and production technologies, and
statistical—those governing the exogenous processes driving
the model. The rationale for this grouping is that it is rela-
tively straightforward to design proposal distributions for the
statistical parameters. However, the grouping is unlikely to
be optimal, because, for instance, economic parameters re-
lated to the persistence generated by the internal propagation
mechanism of a DSGE model may be highly correlated with
the parameters of the exogenous processes. Chib and Rama-
murthy (2010) propose grouping parameters randomly. Es-
sentially, the user specifies how many blocks to partition the
parameter vector into and every iteration a new set of blocks
is constructed. While there will be correlated blocks some-
times, the randomization ensures that this feature does not
persist. Key to the algorithm is that the block configuration
is independent of the Markov chain. This is crucial for en-
suring the convergence of the chain. Otherwise, the chain is
said to be adaptive and the asymptotic theory is substantially
more complicated. Herbst (2011) constructs a Block MH algo-
rithm in which the blocking is explicitly based on the posterior
correlation structure which is approximated based on draws
from a burn-in period. He provides evidence that the distribu-
tional blocking procedure outperforms the random blocking.

In the remainder of this book we will use random-block
MH algorithms of the following form:

Algorithm 7 (Random-Block MH Algorithm)

1. Generate a sequence of random partitions {Bi}Ni=1 of the
parameter vector θ into Nblocks equally sized blocks, de-
noted by θb, b = 1, . . . , Nblocks as follows:
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(a) assign an iidU [0, 1] draw to each element of θ;

(b) sort the parameters according to the assigned ran-
dom number;

(c) let the b’th block consist of parameters (b−1)Nblocks,
. . ., bNblocks.1

2. Execute Algorithm 6.

In order to tailor the block-specific proposal distributions,
Chib and Ramamurthy (2010) advocate using an optimization
routine—specifically, simulated annealing—to find the mode
of the conditional posterior distribution. As in the RWMH-V
algorithm, the variance of the proposal distribution is based
on the inverse Hessian of the conditional log posterior den-
sity evaluated at the mode. This algorithm is called Tailorized
Random Block MH (TaRBMH) algorithm. While the TaRBMH
algorithm is very successful in reducing the persistence of
the Markov chain relative to the benchmark RWMH-V algo-
rithm, the downside is that the algorithm is very slow due to
the likelihood evaluations required to execute the simulated
annealing step and the computation of the Hessian.

4.4.2 Metropolis-Adjusted Langevin Algorithm

A natural evolution from the RWMH, which uses only the level
of the (unnormalized) posterior, is the Metropolis-Adjusted
Langevin (MAL) algorithm, which also incorporates informa-
tion from the slope of the posterior. The MAL algorithm has a
long history, dating back to Roberts and Tweedie (1992) and
Phillips and Smith (1994). The location vector of the proposal
distribution (4.1) is given by

µ(θi) = θi−1 +
c1
2

∂

∂θ
ln p(θi−1|Y )

∣∣∣∣
θ=θi−1

, (4.6)

that is θi−1 is adjusted by a step in the direction of the gradi-
ent of the log posterior density function. Roberts and Rosen-
thal (1998) show that the optimal rate of acceptance is 57% in

1If the number of parameters is not divisible by Nblocks, then the size of
a subset of the blocks has to be adjusted.
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the special case when the elements of θ are uncorrelated. The
higher acceptance rate suggests improved statistical perfor-
mance relative to the RWMH algorithm. Intuitively, the MAL
algorithm pushes the chain toward regions of higher probabil-
ity density, where most of the draws should lie. A benchmark
choice for the scale matrix is Σ(θi−1) = c22I. Thus, the algo-
rithm has two tuning parameters, c1 and c2, in addition to
the degrees of freedom of the t distribution, ν.

Unfortunately, in a multidimensional setting it becomes
difficult to scale step size c1 as parameters tend to have dif-
ferent magnitudes. Moreover, simply using the gradient ig-
nores any potential relationship between the parameters, the
knowledge of which is informative in any MCMC algorithm. It
turns out (see, for example, Roberts and Stramer (2002)) that
it is extremely helpful to adjust (or precondition) the proposal
distribution as follows:

µ(θi−1) = θi−1 +
c1
2
M1

∂

∂θ
ln p(θi−1|Y )

∣∣∣∣
θ=θi−1

, (4.7)

Σ(θt−1) = c22M2.

One standard practice is to set M1 = M2 = M , with

M = −
[

∂

∂θ∂θ′
ln p(θ|Y )

∣∣∣∣
θ=θ̂

]−1

, (4.8)

where θ̂ is the mode of the posterior distribution obtained
using a numerical optimization routine. The use of the Hes-
sian at the mode in a sense accounts for the ‘‘average’’ re-
lationships between the parameters. The mean µ(θi) takes
(approximately) the form of a Newton step in a numerical op-
timization routine. If the log posterior density has an elliptical
shape, then the preconditioned MAL (p-MAL) algorithm can
be quite efficient. When examining the effectiveness of this
algorithm below, we abstract from the difference between the
Hessian and the posterior covariance, Vπ[θ], and simply use
the latter:

MAL : M1 = M2 = Vπ[θ].
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4.4.3 Newton MH Algorithm

The connection between posterior simulation and Newtonian
optimization is more closely exploited by Qi and Minka (2002)
in an algorithm called Newton MH algorithm. Their algorithm
replaces the Hessian evaluated at the posterior mode θ̂ by
the Hessian evaluated at θi−1. Using the general form of the
proposal density in (4.1) the location vector and scale matrix
are given by

µ(θi−1) = θi−1 − s
[

∂

∂θ∂θ′
ln p(θ|Y )

∣∣∣∣
θ=θi−1

]−1

(4.9)

× ∂

∂θ
ln p(θi−1|Y )

∣∣∣∣
θ=θi−1

Σ̂(θi−1) = −c22
[

∂

∂θ∂θ′
ln p(θ|Y )

∣∣∣∣
θ=θi−1

]−1

.

The constant s can be interpreted as the size of the Newton
step. If the log posterior is quadratic, i.e., the posterior distri-
bution is normal, the posterior mode can be reached in one
step by setting s = 1. Thus, for i > 2 the mean of the proposal
distribution is equal to the mean of the target distribution and
the algorithm turns into an independence MH algorithm.

In DSGE model applications the posterior distribution is
non-Gaussian and the mean µ(θi−1) differs from the poste-
rior mode and varies with i. In this case, it is useful to let
s, sometimes called the learning rate, be stochastic (indepen-
dently of θi−1):

c1 = 2s, s ∼ iidU [0, s̄],

where s̄ is a tuning parameter.2 This means that average step-
size is s̄/2. For our simulations below, we will set the hyper-
parameters of the algorithm

Newton MH : s̄ = 2, c2 = 1.

2As long as s and θi−1 are independent, the Markov transition implied
will still preserve the posterior as its invariant distribution. This can seen by
thinking of an augmented posterior p(s, θ|Y ) and casting the algorithm as
the so-called Metropolis-within-Gibbs.
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While the RWMH algorithm blindly searches through the
parameter space looking for areas of high posterior density,
the proposal densities of the MAL algorithm and the New-
ton MH algorithm explicitly account for the slope and the
curvature of the log posterior density. This leads to a reduc-
tion in the persistence of the Markov chain and, for a given
number of draws, to more accurate Monte Carlo approxima-
tions of posterior moments. Unfortunately, there is a signifi-
cant computational cost associated with evaluating the first
and second derivatives of the log posterior. For DSGE mod-
els, these derivatives cannot be obtained analytically. Herbst
(2011) uses matrix calculus to derive an efficient algorithm
for computing these objects for linearized DSGE models. In
some applications, even brute-force numerical differentiation
can produce reasonably sized chains without taking too much
time.

It should be noted that the we could potentially extend
the set of algorithms even further. For example, Hamiltonian
Monte Carlo (HMC)—see Neal (2010)—uses the gradient to
generate proposals in a form suggested by Hamiltonian dy-
namics. Girolami and Calderhead (2011) extend both MAL
and HMC to explicitly account for the Riemann geometric
structure of the posterior. Preliminary trials with both of these
algorithms suggested, that, yes, they represented a statistical
improvement from the algorithms presented above. However,
the computational burden associated with them outweighed
any gains. For example, computing the information matrix—
a requirement for the Riemann-based method—of a DSGE is
still too cumbersome to be used within an MH algorithm.
Computational gains in these kinds of calculations, a subject
of on–going research, might make them more feasible and,
thus, preferred.

4.5 Comparing the Accuracy of MH Algorithms

We now compare the accuracy of the MH samplers discussed
in the preceding sections. As a measure of accuracy we con-
sider the small-sample inefficiency factor InEffN computed
based on Nrun = 50 independent runs (initialized based on
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draws from the posterior distribution of θ) of each MCMC al-
gorithm considered. We also compare the small-sample vari-
ance of θ̄ across the runs to Newey-West HAC[θ̄] estimates
computed from each of the chains. The set of algorithms in-
cludes the benchmark 1-Block RWMH-V algorithm; a 1-Block
RWMH-I algorithm in which the scale matrix of the proposal
distribution is set to the identity matrix, i.e., Σ̂ = I; 3-Block
RWMH-V and RWMH-I algorithms; a 3-Block MAL algorithm;
and a 3-Block Newton MH algorithm.

The RWMH-I algorithms do not require any specific knowl-
edge of the posterior distribution, which is attractive because
it is easy to implement. In particular, this choice does not re-
quire a preliminary numerical maximization of the posterior,
which may be difficult to execute if the posterior is very non-
elliptical. The downside of choosing the identity matrix is that
it ignores the scaling of the parameters and the orientation of
the posterior contours. If the prior distribution is proper and
the marginal distributions are appropriately scaled, then the
identity matrix could be replaced by a diagonal matrix with
the prior variances on the diagonal.

The multi-block algorithms all use the random blocking
procedure of Algorithm 6. With the exception of the RWMH-I
algorithm, we use the posterior covariance matrix associated
with the parameters of each block to specify the scale matrix
of the proposal distribution. For each algorithm we select the
tuning constants to achieve an acceptance rate between 30%
and 50%. For each run of the six algorithms we generate N =
100, 000 draws from the posterior distribution. The first N0 =
50, 000 draws are discarded and the remaining 50,000 draws
are used to compute Monte Carlo averages. We subsequently
present results for the risk-aversion parameter τ . Results for
the other parameters are qualitatively similar.

The fastest run time [hh:mm:ss], the average acceptance
rate, and the tuning constants for each algorithm are reported
in Table 4.2. The 1-Block RWMH algorithms are the fastest
because they only require one likelihood evaluation per draw.
The 3-Block RWMH-I and RWMH-V algorithms are approx-
imately three times slower than their 1-block counterparts
because they require three likelihood evaluations and some
additional time to assign parameters to blocks. MAL and New-
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Table 4.2: Run Times and Tuning Constants

Algorithm Run Time Acceptance Tuning
[hh:mm:ss] Rate Constants

1-Block RWMH-I 00:01:13 0.28 c = 0.015

1-Block RWMH-V 00:01:13 0.37 c = 0.400

3-Block RWMH-I 00:03:38 0.40 c = 0.070

3-Block RWMH-V 00:03:36 0.43 c = 1.200

3-Block MAL 00:54:12 0.43 c1 = 0.400

c2 = 0.750

3-Block Newton MH 03:01:40 0.53 s̄ = 0.700

c2 = 0.600

Notes: In each run we generate N = 100, 000 draws. We report the
fastest run time and the average acceptance rate across Nrun = 50

independent Markov chains.

ton MH are computationally the most demanding algorithms
because they rely on the evaluation of the Hessian associated
with the log posterior density.

Before examining the accuracy of the Monte Carlo ap-
proximations, we will take a look at the persistence of the
Markov chains generated by the six algorithms. For each al-
gorithm, the top panel of Figure 4.7 depicts the autocorre-
lation function up to lag l = 40. Each autocorrelation func-
tion is computed based on the sequence of draws {τ i}Ni=N0+1

from a single chain. The choice of proposal distribution for
the MH algorithm has a profound effect on the persistence
of the chain. The comparison between the 1-Block RWMH-I
and the 1-Block RWMH-V algorithms highlights that aligning
the contours of the proposal distribution with the contours of
the posterior distribution (at the mode) leads to a drastic re-
duction in the persistence. While the chain generated by the
1-Block RWMH-I algorithm is nearly perfectly correlated even
at a displacement of 40, the autocorrelation of the RWMH-V
chain drops below 0.5 after about 28 iterations of the algo-
rithm.

Once the number of blocks is increased from one to three
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Figure 4.7: Autocorrelation Functions and Inefficiency Factors. The
autocorrelation functions in the top panel are computed based on a
single run of each algorithm. The small-sample inefficiency factors
in the bottom panel are computed based on Nrun = 50 independent
runs of each algorithm.

the persistence of the Markov chains generated by the RWMH-
I and RWMH-V algorithms drops noticably. Thus, blocking in-
deed has the desired effect. The 3-Block RWMH-I algorithm,
however, still performs worse than the 1-Block RWMH-V al-
gorithm, highlighting the importance of well-tailored proposal
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densities. The autocorrelation of the 3-Block RWMH-V algo-
rithm falls below 0.5 after about thirteen iterations. Finally,
the MAL and Newton MH algorithms yield very low serial cor-
relation but are also quite costly computationally, as the run
times in Table 4.2 indicate.

The second panel of Figure 4.7 shows an estimate of the
small-sample inefficiency factor InEffN of each sampler, again
for the relative risk aversion parameter. Recall that this ineffi-
ciency factor is computed as V[τ̄ ]/(Vπ[τ ]/N). The numerator
is the small-sample variance of τ̄ across chains and the de-
nominator is the Monte Carlo variance associated with the (in-
feasible) direct sampling from the posterior. The inefficiency
measures are qualitatively consistent with the autocorrela-
tion plot in the top panel of the figure. The inefficiency factor
for the 1-Block RWMH-I algorithm is about 18,500, meaning
that the 100,000 draws that we generated deliver a Monte
Carlo approximation that is about as accurate as an approxi-
mation obtained from 5.5 iid draws. The 1-Block RWMH-V al-
gorithm has an inefficiency factor of 88 and blocking reduces
it to 41. Thus, the 100,000 draws obtained from the 3-Block
RWMH-V algorithm are equivalent to 2,440 iid draws.

Based on the total number of draws, the run time of the
algorithm, and the inefficiency factor InEffN which measures
the Monte Carlo variance associated with the MH algorithm
relative to the Monte Carlo variance associated with iid sam-
pling, we can determine how many iid-equivalent draws the
algorithm produces per unit of time:

iid-equivalent draws per second

=
N

Run Time [seconds]
· 1

InEffN
.

Accounting for the run time, the 3-Block RWMH-V algorithm
generates about 5.65 iid-equivalent draws from the posterior
distribution of τ per second, whereas the 1-Block RWMH-
V algorithm produces 7.76 iid-equivalent draws per second.
Thus, while blocking reduces the persistence in the chain,
there is also a computational cost associated with the addi-
tional likelihood evaluations. On balance, in this particular
application the one-block algorithm is marginally more ef-
fective in generating iid-equivalent draws per second than
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Figure 4.8: Small-Sample Variance versus HAC Estimates. Each
panel contains scatter plots of the small-sample variance V[θ̄] com-
puted across multiple chains (x-axis) vs. the HAC[h̄] estimates of
Ω(θ)/N (y-axis) computed for each chain based on (3.72) with
L = 10, 000. The solid line plots the 45 degree line.

the three-block algorithm. The MAL and Newton MH algo-
rithms have low inefficiency ratios of 12 and 36, respectively,
which translate into 1.24 and 0.13 iid-equivalent draws per
second due to the large run times of these two algorithms.
Thus, in terms of iid-equivalent draws per second, the bench-
mark 1-Block RWMH-V algorithm is in fact the most effi-
cient. However, in our experience, in applications with a high-
dimensional parameter space, blocking is advantageous.

Finally, in Figure 4.8 we compare the small-sample vari-
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ance V(τ̄) computed as the sample variance of τ̄ across mul-
tiple chains to the HAC estimates HAC[τ̄ ] computed for each
chain based on (3.72) with L = 10, 000. If the chains have
converged and the central limit theorem is operational, then
the HAC estimates should be very close to the small-sample
variance of τ̄ . It turns out that this is indeed the case for the
small-scale New Keynesian DSGE model: by and large the
estimates line up along the 45-degree line. The variation in
the vertical dimension reflects the variability of the HAC es-
timates across the independent chains. On average, the HAC
estimates slightly underestimate the variability of the Monte
Carlo approximation.

4.6 Evaluation of the Marginal Data Density

As discussed in Chapter 3, marginal data densities play an
important role in Bayesian model selection and averaging.
The marginal data density of a model M is defined as

p(Y |M) =

∫
p(Y |θ,M)p(θ|M)dθ (4.10)

and it is used to turn prior model probabilities into pos-
terior model probabilities; see Equation (3.31). In general,
the evaluation of the marginal data density involves a high-
dimensional integral. Numerical approximations can be ob-
tained by post-processing the output of MH samplers. In
this section we will review the approximations proposed by
Geweke (1999), Sims, Waggoner, and Zha (2008), and Chib
and Jeliazkov (2001) and assess their accuracy in the context
of the small-scale New Keynesian DSGE models. Additional
algorithms to approximate marginal data densities and nu-
merical illustrations are provided in Ardia, Bastürk, Hooger-
heide, and van Dĳk (2012). To simplify the notation we will
omit the model indicator M from now on from the condition-
ing set.

4.6.1 Harmonic Mean Estimators

Starting point for the harmonic mean estimator of p(Y ) (or re-
ciprocal importance sampling) is the slightly rewritten version
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of Bayes Theorem

1

p(Y )
=

1

p(Y |θ)p(θ)p(θ|Y ). (4.11)

We assume that the dimension of the parameter vector is
d. Note that we can multiply both sides of this equation by
a function f(θ) with the property that

∫
f(θ)dθ = 1. After

integrating the left-hand side and the right-hand side with
respect to θ we obtain

1

p(Y )
=

∫
f(θ)

p(Y |θ)p(θ)p(θ|Y )dθ. (4.12)

Recall that the MH samplers deliver a sequence of draws
{θi}Ni=1 from the posterior distribution p(θ|Y ). This suggests
that a Monte Carlo approximation of the marginal data den-
sity can be obtained as

p(Y ) ≈
[

1

N −N0

N∑
i=N0+1

f(θi)

p(Y |θi)p(θi)

]−1

, (4.13)

whereN0 is the size of the discarded burn-in sample. The con-
vergence of the Monte Carlo average depends on the existence
of the moments of the ratio of f(θi)/[p(Y |θi)p(θi)]. Draws of
θi associated with a low likelihood value can generate large
outliers and invalidate the convergence of the Monte Carlo
average. We will now discuss two specific choices of f(θ). The
general idea is to construct a function that approximates the
choice of the posterior distribution and is equal to zero for pa-
rameters that are associated with a very low posterior density.

Geweke’s Choice of f(·). If the posterior distribution is uni-
modal and the contours are elliptical, then the density of
a truncated normal distribution can serve as f(·). Geweke
(1999) proposes to proceed as follows. Let θ̄ and V̄θ be nu-
merical approximations of the posterior mean and covariance
matrix of θ computed from the output of the posterior sam-
pler. Now define f(θ) as

f(θ) = τ−1(2π)−d/2|V̄θ|−1/2 exp
[
−0.5(θ − θ̄)′V̄ −1

θ (θ − θ̄)
]

×I
{

(θ − θ̄)′V̄ −1
θ (θ − θ̄) ≤ F−1

χ2
d

(τ)
}
, (4.14)
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where I{x ≤ a} is the indicator function that equals one if
x ≤ a and is zero otherwise and F−1

χ2
d

(τ) is the inverse cdf of
a χ2 random variable with d degrees of freedom.

The threshold τ is a tuning parameter. A low value for τ
eliminates θis which lie in tails of the posterior. On the one
hand, this truncation reduces the influence that outliers can
have on the average and thereby lowers the variability of the
estimator. On the other hand, the more draws that are ex-
cluded (i.e., f(θi) = 0) in (4.13), the higher the variability
the estimator owing to the smaller sample used. In situations
where the posterior is approximately normal, it is better to use
a higher τ . Usually, when the posterior has already been sam-
pled, the associated posterior kernel {p(Y |θi)p(θi)}Ni=1 has
already been stored, making the evaluation of (4.13) straight-
forward. For applications it is recommended to try different
values of τ , to assess the stability of the estimator.

Sims, Waggoner, and Zha’s Choice of f(·). If the posterior is
non-elliptical, the ratio f(θ)/[p(Y |θ)p(θ)] can vary substan-
tially across the parameter space, leading to poor estimates
from a multivariate Gaussian f(·). Sims, Waggoner, and Zha
(2008), hereafter SWZ, propose an alternative function f(·).
Instead of centering the function at the mean of the poste-
rior distribution, SWZ center their f(·) at a (or the) mode θ̂.
If a distribution is multimodal, the posterior mean may be
located in an area of very low density, leading to a severe
mismatch between f(·) and the posterior. Using draws from
the posterior, construct the scale matrix

V̂θ =
1

N

N∑
i=1

(θi − θ̂)(θi − θ̂)′, (4.15)

define the distance

r(θ) =

√
(θ − θ̂)′V̂ −1

θ (θ − θ̂), (4.16)

and let ri = r(θi). The function f(·) is constructed in four
steps.

First, SWZ construct a heavy-tailed univariate density, g(·),
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to match the behavior of the posterior:

g(r) =

{
νrν−1

bν−aν if r ∈ [a, b]

0 otherwise
. (4.17)

Letting c1, c10, and c90 be the first, 10th and 90th percentiles
of the empirical distribution of {ri}Ni=1, respectively, the hy-
perparameters of g(r) are chosen as follows:

ν =
ln(0.1/0.9)

ln(c10/c90)
, a = c1, and b =

c90

0.91/ν
.

The choice of ν and b implies that the 10th and 90th per-
centiles of g(·) are identical to the corresponding percentiles
of the empirical distribution of {ri}Ni=1 if a = 0. Because c1
is non-zero, albeit potentially small, these percentiles will not
match perfectly.

Second, SWZ define the density f̃(r) as

f̃(r) =
Γ(d/2)

2πd/2|Vθ̂|1/2
g(r)

rd−1
, (4.18)

where Γ(x) is the Gamma function and d the dimension of
the parameter vector θ. Third, because potential multimodal-
ity implies that p(Y |θ)p(θ) can be very small in regions of
the parameter space where f̃(·) is relatively high, the lowest
1 − q proportion of draws are excluded from the evaluation
of (4.13). Denote the associated cutoff value for the log pos-
terior density kernel by L1−q. Recall that the function g(r)
was truncated at the boundary of the interval [a, b] Thus, the
overall truncation is

I(θ) = I {ln p(Y |θ)p(θ) > L1−q} × I {r(θ) ∈ [a, b]} . (4.19)

Unlike Geweke’s estimator, the probability that I(θ) equals
one can only be computed through simulation, because it
relies on information from the posterior and not only on the
properties f̃(·) per se. An estimate can be obtained by:

τ̂ = P̂{I(θ) = 1} =
1

J

J∑
j=1

I(θj), θj ∼ iid f̃(θ).
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Fourth, combining f̃(r) and I(θ), we obtain the approximat-
ing function

fSWZ(θ) = τ̂−1f̃

(√
(θ − θ̂)′V̂ −1

θ (θ − θ̂)
)
I(θ). (4.20)

There are two drawbacks associated with fSWZ(θ). First, it
can be quite noisy, requiring a large J to achieve a stable
estimate τ̂ . Second, computationally it can be quite costly to
compute τ̂ because this requires the evaluation of the log-
likelihood function of the DSGE model. Still, if the posterior
exhibits multimodality and/or fat tails, the SWZ estimator
can be much more reliable than Geweke’s estimator.

4.6.2 Chib and Jeliazkov’s Estimator

While Geweke’s (1999) and SWZ’s (2008) harmonic mean es-
timators could be computed for the output of any posterior
simulator, the following method proposed by Chib and Jeli-
azkov (2001) is closely tied to the MH algorithm (Algorithm 5).
We start by rewriting Bayes Theorem as follows:

p(Y ) =
p(Y |θ̃)p(θ̃)
p(θ̃|Y )

. (4.21)

Note that this relationship holds for any parameter value θ̃.
We will take θ̃ to be a parameter value that is associated with
a high posterior density, e.g., the posterior mode. In order
to make the formula operational, we need to numerically ap-
proximate the value of the posterior density p(θ̃|Y ).

Using the notation introduced in Section 3.5, the proposal
density for a transition from θ to θ̃ is given by q(θ̃|θ). Moreover,
the probability of accepting the proposed draw is

α(θ̃|θ) = min

{
1,
p(θ̃|Y )q(θ|θ̃)
p(θ|Y )q(θ̃|θ)

}
. (4.22)

Using the definition of α(θ̃|θ) we can express the marginal
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density of an accepted draw as3∫
α(θ̃|θ)q(θ̃|θ)p(θ|Y )dθ (4.23)

=

∫
min

{
1,
p(θ̃|Y )q(θ|θ̃)
p(θ|Y )q(θ̃|θ)

}
q(θ̃|θ)p(θ|Y )dθ

= p(θ̃|Y )

∫
q(θ|θ̃) min

{
p(θ|Y )q(θ̃|θ)
p(θ̃|Y )q(θ|θ̃)

, 1

}
dθ

= p(θ̃|Y )

∫
q(θ|θ̃)α(θ|θ̃)dθ.

In turn, the posterior density at θ̃ can be approximated as

p̂(θ̃|Y ) =
1
N

∑N
i=1 α(θ̃|θi)q(θ̃|θi)

1
J

∑J
j=1 α(θj |θ̃)

. (4.24)

Here {θi}Ni=1 is the sequence of draws generated with the
MH algorithm and {θj}Jj=1 are draws from q(θ|θ̃) that can be
generated by direct sampling. The final approximation of the
marginal data density is given by

p̂CS(Y ) =
p(Y |θ̃)p(θ̃)
p̂(θ̃|Y )

. (4.25)

Just as the SWZ modified harmonic mean estimator, the CS
estimator also requires the user evaluate the log posterior
kernel J additional times, which can be expensive for large
models.

4.6.3 Numerical Illustration

We estimate log marginal data density of the small-scale New
Keynesian DSGE model using 50, 000 draws from the pos-
terior from Nrun = 50 separate runs of the RWMH-V algo-
rithm (we set N = 100, 000 and discard the first N0 = 50, 000

3Recall that for the RWMH algorithm q(θ̃|θ) = q(θ|θ̃) and the formulas
simplify considerably.
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Table 4.3: MH-Based Marginal Data Density Estimates

Model Mean(ln p̂(Y )) Std. Dev.(ln p̂(Y ))
Geweke (τ = 0.5) -346.17 0.03
Geweke (τ = 0.9) -346.10 0.04
SWZ (q = 0.5) -346.29 0.03
SWZ (q = 0.9) -346.31 0.02
Chib and Jeliazkov -346.20 0.40

Notes: Table shows mean and standard deviation of log marginal
data density estimators, computed over Nrun = 50 runs of the
RWMH-V sampler using N = 100, 000 draws, discarding a burn-in
sample ofN0 = 50, 000 draws. The SWZ estimator uses J = 100, 000

draws to compute τ̂ , while the CJ estimators uses J = 100, 000 to
compute the denominator of p̂(θ̃|Y ).

draws). Table 4.3 displays the mean and standard deviation
across the fifty runs for each log MDD approximation. For the
harmonic mean estimators we use two different truncation
probabilities. All the algorithms give roughly the same an-
swer, although the Chib and Jeliazkov approximation is much
more variable. Moving to the modified harmonic mean estima-
tors, the SWZ estimate is essentially robust to the choice of
truncation. The mean of Geweke’s estimator slightly changes
with truncation τ , consistent with the observation that the
DSGE posterior has slightly fatter tails than a multivariate
normal, which the SWZ is less affected by. Overall the SWZ
harmonic mean estimator has the smallest standard devi-
ation, albeit at a higher computational cost than Geweke’s
estimator.
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Sequential Monte Carlo Methods

Importance sampling has been rarely used in DSGE model
applications. A key difficulty with Algorithm 4, in particular in
high-dimensional parameter spaces, is to find a good proposal
density. In this chapter, we will explore methods in which
proposal densities are constructed sequentially. Suppose φn,
n = 1, . . . , Nφ, is a sequence that slowly increases from zero
to one. We can define a sequence of tempered posteriors as

πn(θ) =
[p(Y |θ)]φnp(θ)∫
[p(Y |θ)]φnp(θ)dθ n = 0, . . . , Nφ, φn ↑ 1. (5.1)

Provided that φ1 is close to zero, the prior density p(θ) may
serve as an efficient proposal density for π1(θ). Likewise, the
density πn(θ) may be a good proposal density for πn+1(θ).
Sequential Monte Carlo (SMC) algorithms try to exploit this
insight efficiently.

SMC algorithms were initially developed to solve filtering
problems that arise in nonlinear state-space models. We will
consider such filtering applications in detail in Chapter 8.
Chopin (2002) showed how to adapt the particle filtering tech-
niques to conduct posterior inference for a static parameter
vector. Textbook treatments of SMC algorithms can be found,
for instance, in Liu (2001) and Cappé, Moulines, and Ryden
(2005). The volume by Doucet, de Freitas, and Gordon (2001)
discusses many applications and practical aspects of SMC.
Creal (2012) provides a recent survey focusing on SMC appli-
cations in econometrics.

The first paper that applied SMC techniques to posterior
inference in DSGE models is Creal (2007). He presents a ba-
sic SMC algorithm and uses it for posterior inference in a
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small-scale DSGE model that is similar to the model in Sec-
tion 1.1. Herbst and Schorfheide (2014) developed the al-
gorithm further, provided some convergence results for an
adaptive version of the algorithm building on the theoretical
analysis of Chopin (2004), and showed that a properly tai-
lored SMC algorithm delivers more reliable posterior inference
for large-scale DSGE models with multimodal posteriors than
the widely used RMWH-V algorithm. Much of the exposition in
this chapter borrows from Herbst and Schorfheide (2014). An
additional advantage of the SMC algorithms over MCMC algo-
rithms, on the computational front, highlighted by Durham
and Geweke (2014), is that SMC is much more amenable to
parallelization. Durham and Geweke (2014) show how to im-
plement an SMC algorithm on a graphical processing unit
(GPU), facilitating massive speed gains in estimations. While
the evaluation of DSGE likelihoods is not (yet) amenable to
GPU calculation, we will show how to exploit the parallel
structure of the algorithm.

We present a generic SMC algorithm in Section 5.1. Fur-
ther details on the implementation of the algorithm, the adap-
tive choice of tuning constants, and the convergence of the
Monte Carlo approximations constructed from the output of
the algorithm are provided in Section 5.2. Finally, we apply
the algorithm to the small-scale New Keynesian DSGE model
in Section 5.3. Because we will generate draws of θ sequen-
tially, from a sequence of posterior distributions {πn(θ)}Nφn=1,
it is useful to equip the parameter vector with a subscript n.
Thus, θn is associated with the density πn(·).

5.1 A Generic SMC Algorithm

Just like the basic importance sampling algorithm, SMC algo-
rithms generate weighted draws from the sequence of posteri-
ors {πn}Nφn=1 in (5.1). The weighted draws are called particles.
We denote the overall number of particles by N . At any stage
the posterior distribution πn(θ) is represented by a swarm
of particles {θin,W i

n}Ni=1 in the sense that the Monte Carlo
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average

h̄n,N =
1

N

N∑
i=1

W i
nh(θi)

a.s.−→ Eπ[h(θn)]. (5.2)

Starting from stage n − 1 particles {θin−1,W
i
n−1}Ni=1 the al-

gorithm proceeds in three steps, using Chopin (2004)’s ter-
minology: correction, that is, reweighting the stage n− 1 par-
ticles to reflect the density in iteration n; selection, that is,
eliminating a highly uneven distribution of particle weights
(degeneracy) by resampling the particles; and mutation, that
is, propagating the particles forward using a Markov transi-
tion kernel to adapt the particle values to the stage n bridge
density.

The sequence of posteriors in (5.1) was obtained by tem-
pering the likelihood function, that is, we replaced p(Y |θ) by
[p(Y |θ)]φn . Alternatively, one could construct the sequence of
posteriors by sequentially adding observations to the likeli-
hood function, that is, πn(θ) is based on p(Y1:bφnTc|θ):

π(D)
n (θ) =

p(Y1:bφnTc)p(θ)∫
p(Y1:bφnTc)p(θ)dθ

, (5.3)

where bxc is the largest integer that is less than or equal to
x. This data tempering is particularly attractive in sequential
applications. Because individual observations are not divisi-
ble, the data tempering approach is slightly less flexible. This
may matter for the early stages of the SMC sampler in which
it may be advantageous to add information in very small in-
crements. The subsequent algorithm is presented in terms of
likelihood tempering. However, we also discuss the necessary
adjustments for data tempering.

The SMC algorithm provided below relies on sequences of
tuning parameters. To make the exposition more transpar-
ent, we begin by assuming that these sequences are provided
ex ante. Let {ρn}Nφn=1 be a sequence of zeros and ones that
determine whether the particles are resampled in the selec-
tion step and let {ζn}Nφn=1 of tuning parameters for the Markov
transition density in the mutation step. The adaptive choice
of these tuning parameters will be discussed in Section 5.2.2.
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Algorithm 8 (Generic SMC with Likelihood Tempering)

1. Initialization. (φ0 = 0). Draw the initial particles from

the prior: θi1
iid∼ p(θ) and W i

1 = 1, i = 1, . . . , N .

2. Recursion. For n = 1, . . . , Nφ,

(a) Correction. Reweight the particles from stage n−1
by defining the incremental weights

w̃in = [p(Y |θin−1)]φn−φn−1 (5.4)

and the normalized weights

W̃ i
n =

w̃inW
i
n−1

1
N

∑N
i=1 w̃

i
nW

i
n−1

, i = 1, . . . , N. (5.5)

An approximation of Eπn [h(θ)] is given by

h̃n,N =
1

N

N∑
i=1

W̃ i
nh(θin−1). (5.6)

(b) Selection.
Case (i): If ρn = 1, resample the particles via multi-
nomial resampling. Let {θ̂}Ni=1 denote N iid draws
from a multinomial distribution characterized by sup-
port points and weights {θin−1, W̃

i
n}Ni=1 and setW i

n =
1.
Case (ii): If ρn = 0, let θ̂in = θin−1 and W i

n = W̃ i
n,

i = 1, . . . , N . An approximation ofEπn [h(θ)] is given
by

ĥn,N =
1

N

N∑
i=1

W i
nh(θ̂in). (5.7)

(c) Mutation. Propagate the particles {θ̂i,W i
n} viaNMH

steps of a MH algorithm with transition density θin ∼
Kn(θn|θ̂in; ζn) and stationary distribution πn(θ) (see
Algorithm 9 below for details). An approximation of
Eπn [h(θ)] is given by

h̄n,N =
1

N

N∑
i=1

h(θin)W i
n. (5.8)
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3. For n = Nφ (φNφ = 1) the final importance sampling
approximation of Eπ[h(θ)] is given by:

h̄Nφ,N =
N∑
i=1

h(θiNφ)W i
Nφ
. (5.9)

5.1.1 Three-Step Particle Propagation

A stylized representation of the propagation of the particles
is depicted in Figure 5.1. Each dot corresponds to a particle
and its size indicates the weight. At stage n = 0, N = 21
draws are generated from a U [−10, 10] distribution and each
particle receives the weight W i

0 = 1. At stage n = 1 the parti-
cles are reweighted during the correction step (the size of the
dots is no longer uniform) and the particle values are modi-
fied during the mutation step (the location of the dots shifted).
The bottom of the figure depicts the target posterior density.
As n and φn increase, the target distribution becomes more
concentrated. The concentration is mainly reflected in the in-
creased weight of the particles with values between −3 and 3.
The figure is generated under the assumption that ρn equals
one for n = 3 and zero otherwise. Thus, in iteration n = 3 the
resampling step is executed and the uneven particle weights
are equalized. While the selection step generates twenty-one
particles with equal weights, there are only six distinct par-
ticle values, four of which have multiple copies. The subse-
quent mutation step restores the diversity in particle values.

5.1.2 A Closer Look at the Algorithm

Algorithm 8 is initialized for n = 0 by generating iid draws
from the prior distribution. This initialization works well as
long as the prior is sufficiently diffuse to assign non-trivial
probability mass to the area of the parameter space in which
the likelihood function peaks. There do exist papers in the
DSGE model estimation literature in which the posterior mean
of some parameters is several prior standard deviations away
from the prior mean. For such applications it might be neces-
sary to choose φ0 > 0 and to use an initial distribution that is
also informed by the tempered likelihood function [p(Y |θ)]φ0 .
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Figure 5.1: SMC Evolution of Particles. The vertical location of each
dot represents the particle value and the diameter of the dot repre-
sents its weight. The densities at the bottom represent the tempered
target posterior πn(·). C is Correction; S is Selection; and M is Mu-
tation.

If the particles are initialized based on a more general dis-
tribution with density g(θ), then for n = 1 the incremental
weights have to be corrected by the ratio p(θ)/g(θ).

The correction step reweights the stage n − 1 particles to
generate an importance sampling approximation of πn. Be-
cause the parameter value θi does not change in this step, no
further evaluation of the likelihood function is required. The
likelihood value p(Y |θin−1) was computed as a by-product of
the mutation step in iteration n − 1. As discussed in Sec-
tion 3.4, the accuracy of the importance sampling approxima-
tion depends on the distribution of the particle weights W̃ i

n.
The more uniformly the weights are distributed, the more ac-
curate the approximation. If likelihood tempering is replaced
by data tempering, then the incremental weights w̃in in (5.4)
have to be defined as

w̃i(D)
n = p(Y(bφnTc+1):bφnTc|θ). (5.10)

The correction steps deliver a numerical approximation of
the marginal data density as a by-product. Using arguments
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that we will present in more detail in Section 5.2.4 below, it
can be verified that the unnormalized particle weights con-
verge under suitable regularity conditions as follows:

1

N

N∑
i=1

w̃inW
i
n−1 (5.11)

a.s.−→
∫

[p(Y |θ)]φn−φn−1
[p(Y |θ)]φn−1p(θ)∫
[p(Y |θ)]φn−1p(θ)dθ

dθ

=

∫
[p(Y |θ)]φnp(θ)dθ∫

[p(Y |θ)]φn−1p(θ)dθ
.

Thus, the data density approximation is given by

p̂SMC(Y ) =

Nφ∏
n=1

(
1

N

N∑
i=1

w̃inW
i
n−1

)
. (5.12)

Computing this approximation does not require any addi-
tional likelihood evaluations. The selection step equalizes the
particle weights if its distribution becomes very uneven. In
Algorithm 8 the particles are resampled whenever the indi-
cator ρn is equal to one. On the one hand, resampling intro-
duces noise in the Monte Carlo approximation, which makes
it undesirable. On the other hand, resampling equalizes the
particle weights and therefore increases the accuracy of the
correction step in the subsequent iteration. In Algorithm 8
we use multinomial resampling. Alternative resampling algo-
rithms are discussed in Section 5.2.3 below. The mutation
step changes the values of the particles from θin−1 to θin. To
understand the importance of the mutation step, consider
what would happen without this step. For simplicity, sup-
pose also that ρn = 0 for all n. In this case the particle val-
ues would never change, that is, θin = θi1 for all n. Thus, we
would be using the prior as importance sampling distribution
and reweight the draws from the prior by the tempered like-
lihood function [p(Y |θi1)]φn . Given the information contents
in a typical DSGE model likelihood function, this procedure
would lead to a degenerate distribution of particles, in which
in the last stageNφ the weight is concentrated on a very small
number of particles and the importance sampling approxima-
tion is very inaccurate. Thus, the goal of the mutation step is
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to adapt the values of the stage n particles to πn(θ). This is
achieved by using steps of an MH algorithm with a transition
density that satisfies the invariance property∫

Kn(θn|θ̂in)πn(θ̂in)dθ̂in = πn(θn).

The execution of the MH steps during the particle muta-
tion phase requires at least one, but possibly multiple, eval-
uations of the likelihood function for each particle i. To the
extent that the likelihood function is recursively evaluated
with a filter, data tempering has a computational advantage
over likelihood tempering, because the former only requires
bφnT c ≤ T iterations of the filter, whereas the latter requires
T iterations. The particle mutation is ideally suited for par-
allelization, because the MH steps are independent across
particles and do not require any communication across pro-
cessors. For DSGE models, the evaluation of the likelihood
function is computationally very costly because it requires
running a model solution procedure as well as a filtering al-
gorithm. Thus, gains from parallelization are potentially quite
large.

5.1.3 A Numerical Illustration

We provide a first numerical illustration of the SMC algorithm
in the context of the stylized state-space model introduced in
Section 4.3. Recall that the model is given by

yt = [1 1]st,

st =

[
θ2

1 0
(1− θ2

1)− θ1θ2 (1− θ2
1)

]
st−1 +

[
1
0

]
εt,

where εt ∼ iidN(0, 1). We simulate T = 200 observations
given θ = [0.45, 0.45]′, which is observationally equivalent to
θ = [0.89, 0.22]′, and use a prior distribution that is uniform
on the square 0 ≤ θ1 ≤ 1 and 0 ≤ θ2 ≤ 1. Because the
state-space model has only two parameters and the model
used for posterior inference is correctly specified, the SMC
algorithm works extremely well. It is configured as follows.
We use N = 1, 024 particles, Nφ = 50 stages, and a linear
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Figure 5.2: SMC Posterior Approximation. The top panel depicts ker-
nel density estimates of the sequence πn(θ), n = 0, . . . , 50, for styl-
ized state-space model. The bottom panel depicts the contours of
the posterior π(θ) as well as draws from π(θ).

tempering schedule that sets φn = n/50. The transition ker-
nel for the mutation step is generated by a single step of the
RWMH-V algorithm.

Some of the output of the SMC algorithm is depicted in
Figure 5.2. The left panel displays the sequence of tempered
(marginal) posterior distributions πn(θ1). It clearly shows that
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the tempering dampens the posterior density. While the pos-
terior is still unimodal during the first few stages of the al-
gorithm, a clear bimodal shape has emerged for n = 10. As
φn approaches one, the bimodality of the posterior becomes
more pronounced. The left panel also suggests that the stage
n = Nφ−1 tempered posterior provides a much better impor-
tance sampling distribution for the overall posterior π(·) than
the stage n = 1 (prior) distribution. The right panel shows
a contour plot of the joint posterior density of θ1 and θ2 as
well as the draws from the posterior π(θ) = πNφ(θ) obtained
in the last stage of Algorithm 8. The algorithm successfully
generates draws from the two high-posterior-density regions.

5.2 Further Details of the SMC Algorithm

Our initial description of the SMC algorithm left out some
details that are important for the successful implementation
of the algorithm. Section 5.2.1 discusses the choice of the
transition kernel in the mutation step. Section 5.2.2 consid-
ers the adaptive choice of various tuning parameters of the
algorithm. The resampling step is discussed in more detail
in Section 5.2.3. Finally, 5.2.4 outlines some convergence re-
sults for Monte Carlo approximations constructed from the
output of the SMC sampler.

5.2.1 The Transition Kernel for the Mutation Step

The transition kernel Kn(θn|θ̂n; ζn) in the particle mutation
phase is generated through a sequence of MH steps. The ker-
nel is indexed by a vector of tuning parameters ζn, which
may be different at every stage n. In our subsequent DSGE
model applications we will use M steps of a Block RWMH-V
algorithm to transform the particle values θ̂in into θin. Under a
Gaussian proposal density, this algorithm requires a covari-
ance matrix Σ∗n, which can be partitioned into submatrices
for the various parameter blocks, as well as a scaling con-
stant cn. In principle, this scaling constant could be different
for each block, but in our experience with DSGE models the
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gain from using block-specific scaling is small. Let

ζn =
[
cn, vech(Σ∗n)′

]′
. (5.13)

The transition kernel is constructed such that for each ζn the
posterior πn(θ) is an invariant distribution. The MH steps are
summarized in the following algorithm.

Algorithm 9 (Particle Mutation)
Prior to executing Algorithm 8:

0. Generate a sequence of random partitions {Bn}Nφn=2 of
the parameter vector θn intoNblocks equally sized blocks,
denoted by θn,b, b = 1, . . . , Nblocks (see Algorithm 7.) Let
Σ∗n,b be the partitions of Σ∗n that correspond to the sub-
vector θn,b.

In Step 2(c) in iteration n of Algorithm 8:

1. For each particle i, run NMH steps of the Block MH Al-
gorithm 6 using a RWMH-V proposal density of the form

ϑi,mn,b |ζn ∼ N
(
θi,m−1
n,b , c2nΣ∗n,b

)
. (5.14)

For expository purposes, the sequence of blocks {Bn} in
Algorithm 9 is generated prior to running the SMC algorithm.
This is of no practical consequences. One can also generate
Bn as part of Step 2(c) in iteration n of Algorithm 8. The Block
RWMH-V could be replaced by some of the alternative MH
samplers discussed in Chapter 4. However, in our experience
the most important consideration for the performance of the
SMC algorithm is parameter blocking and the careful tailor-
ing of the scaling constant cn and the covariance matrix Σ∗n.
As stated, the matrix Σ∗n,b refers to the covariance matrix as-
sociated with the marginal distribution of θn,b. Alternatively,
one could also use the covariance matrix associated with the
conditional distribution of θn,b|(θn,<b, θn,>b). The larger the
number of MH steps, NMH , the higher the probability that
the particle value mutates (which tends to increase the accu-
racy of the SMC approximations) and the larger the required
number of likelihood evaluations (which decreases the speed
of the algorithm). We will explore this trade-off more carefully
in the context of the DSGE model application in Section 5.3.
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5.2.2 Tuning and Adaption of the Algorithm

The SMC algorithm involves several tuning parameters. Some
of these tuning parameters are chosen ex ante, whereas oth-
ers are determined adaptively, based on the output of the
algorithm in earlier stages. This section provides a broad
overview of the tuning parameters. Their effect on the perfor-
mance of the algorithm will be studied in Section 5.3 below.

Number of Particles, Number of Stages, Tempering Sched-
ule. In our implementation of Algorithm 8 the tuning param-
eters N , Nφ, λ, and NMH are chosen ex ante based on some
preliminary experiments. The number of particles N scales
the overall accuracy of the Monte Carlo approximation. Be-
cause most of the computational burden arises in the mu-
tation step, the computing time increases approximately lin-
early in N . Under suitable regularity conditions h̄Nφ,N is

√
N

consistent and satisfies a CLT. Nφ determines the number of
stages πn(·) used to approximate the posterior distribution
π(·). Increasing the number of stages, Nφ, will decrease the
distance between bridge distributions and thus make it easier
to maintain particle weights that are close to being uniform.
The cost of increasing Nφ is that each stage requires addi-
tional likelihood evaluations.

The user also has to determine the tempering schedule
{φn}Nφn=0. To control its shape we introduce a parameter λ
and let

φn =

(
n

Nφ

)λ
. (5.15)

A large value of λ implies that the bridge distributions will
be very similar (and close to the prior) for small values of n
and very different as n approaches Nφ. In the DSGE model
applications we found a value of λ = 2 to be very useful be-
cause for smaller values the information from the likelihood
function will dominate the priors too quickly and only a few
particles will survive the correction and selection steps. Con-
versely, if λ is much larger than 2, it makes some of the bridge
distributions essentially redundant and leads to unnecessary
computations in the early iterations of the algorithm. The
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choice of λ does not affect the overall number of likelihood
evaluations.

Resampling. Resampling becomes necessary when the distri-
bution of particles degenerates. As discussed in Section 3.4,
the larger the variance of the particle weights, the more in-
efficient the importance sampling approximation: InEff∞ ≈
1 + Vg[π/g]. Thus, N/(1 + Vg[π/g]) could be interpreted as
effective sample size. To monitor the particle degeneracy in
the SMC algorithm, one can compute the the reciprocal of
the uncentered variance of the particles weights in the selec-
tion step of Algorithm 8:

ÊSSn = N/

(
1

N

N∑
i=1

(W̃n
i )2

)
. (5.16)

If all particles receive equal weights, then ÊSSn = N . Using
this degeneracy measure, we can now replace the resampling
ρn by the adaptive indicator

ρ̂n = I{ÊSSn < N/2}, (5.17)

where I{x < a} is the indicator function that is equal to one
if x < a and equal to zero otherwise. The threshold value
N/2 is a rule-of-thumb and could be lowered or raised in any
particular application.

It is important to note that ÊSSn for n = Nφ should not be
interpreted as the number of iid-equivalent draws from the
posterior distribution π(θ) produced by the SMC algorithm.
However, the sequence ÊSSn is very useful for monitoring
and tuning the performance of the algorithm. If in the early
stages of the SMC ÊSSn drops into the single digits, the algo-
rithm needs to be re-tuned. For instance, one could increase
the number of stages Nφ or raise the value of λ to reduce the
gap between the bridge distributions during the initial itera-
tions.

Mutation Step. The number of MH steps in the mutation
phase of the SMC algorithm affects the likelihood with which
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a particle mutation occurs. The larger NMH , the higher the
probability that during the NMH steps at least one of the pro-
posed draws is accepted and the particle value changes. How-
ever, each additional MH step also requires additional likeli-
hood evaluations. As we have seen in Chapter 4, increasing
the number of blocks Nblocks generally reduces the persis-
tence of the MH chain, which increases the probability of a
significant change in the particle value.

We choose the sequence of tuning parameters ζn defined
in (5.13) for the proposal distribution of the Block RWMH-
V algorithm adaptively. First, we replace Σ∗n by the impor-
tance sampling approximation of Vπn [θ]. Second, we adjust
the scaling factor cn to ensure that the acceptance rate in the
MH step is approximately 25%, which according to the bot-
tom panel of Figure 4.3 delivers a high degree of accuracy. At
each iteration n we then replace ζn in (5.13) with1

ζ̂n =
[
ĉn, vech(Σ̃n)′

]′
. (5.18)

The following algorithm describes how ζ̂n is constructed at
each iteration n.

Algorithm 10 (SMC with Adaptive Particle Mutation)
For n ≥ 1, prior to Step 1 of Algorithm 9:

1. Compute an importance sampling approximation Σ̃n of
Vπn [θ] based on the particles {θin−1, W̃

i
n}Ni=1.

2. Compute the average empirical rejection rate R̂n−1(ζ̂n−1),
based on the Mutation step in iteration n−1. The average
is computed across the Nblocks blocks.

3. Let ĉ1 = c∗ and for n > 2 adjust the scaling factor ac-
cording to

ĉn = ĉn−1f
(
1− R̂n−1(ζ̂n−1)

)
,

where

f(x) = 0.95 + 0.10
e16(x−0.25)

1 + e16(x−0.25)
.

1We use ‘‘tilde’’ instead of ‘‘hat’’ for θ and Σ because the approximations
are based on the correction step in Algorithm 8.
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4. Execute Algorithm 9 by replacing ζn with
ζ̂n =

[
ĉn, vech(Σ̃n)′

]′
.

Note that f(0.25) = 1, which means that the scaling fac-
tor stays constant whenever the target acceptance rate is
achieved. If the acceptance rate is below (above) 25% the scal-
ing factor is decreased (increased). The range of the adjust-
ment is determined by the factor 0.1 and the sensitivity to
the deviation of the actual from the targeted acceptance rate
is determined by the factor 16 in the expression for f(x). We
found that these particular constants in the definition of f(x)
worked well in our applications.

Figure 5.3 illustrates the adaptive choice of the scaling
constant c in the RWMH-V mutation step in the context of
the stylized state-space model of Section 5.1.3. We use Algo-
rithm 10 which is configured to target the acceptance rate of
25%. The initial value of the scaling constant is 0.5, which
leads to an acceptance rate of more than 70% in the first
few steps of the algorithm. Gradually, the scaling constant
is lowered according to Algorithm 10. In stage n = 30 we
are reaching the desired acceptance rate. The acceptance rate
subsequently drops slightly below 25% which triggers a small
drop in c. Starting from a value close to 1,000, the effective
sample size ÊSSn slowly decreases and at n = 41 falls below
the threshold of N/2. This triggers the resampling of parti-
cles and in turn ÊSSn jumps up toward about 1,000. Thus,
qualitatively, the adaption of the algorithm works as desired:
the scaling constant c in the RWMH-V algorithm is adjusted
to achieve the desired acceptance rate and the particles are
resampled if the distribution of weights becomes uneven.

5.2.3 Beyond Multinomial Resampling

The resampling step in Algorithm 8 is based on multinomial
resampling. While the use of multinomial resampling facili-
tates the theoretical analysis of the algorithm, in particular
the derivation of a CLT, it is not the most efficient resam-
pling algorithm. We will provide some discussion of the im-
plementation of multinomial resampling and a brief overview
of alternative resampling algorithms, including stratified re-
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Figure 5.3: Adaption of SMC Algorithm for Stylized State-Space
Model. The dashed line in the top panel indicates the target ac-
ceptance rate of 0.25.

sampling, systematic resampling, and residual resampling.
We refer the reader for more detailed treatments to the books
by Liu (2001) or Cappé, Moulines, and Ryden (2005) (and
references cited therein) as well as Murray, Lee, and Jacob
(2014) for a discussion of parallelization of these algorithms.

Resampling algorithms take as input the collection of parti-
cle weights {W̃ i

n}Ni=1 and produce as output either an ances-
try vector or a vector that contains the number of offsprings
for each particle. An ancestry vectorAn has elementsAin such
that Ain = j if and only if particle j is the ancestor of resam-
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Table 5.1: Resampling: Ancestors and Offsprings

i θin−1 θ̂in Ain Oin
1 1/2 2/5 4 1
2 3/5 2/5 4 3
3 0 3/5 2 0
4 2/5 3/5 2 2
5 2/3 3/5 2 0
6 1/3 1/2 1 0

pled particle i, that is, θ̂in = θjn−1. For instance, suppose that
during the resampling step particle i = 1 was assigned the
value θ4

n−1, then A1
n = 4. Alternatively, the offspring vector

On with elements Oin would contain the number of offsprings
for each particle θin−1. Both An and On contain the same in-
formation and each one can be transformed into the other.
An illustration of ancestors and offsprings is provided in Ta-
ble 5.1.

The multinomial resampling step of Algorithm 8 can be im-
plemented by generating an ancestry vector as follows. Com-
pute the standardized cumulative weights W̃ c,i

n =
∑i
j=1 W̃

j
n

for i = 1, . . . , N and draw N iid U [0, N ] random numbers ui.
Define the element Ain as

Ain = LB
(
{W̃ c,i

n }Ni=1, u
i
)
,

where the function LB(W,u) returns the smallest integer i
such that the scalar u can be inserted into position i of a
vector W , sorted in ascending order, while maintaining the
sorting. Suppose that W = [1, 3, 4, 6] and u = 3.7. Then one
could replace either element 2 or element 3 of the vector W
without affecting the sorting. The function LB returns the
value 2.

The variance of multinomial resampling can be reduced by
stratification. The stratified resampling algorithm can be im-
plemented as follows. Divide the interval [0, N ] into N strata
of the form U i =

(
(i−1), i], i = 1, . . . , N , and for each stratum
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generate a uniform random number ui ∼ U
(
(i− 1), i

]
. Then,

define the ancestor vector Ain as LB
(
{W̃ c,i

n }Ni=1, u
i
)
. To show

that stratification can lead to variance reduction, we compute
the distribution of the offspring vector for the case N = 2 and
W̃ 1
n ≤ 1. For particle i = 1, u1 ∼ U(0, 1], which means that

with probability W̃ 1
n the value θ1

n−1 is selected and with prob-
ability 1 − W̃ 1

n the value θ2
n−1 is chosen. For particle i = 2,

one always chooses θ2
n−1 because u2 ∼ U(1, 2] which implies

that u2 ≥ 1 ≥ W̃ 1
n . The distribution of offsprings takes the

form

Stratified: O1
n =

 0 w.p. 1− W̃ 1
n

1 w.p. W̃ 1
n

2 w.p. 0

,

O2
n =


0 w.p. 0

1 w.p. W̃ 1
n

2 w.p. 1− W̃ 1
n

.

For the regular multinomial resampling described above, the
distribution of offsprings is

Multinominal: O1
n =


0 w.p. (1− W̃ 1

n/2)2

1 w.p. 2(1− W̃ 1
n/2)(W̃ 1

n/2)

2 w.p. (W̃ 1
n/2)2

,

O2
n =


0 w.p. (W̃ 1

n/2)2

1 w.p. 2(1− W̃ 1
n/2)(W̃ 1

n/2)

2 w.p. (1− W̃ 1
n/2)2

.

Both resampling schemes are unbiased, meaning that E[Oin] =
W̃ i
n, but the offspring vector generated by the stratified resam-

pler has a lower variance. The variance reduction extends to
N > 2 (see, e.g., Cappé, Moulines, and Ryden (2005)). A strat-
ified resampling algorithm to efficiently compute the cumula-
tive offspring function is provided in Murray, Lee, and Jacob
(2014).

Stratified resampling aims to reduce the discrepancy be-
tween the empirical distribution of the generated draws and
the uniform distribution. This is achieved by defining ui =
(i − 1) + ξi where ξi ∼ iidU [0, 1]. Alternatively, one could
consider the sequence ui = (i − 1) + ξ where ξ ∼ U [0, 1],
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that is, the random term ξ is common for all i. This method
is known as systematic resampling. The theoretical proper-
ties of systematic resampling algorithms are more difficult to
establish because the draws ui, i = 1, . . . , N , are perfectly
correlated. In sequential Monte Carlo applications, this gen-
erates cross-sectional dependence of particles.

Let bxc denote the floor operator, i.e., the largest integer
that is less than or equal to x ≥ 0. The residual resampling
algorithm initially assigns bW̃ i

nc offsprings to each particle
and then determines the remaining offsprings randomly:

Oin = bW̃ i
nc+ Ôin. (5.19)

Now only N −∑N
i=1bW̃ i

nc draws are required and the proba-
bility associated with particle i is proportional to W̃ i

n−bW̃ i
nc.

The residuals Ôin can be generated with one of the algorithms
described above. None of the algorithms discussed thus far
is well suited for parallelization because it is necessary to
compute the sum of the particle weights (the summation step
appears as the last operation of the correction step in Algo-
rithm 8). The Metropolis resampling algorithm and the re-
jection resampling algorithm discussed in Murray, Lee, and
Jacob (2014) are designed to avoid collective operations over
the weights.

5.2.4 Asymptotic Properties of SMC Algorithms

Under suitable regularity conditions the Monte Carlo approx-
imations of posterior means obtained from the output of Al-
gorithm 8 satisfy a SLLN and a CLT as the number of parti-
cles tends to infinity: N −→ ∞. A careful statement of these
regularity conditions and a rigorous large sample analysis of
Monte Carlo averages is provided by Chopin (2004). Herbst
and Schorfheide (2014) adapt the proofs of the SLLN and CLT
in Chopin (2004) to cover the SMC Algorithm 10 with adap-
tive particle mutation.2 The SLLN and CLT can be elegantly
proved recursively, that is, by showing that the convergence
of h̄n−1,N implies the convergence of h̄n,N . In the remainder of

2A more general mathematical treatment of SMC algorithms based on
mean field simulation theory is provided by Del Moral (2013).
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this subsection we outline the derivation of the limit distribu-
tion of the Monte Carlo approximations for the non-adaptive
version of the SMC algorithm (Algorithm 8), meaning we as-
sume that the sequence {ρn, Bn, ζn}Nφn=1 is predetermined.

The subsequent exposition abstracts from many of the
technical details for which we refer the interested reader to
the abovementioned references. Our goal is to convey the ba-
sic recursive structure of the convergence proof and to gain
some insights into the accuracy of the Monte Carlo approx-
imations from the asymptotic variance formulas. While the
recursive form of the asymptotic variance formulas renders
them unusable for the computation of numerical standard
errors, their general structure sheds some light on how the
various tuning parameters of the algorithm affect its accu-
racy.

Assumptions. The SLLN and CLT rely on three types of as-
sumptions. (i) We assume that the prior is proper, the likeli-
hood function is uniformly bounded, and that the tempered
marginal likelihood of the data in stage n = 1 is non-zero:∫

p(θ)dθ <∞, supθ∈Θ p(Y |θ) < M <∞,∫
[p(Y |θ)]φ2p(θ)dθ > 0

. (5.20)

(ii) We require the existence of moments by considering
functions h(θ) that belong to the classes Hj defined as

Hj =

{
h(θ)

∣∣ ∃δ > 0 s.t.
∫
|h(θ)|j+δp(θ)dθ <∞

}
, (5.21)

for j = 1, 2. Because the likelihood is assumed to be bounded,
we can immediately deduce the existence of j+ δ moments of
the tempered posterior distributions πn(θ), n = 2, . . . , Nφ, for
functions inHj . The existence of these moments is necessary
for obtaining a SLLN (h ∈ H1) and a CLT (h ∈ H2).

(iii) We assume that

h̄n−1,N
a.s.−→ Eπn−1

[h], (5.22)
√
N
(
h̄n−1,N − Eπn−1

[h]
)

=⇒ N(0,Ωn−1(h))

as the number of particles N −→ ∞. Recall that in stage
n = 0 we directly sample from the prior distribution. Thus,
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the moment bounds in (5.21) suffices to ensure that h̄0,N sat-
isfies the conditions in (5.22). The subsequent proof proceeds
recursively. We show that if h̄n−1,N satisfies a SLLN and CLT,
then h̄n,N also converges almost surely and in distribution.

Correction Step. Let Zn =
∫

[p(Y |θ)]φnp(θ)dθ be the (gener-
ally unknown) normalization constant of the stage n posterior
πn(θ) defined in (5.1). For the subsequent calculations, it is
convenient to normalize the incremental weight w̃in as follows:

vn(θ) =
Zn−1

Zn
w̃in =

Zn−1

Zn
[p(Y |θ)]φn−φn−1 . (5.23)

Because the normalization factor Zn−1/Zn does not depend
on θ, we can write the Monte Carlo approximation in the cor-
rection step in terms of the normalized incremental weights:

h̃n,N =
1

N

N∑
i=1

W̃ i
nh(θin−1) (5.24)

=
1
N

∑N
i=1 h(θin−1)vn(θin−1)W i

n−1

1
N

∑N
i=1 vn(θin−1)W i

n−1

.

The normalized incremental weights have the following useful
property:∫

h(θ)vn(θ)πn−1(θ)dθ (5.25)

=

∫
Zn−1

Zn
[p(Y |θ)]φn−φn−1

[p(Y |θ)]φn−1p(θ)

Zn−1
dθ

=

∫
h(θ)πn(θ)dθ,

which implies for h(θ) = 1 that
∫
vn(θ)πn(θ)dθ = 1.

A SLLN and a CLT for h̃n,N can now be obtained from
Assumption (iii) in (5.22) and the property of the normal-
ized incremental weights in (5.25). As the number of particles
N −→ ∞, the Monte Carlo approximation h̃n,N converges as
follows:

h̃n,N
a.s.−→

∫
h(θn)πn(θn)dθn = Eπn [h]

√
N
(
h̃n,N − Eπn [h]

)
=⇒ N

(
0, Ω̃n(h)

)
, (5.26)
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where
Ω̃n(h) = Ωn−1

(
vn(θ)(h(θ)− Eπn [h])

)
.

The asymptotic covariance matrix associated with h̃n,N has
the same form as the asymptotic covariance matrix Ω(h)
in (3.52) associated with the importance sampler. In particu-
lar, the larger the variance of the incremental particle weights
vn(θ), the less accurate the Monte Carlo approximation in the
selection step. Therefore, the adaptive version of the algorithm
described in Section 5.2.2 monitors the variance of the par-
ticle weights, transformed into ÊSSn. If the distribution of
particle weights is very uneven, then the particles are resam-
pled.

Selection Step. In the non-adaptive version of the algorithm
resampling occurs whenever ρn = 1. To examine the effect
of resampling on the accuracy of the Monte Carlo approxi-
mation, recall that we denoted the resampled particles by θ̂in.
Let Fn−1,N be the σ-algebra generated by {θin−1, W̃

i
n}, where

W̃ i
n are the normalized particle weights computed in the cor-

rection step (see (5.24)). Under multinomial resampling, the
expected value of functions of resampled particles is given by

E[h(θ̂)|Fn−1,N ] =
1

N

N∑
i=1

h(θin−1)W̃ i
n = h̃n,N . (5.27)

Using this equality, we can decompose

ĥn,N − Eπn [h] =
(
h̃n,N − Eπn [h]

)
(5.28)

+
1

N

N∑
i=1

(
h(θ̂in)− E[h(θ̂)|Fn−1,N ]

)
= I + II,

say. The large sample behavior of I follows directly from (5.26).
For term II, note that conditional on Fn−1,N the h(θ̂in) form
a triangular array of (discrete) random variables that are iid
within each row with mean E[h(θ̂)|Fn−1,N ]. Using a SLLN and
a CLT for triangular arrays of iid random variables, it can be
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shown that

ĥn,N
a.s.−→

∫
h(θn)πn(θn)dθn (5.29)

√
N
(
ĥn,N − Eπn [h]

)
=⇒ N

(
0, Ω̂n(h)

)
,

Ω̂n(h) = Ω̃n(h) + Vπn [h].

The second term in asymptotic variance Ω̂n(h) indicates that
resampling increases the variance of the Monte Carlo approx-
imation. However, it also equalizes the particle weights which
tends to lower the approximation errors in the subsequent
iteration of the algorithm.

Mutation Step. Let the conditional mean and variance of the
transition kernelKn(θ|θ̂; ζn) be EKn(·|θ̂;ζn)[·] and VKn(·|θ̂;ζn)[·].
Because πn is the invariant distribution associated with the
transition kernel Kn, note that if θ̂ ∼ πn, then∫

θ̂

EKn(·|θ̂;ζn)[h]πn(θ̂)dθ̂ (5.30)

=

∫
θ̂

∫
θ

h(θ)Kn(θ|θ̂; ζn)dθπn(θ̂)dθ̂

=

∫
θ

h(θ)

∫
θ̂

Kn(θ|θ̂; ζn)πn(θ̂)dθ̂dθ

=

∫
θ

h(θ)πn(θ)dθ = Eπn [h].

Using the fact that 1
N

∑N
i=1W

i
n = 1 we can write

h̄n,N − Eπn [h] (5.31)

=
1

N

N∑
i=1

(
h(θin)− EKn(·|θ̂in;ζn)[h]

)
W i
n

+
1

N

N∑
i=1

(
EKn(·|θ̂in;ζn)[h]− Eπn [h]

)
W i
n

= I + II,

say. While term I captures deviations of h(θin) from its con-
ditional mean EKn(·|θ̂in;ζn)[h], the second term captures devi-
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ations from the conditional mean of EKn(·|θ̂in;ζn)[h] from the
tempered posterior Eπn [h].

The large sample behavior of the Monte Carlo approxi-
mation in the mutation step, h̄n,N , depends on the particle
weights W i

n, which in turn depends on how many iterations
ago the resampling step was executed. To simplify the expo-
sition, we assume that ρn = 1, which implies that W i

n = 1.
Let F̂n,N be the σ-algebra generated by {θ̂in,W i

n}Ni=1. Notice
that conditional on F̂n,N the weights W i

n are known and the
summands in term I form a triangular array of mean-zero
random variables that within each row are independently but
not identically distributed because the (conditional) variance
and higher-order moments of h(θin) may depend on θ̂in. In
turn, we can deduce that I satisfies a SLLN and a CLT. The
convergence of II is a consequence of (5.29). It can be shown
that

h̄n,N
a.s.−→

∫
h(θn)πn(θn)dθn (5.32)

√
N
(
ĥn,N − Eπn [h]

)
=⇒ N

(
0,Ωn(h)

)
,

where

Ωn(h) = Eπn
[
VKn(·|θ̂;ζn)[h]

]
+ Ω̂n

(
EKn(·|θ̂;ζn)[h]

)
.

To establish the convergence results (5.26), (5.29), and
(5.32) in a rigorous manner mainly requires the verification
of moment bounds for the various random variables that are
being averaged in the Monte Carlo approximations. Herbst
and Schorfheide (2014) provide some high-level assumptions
that ensure that choosing the tuning sequences adaptively
according to {ρ̂n, ζ̂n} does not affect the asymptotic covari-
ance matrices.

The recursive form of the asymptotic covariances makes
them difficult to use the results in practice. Durham and
Geweke (2014) propose to collect the particles into G groups
of sizeN/G. When running the algorithm, each group of parti-
cles is treated independently such that the scaled variance of
Monte Carlo approximations across groups provides instan-
taneous estimates of the covariance matrices Ω̃n, Ω̂n, and Ωn.
The CLT ensures that these across-group variance estimates
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Figure 5.4: Convergence of SMC Approximation for Stylized State-
Space Model. The figure shows NV[θ̄j ] for each parameter as a
function of the number of particles N . V[θ̄j ] is computed based on
Nrun = 1, 000 runs of the SMC algorithm with Nφ = 100. The width
of the bands is (2 · 1.96)

√
3/Nrun(NV[θ̄j ]).

provide a reliable measure of accuracy. We adopt a similar
strategy in the subsequent numerical illustrations. However,
rather than assigning the particles to independent groups, we
simply run the SMC algorithm independently multiple times
and construct estimates of the final-stage covariance matrix
ΩNφ(h).

Figure 5.4 illustrates the CLT in the context of the styl-
ized state-space model considered in Section 5.1.3. We run
the SMC algorithm Nrun = 1, 000 times and compute the
small-sample variances V[θ̄1] and V[θ̄2] of the Monte Carlo
approximations of Eπ[θ1] and Eπ[θ2] as a function of N . We
use Nφ = 100 stages and a linear tempering schedule. The
figure depictsNV[θ̄j ] as a function ofN , which approximately
equals the asymptotic variance ΩNφ(θj) if the CLT is opera-
tional. The standardized small-sample variances of the Monte
Carlo approximations are fairly flat as a function of N . The
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variability that is visible in the plots is consistent with the
fact that V[θ̄j ] is computed based on 1,000 runs of the SMC.
Suppose that Zr ∼ iidN(0, v). Then the standard deviation
of 1

Nrun

∑Nrun
r=1 (Z2

r − v) is given by
√

3/Nrunv. Accordingly,
we plot +/− 1.96

√
3/Nrun(NV[θ̄j ]) bands around NV[θ̄j ] in

Figure 5.4.

5.3 SMC for the Small-Scale DSGE Model

We now apply Algorithm 10 to conduct posterior inference
for the three-equation New Keynesian model. We use the
same prior specification and the same data set as in Sec-
tion 4.2. We illustrate how the accuracy of the SMC approx-
imation changes as we vary the choice of tuning parameters
for the algorithm. We run each configuration of the algorithm
Nrun = 50 times and compute the cross-sectional variance of
the Monte Carlo approximations V[θ̄]. Throughout this sec-
tion we fix the number of MH steps in the mutation step to
be equal to NMH = 1.

Figure 5.5 explores the connection between accuracy, mea-
sured through InEffN [θ̄] and the tempering schedule φn, con-
trolled by the tuning parameter λ. Each ‘‘hair’’ in the figure
corresponds to a specific DSGE model parameter. The results
are based on N = 1, 000, Nφ = 100, and Nblocks = 1. For
λ = 1 this schedule is linear in n and for λ > 1 it is convex. A
convex tempering schedule implies that we add very little in-
formation in the initial stages of the SMC algorithm to ensure
that the particles adapt well to the bridge distribution. As n
increases, the incremental amount of likelihood information
added in each stage also increases. The linear schedule per-
forms relatively poorly. A choice of λ in the range of 1.5 to
2 yields the most accurate approximations for the posterior
means of the DSGE model parameters. Beyond λ = 2 the
accuracy slowly deteriorates and for λ ≥ 4, the convex tem-
pering schedule is worse than the linear tempering schedule.
Note that the choice of λ has essentially no effect on the num-
ber of likelihood evaluations and on the computational time
(except that poor choices of λ may require additional resam-
pling steps). In the subsequent experiments we let λ = 2.
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Figure 5.5: Effect of λ on Inefficiency Factors InEffN [θ̄]. The figure
depicts hairs of InEffN [θ̄] as function of λ. The inefficiency factors
are computed based on Nrun = 50 runs of the SMC algorithm. Each
hair corresponds to a DSGE model parameter.

Figure 5.6 explores the trade-offs between number of par-
ticles N , number of stages Nφ, and number of blocks Nblocks
in the mutation step. Because the number of particles differs
across experiments, we report the ratio V[θ̄]/Vπ[θ] instead of
the inefficiency factor InEffN [θ̄]. The experiments are designed
such that we keep the number of likelihood evaluations con-
stant.

The top panel indicates that a large number of particles,
e.g.,N = 4, 000, combined with a moderate number of stages,
e.g., Nφ = 25, delivers a less accurate approximation than a
small number of particles, e.g., N = 250 or N = 500, and
a large number of stages, e.g., Nφ = 400 or Nφ = 200. Of
course, if we were to increase the number of stages even more
drastically and reduce the number of particles further, the
accuracy would at some point deteriorate. If the number of
stages is too large, then a lot of computational resources are
allocated to approximating very similar bridge distributions.
If the number of stages is too small, then the stage n − 1
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Number of Stages Nφ vs. Number of Particles N
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101

Nφ = 400, N = 250
Nφ = 200, N = 500
Nφ = 100, N = 1000
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Number of blocks Nblocks in Mutation Step vs. Number of Particles
N
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Figure 5.6: Effect of Tuning on Inaccuracy V[θ̄]/Vπ[θ]. Each panel
shows plots of V[θ̄]/Vπ[θ] for a specific configuration of the SMC al-
gorithm. The inefficiency factors are computed based on Nrun = 50

runs of the SMC algorithm. Top panel:Nblocks = 1, λ = 2,NMH = 1.
Bottom panel: Nφ = 100, λ = 2, NMH = 1.
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Table 5.2: SMC-Based Marginal Data Density Estimates

Nφ = 100 Nφ = 400

N Mean StdD Mean StdD
500 -352.19 (3.18) -346.12 (0.20)
1,000 -349.19 (1.98) -346.17 (0.14)
2,000 -348.57 (1.65) -346.16 (0.12)
4,000 -347.74 (0.92) -346.16 (0.07)

Notes: Table shows mean and standard deviation of log marginal
data density estimates ln p̂(Y ) as a function of the number of par-
ticles N computed over Nrun = 50 runs of the SMC sampler with
Nblocks = 4, λ = 2, and NMH = 1.

posterior is poor proposal density in the correction step of
iteration n.

The bottom panel of Figure 5.6 depicts the effect of block-
ing. Blocking tends to reduce the persistence of MH chains
and in the context of the SMC algorithm increases the prob-
ability that the particle values change in the mutation step,
at least for a subvector of θ. In the small-scale model, using
Nblocks = 2 blocks in combination with N = 500 appears
to be the preferred choice. It dominates the Nblocks = 1 and
N = 1, 000 configuration for all parameters and is preferred
to the Nblocks = 4 and N = 250 configuration for all but three
parameters.

Finally, Table 5.2 presents estimates of the log marginal
data density of the small-scale New Keynesian DSGE model
based onNrun = 50 runs of the SMC algorithm. The marginal
data densities are computed according to (5.12). The accuracy
of the approximation increases, as evidenced by the decreas-
ing standard deviation across the 50 runs, as the number
of particles increases. For Nφ = 100 stages the approxima-
tion is fairly inaccurate, also in comparison to the MCMC
approximations reported in Table 4.3. The estimate of the log
density appears to be downward biased, which is consistent
with Jensen’s inequality and the estimate of the marginal
data density (before taking the log transformation) being un-
biased. If the number of stages is increased to Nφ = 400 the
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standard deviation of the Monte Carlo approximations drops
by a factor of more than 10.
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Chapter 6

Three Applications

After having applied the MH and SMC algorithms to the small-
scale New Keynesian model we now consider three applica-
tions to larger DSGE models. We modify the baseline DSGE
model in three dimensions. In Section 6.1 we replace the
AR(1) processes for technology growth and government spend-
ing by a VAR(1) process, that is, we are generalizing the law
of motion of the exogenous shocks to make the DSGE model
specification more flexible and improve its fit. In Section 6.2
we add capital as a factor of production to the baseline New
Keynesian DSGE model and include nominal wage stickiness
as well as other forms of rigidities. This leads us to the Smets
and Wouters (2007) model. The estimation of the SW model
is more challenging than the estimation of the small-scale
New Keynesian model because it has more state variables,
many more parameters, and it is used to track seven instead
of only three macroeconomic time series. We estimate the SW
model under a more diffuse prior distribution than Smets and
Wouters (2007) to highlight important non-elliptical features
of the likelihood function. Finally, in Section 6.3 we consider
a DSGE model that is designed to analyze fiscal as opposed to
monetary policy. This model abstracts from nominal rigidities
and instead focuses on fiscal policy rules that determine the
level of government spending and taxation as a function of
the state of the economy.

The applications in this chapter are chosen because on
the one hand they feature important extensions of the model
studied in Chapters 4 and 5. On the other hand, the applica-
tions are selected because they lead to posterior distributions
with strong non-elliptical features that lead to challenges for
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posterior simulators. The resulting posterior distributions are
multimodal and the widely used single block RWMH algo-
rithm works relatively poorly because it has difficulties gener-
ating draws from the multiple high-posterior density regions
in the correct proportion. The SMC algorithm, on the other
hand, produces much more accurate and stable approxima-
tions of the posterior. While the applications are to some ex-
tent chosen to highlight the strength of the SMC approach,
we think that the posteriors arising in these three applica-
tions are representative of the posteriors that arise in many
other DSGE model applications as well.

6.1 A New Keynesian Model with Correlated Shocks

The fit of DSGE models can be improved either by enrich-
ing the endogenous propagation mechanism of the model or
by generalizing the law of motion for the exogenous shocks.
Most of the DSGE model literature has focused on augment-
ing the basic neoclassical stochastic growth model with more
sophisticated economic mechanism, e.g., frictions in the ad-
justment of labor and capital inputs, costs of changing nom-
inal prices and wages, or information imperfections. The ef-
fects of monetary and fiscal policy depend crucially on the en-
dogenous propagation mechanisms built into a DSGE model.
For instance, in the absence of nominal rigidities, changes
in the monetary policy rule or unanticipated deviations from
the monetary policy rule have no effects on real output, con-
sumption, and investment.

In this section we follow the second route and general-
ize the law of motion of the exogenous shocks in the small-
scale New Keynesian DSGE model. In most DSGE models the
exogenous shocks are assumed to follow independent AR(1)
processes. However, a priori it is not unreasonable to assume
that the exogenous shocks follow richer ARMA(p, q) processes.
Moreover, a priori there is nothing that rules out correlations
between exogenous shocks. For instance, the SW model fea-
tures some generalizations of the widely used AR(1) law of mo-
tion for exogenous shocks: price and wage mark-up shocks
follow ARMA(1,1) processes and the innovations to technology
and government spending are allowed to be correlated.
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The reason that most researchers prefer a simple specifica-
tion for the exogenous processes is that one of the goals of the
DSGE research program is to develop economic mechanisms
that can generate the observed comovements and persistence
of macroeconomic time series endogenously from a set of un-
correlated exogenous shocks. Nonetheless, in environments
in which model fit is important, e.g., central bank forecasting
with DSGE models, the generalization of the law of motion of
exogenous shocks is a plausible modeling strategy.

The subsequent application is inspired by Curdia and Reis
(2010) who consider a fairly general vector-autoregressive law
of motion for the exogenous processes of a small-scale DSGE
model. While this modeling strategy is helpful in overcom-
ing DSGE model misspecification, it also introduces potential
identification problems. The more flexible and densely pa-
rameterized the law of motion of the exogenous shocks, the
more difficult it becomes to identify the shock parameters and
the parameters associated with the endogenous propagation
mechanism jointly. From a computational perspective, this
may introduce multimodal posterior distributions, which are
the focus of the remainder of this section.

6.1.1 Model Specification

In the small-scale DSGE model of Section 1.1 the technology
growth shock ẑt and the government spending shock ĝt evolve
according to independent AR(1) processes:

ẑt = ρz ẑt−1 + εz,t, εz,t ∼ N(0, σ2
z),

ĝt = ρg ĝt−1 + εg,t, εz,t ∼ N(0, σ2
g).

We now replace the two AR(1) processes by the following VAR
process:[

ẑt
ĝt

]
=

[
ρz ρzg
ρgz ρg

] [
ẑt−1

ĝt−1

]
+

[
εz,t
εg,t

]
, (6.1)[

εz,t
εg,t

]
∼ N

([
0
0

]
,

[
σ2
z 0

0 σ2
g

])
.

This VAR process is combined with the log-linearized con-
sumption Euler equation, the New Keynesian Phillips curve,
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and the monetary policy in (2.1), which we reproduce for con-
venience:

ŷt = Et[ŷt+1]− 1

τ

(
R̂t − Et[π̂t+1]− Et[ẑt+1]

)
+ĝt − Et[ĝt+1],

π̂t = βEt[π̂t+1] + κ(ŷt − ĝt),
R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t

+(1− ρR)ψ2 (ŷt − ĝt) + εR,t.

While we maintain the assumption that the innovations of
the exogenous processes are uncorrelated, we let the tech-
nology growth process be affected by the lagged government
spending process and vice versa. This adds two parameters,
ρzg and ρgz, to the vector θ. A non-zero coefficient ρgz could
be interpreted as a reduced-form fiscal policy rule in which
government spending is increased if the supply conditions
are poor. Likewise, a positive coefficient ρzg could potentially
capture productivity enhancing public infrastructure invest-
ments. While these interpretations suggest that ρgz < 0 and
ρzg > 0, we use more agnostic priors of the form

ρg, ρz ∼ U [0, 1], ρgz, ρzg ∼ U [−1, 1]. (6.2)

The marginal prior distributions for the remaining parame-
ters are identical to those in Table 2.2. The joint prior dis-
tribution is truncated to ensure stationarity of ẑt and ĝt and
determinacy of the overall system.

6.1.2 Estimation Results from a Highly Accurate SMC Run

The modified small-scale DSGE model is estimated using the
same data as in Sections 4.2 and 5.3. We begin the numerical
analysis by examining the posterior distribution based on a
highly accurate run of the SMC algorithm, meaning that the
number of particles is sufficiently large such that the variance
of the Monte Carlo approximations is negligible. Figure 6.1 de-
picts the marginal prior and posterior distributions of ρgz and
ρzg. The marginal prior distributions are represented by the
gray shaded histograms. After the truncation induced by the
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Figure 6.1: Correlated Shocks: Priors and Posteriors of ρgz and ρzg.
The two panels depict histograms of prior distributions (shaded area)
and kernel density estimates of the posterior densities (solid lines).

stationarity restriction the marginal prior distributions of the
two parameters are no longer uniform, but they are unimodal
and spread out across the unit interval. The posterior dis-
tributions are represented by kernel density estimates. The
most striking feature of the posterior is that the distribution
of ρzg is bimodal with peaks at approximately −0.3 and 0.3,
respectively. The posterior density of ρgz, on the other hand,
is unimodal and sharply peaks around zero.

IRFs associated with the parameter estimates are plotted in
Figures 6.2 and 6.3. Each panel in the two figures shows three
types of IRFs: responses associated with ρzg = 0, ρzg < 0,
and ρzg > 0. The ρzg = 0 IRFs serve as a benchmark and
are identical to the posterior mean responses of the small-
scale New Keynesian DSGE model with uncorrelated exoge-
nous shocks reported in Section 4.2 (see Figures 4.4 and 4.5).
The other two IRFs are motivated by the bimodal posterior
distribution of ρzg, which is almost symmetric around zero,
and are computed from the conditional posterior distributions
θ|(Y, ρgz > 0) and θ|(Y, ρgz < 0). Formally, the figures depict
E[IRF |Y, ρgz > 0] and E[IRF |Y, ρgz < 0], respectively. These
posterior means can be easily approximated by discarding the
posterior draws θi that do not satisfy the desired restriction
on ρzg.

Figure 6.2 shows the responses of the exogenous processes
to government spending and technology growth shock in-

7 16:09:57 UTC



Three Applications • 135

0 5 10
−0.1

0.3

0.7
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Figure 6.2: Correlated Shocks: Impulse Responses (Part 1). The
graphs depict posterior mean IRFs based on the conditional posteri-
ors θ|(Y, ρgz > 0) (dashed), and θ|(Y, ρgz < 0) (dotted). For compar-
ison, the graph also shows IRFs (solid) from the small-scale DSGE
model with uncorrelated shocks (see Section 4.2).

novations. Under the benchmark specification of the DSGE
model (ρzg = ρgz = 0), the exogenous shocks are indepen-
dent of each other, which means that the demand shifter
processes ĝt does not respond to the technology shock inno-
vation εz,t and vice versa. In the DSGE model with correlated
exogenous shocks, on the other hand, there are spillovers.
The government spending process drops slightly (2 to 4 ba-
sis points) in response to a 50 to 60 basis points increase
in εz,t. The response is qualitatively very similar for the two
modes of the posterior, which is consistent with the unimodal
shape of the marginal posterior of ρgz. More interesting is the
response of technology growth to a government spending (or
general demand) shock innovation. The impulse responses in
the bottom left panel of Figure 6.2 reflect the bimodal shape of
the ρzg posterior. If ρzg > 0 (ρzg < 0) then technology growth
increases (decreases) by about 10 basis points in response to
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Figure 6.3: Correlated Shocks: Impulse Responses (Part 2). The
graphs depict posterior mean IRFs based on the conditional posteri-
ors θ|(Y, ρgz > 0) (dashed), and θ|(Y, ρgz < 0) (dotted). For compar-
ison, the graph also shows IRFs (solid) from the small-scale DSGE
model with uncorrelated shocks (see Section 4.2).

a 25 basis point εg,t shock.
Figure 6.3 depicts the impulse responses of output, infla-

tion, and interest rates. The effect of a monetary policy shock
is approximately the same for the two modes of the model
with correlated shocks. The monetary policy responses closely
resemble the IRFs obtained from the benchmark version of
the small-scale DSGE model with uncorrelated shocks. The
IRFs for the government spending and the technology growth
shock, on the other hand, are markedly different for the two
modes of the correlated shocks model and the benchmark
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model.
In the benchmark model, neither inflation nor interest rates

respond to a change in government spending. In the corre-
lated shocks model, on the other hand, a rise in government
spending also triggers a change in technology. We saw in Fig-
ure 6.2 that depending on the sign of ρzg, technology growth
either rises or falls in response to a positive εg,t innovation.
As a consequence, depending on the sign of the spillover, in-
flation and interest rates may either rise or fall in response to
a positive demand shock. Moreover, because a drop in tech-
nology growth is associated with lower output, the magnitude
of the output response also differs significantly. The IRFs of
inflation and interest rates to a technology growth shock are
generally more muted under the correlated shocks specifi-
cation than under the baseline specification. Conditional on
ρzg > 0 these responses are slightly positive, whereas for
ρzg < 0 they are slightly negative.

6.1.3 Comparison of RWMH-V and SMC Performance

The small-scale New Keynesian DSGE model places strong
restrictions on the autocovariance function of output growth,
inflation, and interest rates and the generalization of the law
of motion of the exogenous shocks relaxes these restrictions
somewhat, pointing toward an omitted endogenous propa-
gation mechanism. Given the stylized nature of this model,
we do not offer a detailed economic interpretation of the bi-
modal posterior distribution. However, multimodal posterior
distribution can also arise in more elaborate DSGE models,
e.g., the SW model with a diffuse prior distribution and the
news shock model of Schmitt-Grohé and Uribe (2012), as il-
lustrated in Herbst and Schorfheide (2014). The remainder of
this section focuses on the computational challenges created
by the bimodal posterior and compares the accuracy of the
standard RWMH-V algorithm to the SMC algorithm.

Accuracy Assessment and Tuning of Algorithms. To com-
pare the performance of the widely used 1-Block RWMH-V
algorithm to an SMC algorithm, we run each of these algo-
rithms Nrun = 50 times and evaluate the posterior probabil-
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Table 6.1: Correlated Shocks: Algorithm Configuration

RWMH-V SMC
N = 100, 000 N = 4, 800

Nburn = 50, 000 Nφ = 500

Nblocks = 1 Nblocks = 6, NMH = 1

c = 0.125 λ = 2

Run Time: 00:28 (1 core) Run Time: 05:52 (12 cores)

Note: We run each algorithm Nrun = 50 times. Run time is reported
as mm:ss.

ity that ρzg > 0 and the probability that inflation increases
in response to a government spending shock. The 1-Block
RWMH-V algorithm is initialized with a random draw from the
posterior distribution of the DSGE model parameters and it
runs for about 1 minute on a single processor. The SMC algo-
rithm usesN = 4, 800 particles,Nblocks = 6 blocks,Nφ = 500
stages, and λ = 2. The run time of the SMC algorithm is about
6 minutes on 12 processors. Allocating more computational
resources to the RWMH algorithm did not change the basic
result that the RWMH algorithm is unable to generate draws
from the two high-posterior density regions in the correct pro-
portion. A summary of our choice of tuning parameters for the
posterior samplers is provided in Table 6.1.
Results. The two panels of Figure 6.4 show estimates of pos-
terior probability that ρzg > 0 and inflation responds posi-
tively to an expansionary government spending shock. The
bimodal posterior density depicted in Figure 6.1 in conjunc-
tion with the IRF plots in Figure 6.3 imply that these poste-
rior probabilities should be around 50%. In order to correctly
estimate these probabilities the posterior sampler has to gen-
erate draws from the two high-posterior-density areas in the
correct proportion.

The Monte Carlo approximations of the posterior proba-
bilities obtained from the SMC algorithm are very stable and
close to 50% in all Nrun = 50 runs. The RWMH algorithm, on
the other hand, generates estimates that essentially switch
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Figure 6.4: Correlated Shocks: Posterior Probability Approximations.
Each symbol (50 in total) corresponds to one run of the SMC algo-
rithm (dot) or the RWMH algorithm (triangle).

between zero and one across runs, depending on whether the
sampler gets stuck near the ρzg > 0 mode or the ρzg < 0
mode. In other words, the RWMH sampler does not travel
frequently enough between the two modes to generate draws
from the two high-posterior-probabilities areas of the param-
eter space in the correct proportion. Increasing the number
of draws from 100,000 to 1,000,000 did not correct the prob-
lem, and the inspection of the output from a single chain does
not flag the convergence problem if the sampler never visits
the second high-posterior-density area.

Estimates of the marginal data density associated with
the generalized shock model are depicted in Figure 6.5. The
Monte Carlo approximation generated by the SMC algorithm
is very stable, whereas the approximation obtained with the
modified harmonic mean estimator described in Section 4.6
appears to be downward biased (as it misses a high-likelihood
region of the parameter space) and highly variable.

Allowing for correlated technology and demand shocks is
important for model fit. Table 6.2 displays estimates of the
log marginal data density for the benchmark specification of
the small-scale DSGE model with uncorrelated shocks and
the alternative specification in which the technology growth
and government spending shocks follow a VAR(1). In both
cases we use the output from the SMC sampler because it
is more accurate. The benchmark specification with uncorre-
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Figure 6.5: Correlated Shocks: Marginal Data Density Approxima-
tions. Each symbol (50 in total) corresponds to one run of the SMC
algorithm (dots) or the RWMH algorithm (triangles). The SMC al-
gorithm automatically generates an estimate of the MDD; for the
RWMH algorithm we use Geweke’s modified harmonic mean estima-
tor.

Table 6.2: Correlated Shocks: Marginal Data Density

Model Mean(ln p̂(Y )) Std. Dev.(ln p̂(Y ))
AR(1) Shocks −346.16 (0.07)
VAR(1) Shocks −314.45 (0.05)

Notes: Table shows mean and standard deviation of SMC-based es-
timate of the log marginal data density, computed over Nrun = 50

runs of the SMC sampler under each prior. The hyperparameters
used for the SMC algorithm are given in Table 6.1.

lated shocks has a log marginal data density of −346.2, over
30 points below that of the model with a VAR(1) shock process.
Under the calculus of probabilities associated with Bayesian
model comparison, the marginal data densities place over-
whelming odds on the diffuse prior model, indicating that the
AR(1) restrictions are severe.
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6.2 The Smets-Wouters Model with a Diffuse Prior

We now turn to the estimation of the SW model, which, given
the current state of the DSGE model literature, is considered
to be a medium-scale DSGE model. It is significantly larger,
both in terms of state variables as well as in terms of param-
eters to be estimated, than the small-scale New Keynesian
model considered thus far. The SW model forms the core of
many DSGE models that are used in central banks to gen-
erate DSGE model-based forecasts and to conduct monetary
policy analysis.

The subsequent empirical illustration is an extension of
one of the applications in Herbst and Schorfheide (2014). In-
stead of considering the accuracy of posterior mean approxi-
mations, we subsequently focus on the accuracy of posterior
quantiles which are frequently used to construct equal-tail-
probability credible sets.

6.2.1 Model Specification

Our version of the SW model is identical to the version pre-
sented in Smets and Wouters (2007). The log-linearized equi-
librium conditions, steady states, and measurement equa-
tions are reproduced in Appendix A.1. The model is estimated
using the growth rates of GDP, aggregate consumption, and
investment; the log level of hours worked; and price infla-
tion, wage inflation, and the federal funds rate. The estima-
tion sample ranges from 1966:Q1 to 2004:Q4.

Our estimation differs from Smets and Wouters (2007) in
that we are using a more diffuse prior distribution. This prior
is obtained as follows. Our starting point is the original SW
prior. For parameters on the unit interval we replace Beta
distributions by uniform distributions. Moreover, we scale the
prior standard deviations of the other parameters by a factor
of three—with the exception that we leave the priors for the
shock standard deviations unchanged. The specifications of
our modified prior as well as SW’s original prior distribution
are also provided in Appendix A.1.

Some researchers have argued that the prior distribution
originally used by SW is implausibly tight, in the sense that it

7 16:09:57 UTC



142 • Chapter 6

seems hard to rationalize based on information independent
of the information in the estimation sample. For instance, un-
der the original prior the quarterly steady state inflation rate
follows a Gamma distribution with mean 0.62 and standard
deviation 0.1. Approximately, this prior translates into a 95%
credible interval ranging from 1.7% to 3.3% for average an-
nual inflation. Given the history of inflation prior to 1966 in
the United States, this prior distribution is unlikely to reflect
a priori beliefs of someone who has seen macroeconomic data
only from the 1950s and 1960s. The prior distribution seems
to reflect the low inflation rates in the United States after Alan
Greenspan became chairman of the Federal Reserve Board in
1987.

It turns out that the tight prior for the steady state inflation
rate has a strong influence on the forecasting performance of
the SW model. Under a more diffuse prior the posterior mean
estimate of steady state inflation would be close to 4% be-
cause of the high inflation rates in the 1970s. Given the mean
reverting features of the DSGE model, an estimated average
inflation rate of 4% yields poor medium- and long-run infla-
tion forecasts in the 2000s when inflation rates fluctuated
around 2.5%. This is documented in more detail in Del Ne-
gro and Schorfheide (2013). Under our alternative prior we
increase the standard deviation for the quarterly steady state
inflation rate to 0.3, which translates into a 95% credible
interval ranging from approximately 0.1% to 5% annual in-
flation.

The effect of monetary policy in the SW model is closely tied
to the magnitude of the price and wage rigidity parameters ξp
and ξw. In the SW model nominal rigidities are generated
through the so-called Calvo mechanism. The ξ parameters
correspond to the probability that price- and wage setters
are unable to re-optimize their nominal prices. The closer the
ζ ’s are to one the larger the nominal rigidity, the flatter the
implied New Keynesian Phillips curve, and the larger the effect
of unanticipated changes in monetary policy on real activity.

Empirical evidence that the estimates of these key param-
eters are very sensitive to the prior distribution is provided in
Del Negro and Schorfheide (2008) and Müller (2011). The for-
mer paper estimates a DSGE model similar to the SW model
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under different prior distributions for ξp and ξw, whereas the
latter derives an analytical approximation for the sensitivity of
posterior means to shifts in prior means that does not require
the DSGE model to be re-estimated.

A numerical side benefit of using tight prior distributions
for the Bayesian estimation of DSGE models is that such
priors tend to smooth out the posterior surface by down-
weighting areas of the parameter space that exhibit local
peaks in the likelihood function but are deemed unlikely un-
der the prior distribution. Moreover, if the likelihood function
contains hardly any information about certain parameters
and is essentially flat with respect to these parameters, tight
priors induce curvature in the posterior. In both cases the
prior information stabilizes the posterior computations. For
posterior simulators such as the RWMH this is crucial, as
they work best when the posterior has a fairly regular ellipti-
cal shape.

6.2.2 Estimation Results from a Highly Accurate SMC Run

Table 6.3 summarizes the estimates of the quantiles of the
marginal posterior distribution for each DSGE model param-
eter. These quantiles can be used to construct equal-tail-
probability credible intervals. While these intervals are typ-
ically not the shortest intervals that have a pre-specified pos-
terior coverage probability, they are easier to compute than
highest-posterior-density intervals and frequently reported in
practice. The quantile estimates are obtained from the output
of a run of the SMC algorithm in which the number of par-
ticles is chosen to be large enough such that the numerical
standard errors are negligible.

Quantile estimates can be computed in two different ways.
First, they can be obtained as order statistics by sorting the
posterior draws {θij}Ni=1 for each element j of the parameter
vector θ and selecting the bτNc’th element (of course, one
could also use the dτNe element or the average of the two)
from the vector of sorted draws. Second, sample quantiles can
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be computed by solving the following minimization problem:

q̂τ (θj) = argminq

[
(1− τ)

1

N

∑
i: θij<q

(θij − q) (6.3)

+τ
1

N

∑
i: θij≥q

(θij − q)
]
.

This is a special case of a quantile regression (see Koenker and
Bassett (1978) or, for a textbook treatment, Koenker (2005))
in which the regressor is simply a constant term. The compu-
tations can be easily adjusted to account for particle weights.

According to Table 6.3, the posterior median estimates of
the price and wage rigidity parameters ξp and ξw are 0.74
and 0.96, respectively, indicating that nominal wages are
more rigid than nominal prices. The equal-tail-probability
90% credible intervals range from 0.63 to 0.80 and 0.77 to
0.99, respectively. The posterior median of the annualized
steady state inflation rate is about 3.5% and lies outside of
the 95% prior credible set under the original SW prior.

6.2.3 Comparison of RWMH-V and SMC Performance

In the remainder of this section we compare the accuracy of
the quantile estimates obtained from the RWMH-V and the
SMC algorithm. For the posterior mean approximations we
computed finite sample inefficiency factors by dividing the
small-sample variance of the mean approximations by the
variance that could be achieved if iid sampling were feasi-
ble. For the posterior mean this benchmark variance simply
is Vπ[θ]/N . The corresponding variance for the quantile es-
timate is more complicated. Under (the infeasible) direct iid
sampling from the posterior distribution, the accuracy of the
quantile estimates is given by the following CLT:

√
N(q̂τ − qτ ) =⇒ N

(
0,
τ(1− τ)

π2(qτ )

)
, (6.4)
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where π(θ) is the posterior density.1 Generally speaking, the
further the quantile in the tails of the posterior distribution,
the less precise its estimate. We will use an estimate of the
asymptotic variance in (6.4) to standardize the Monte Carlo
variance of the posterior samplers below. In particular, we
now define the finite sample inefficiency factor as

InEffN =
V[q̂τ ]

τ(1− τ)/
(
Nπ2(qτ )

) , (6.5)

where V[q̂τ ] is an estimate of the variability of the posterior
quantiles based on multiple runs of the sampler and the pos-
terior density π(qτ ) can be replaced by a kernel density esti-
mate based on the output of the posterior simulator.

Accuracy Assessment and Tuning of Algorithms. The com-
putations are executed exactly as described in Herbst and
Schorfheide (2014). For convenience, we reproduce the most
important details. To assess the precision of the Monte Carlo
approximations, we run both algorithms Nrun = 50 times
and compute standard deviations of quantile estimates across
runs. We constrained the processing time to be roughly the
same across algorithms. The SMC algorithm runs about 2
hours and 32 minutes using 24 processors in parallel. In
principle, we could instead run 24 copies of the RWMH on
separate processor cores and merge the results afterwards.
This may reduce sampling variance if each of the RWMH
chains has reliably converged to the posterior distribution.
However, if there is a bias in the chains—because of, say, the
failure to mix on a mode in a multimodal posterior or sim-
ply a slowly converging chain—then merging chains will not
eliminate that bias.

To facilitate the comparison among the MCMC and the
SMC algorithm we use a poor-man’s parallelization of the
RWMH algorithm. It is possible to parallelize MH algorithms
via pre-fetching, as discussed in Strid (2010). Pre-fetching

1If the posterior distribution of θj is N(θ̄j , V̄θj ) then qτ (θj) = θ̄j +

Φ−1
N (τ)

√
V̄θj , where ΦN (·) is the cdf of a N(0, 1). In turn, π(qτ ) =

φN (Φ−1
N (τ))/

√
Vθh .
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Table 6.4: SW Model: Algorithm Configuration

RWMH-V SMC
N = 10, 000, 000 N = 12, 000

Nburn = 5, 000, 000 Nφ = 500

Nblocks = 1 Nblocks = 6, NMH = 1

c = 0.08 λ = 2.1

Run Time: 14:06 (1 core) Run Time: 02:32 (24 cores)

Note: We run each algorithm Nrun = 50 times. Run time is reported
as hh:mm.

tries to anticipate the points in the parameter space that the
MH algorithm is likely to visit in the next k iterations and
executes the likelihood evaluation for these parameter values
in parallel. Once the likelihood values have been computed
one can quickly determine the next k draws. While coding
the parallel RWMH algorithm efficiently is quite difficult, the
simulation results reported in Strid (2010) suggest that a par-
allelization using 24 processors would lead to a speedup fac-
tor of eight at best. Thus, in our poor-man’s parallelization,
we simply increase the run time of the RWMH algorithm on
a single CPU by a factor of approximately six. This results in
approximately 10 million draws.

The hyperparameters of the SMC algorithm areN = 12, 000,
Nφ = 500, λ = 2.1, and Nblocks = 6, NMH = 1. In this ap-
plication we follow Herbst and Schorfheide (2014) and use
a mixture proposal distribution in the mutation step of the
SMC algorithm:

ϑb|(θin,b,m−1, θ
i
n,−b,m, θ

∗
n,b,Σ

∗
n,b) (6.6)

∼ ωN

(
θin,b,m−1, c

2
nΣ∗n,b

)
+

1− ω
2

N

(
θin,b,m−1, c

2
ndiag(Σ∗n,b)

)
+

1− ω
2

N

(
θ∗n,b, c

2
nΣ∗n,b

)
.

The choice of this mixture proposal is based on ideas in Kohn,
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Giordani, and Strid (2010) on how to improve MH algorithms
for DSGE models. The first part corresponds to the standard
random walk proposal, the second part sets the off-diagonal
elements to zero, and the third part is an independence MH
proposal. In the implementation of the algorithm the vector
of means θ∗n and the the covariance matrix Σ∗n are replaced
by SMC approximations constructed after the correction step.
We set the weight on the mixture components to ω = 0.1. The
choice ofNφ = 500 ensured that the bridge distributions were
never too ‘‘different.’’

The parameter λ was calibrated by examining the correc-
tion step at n = 1. Essentially, we increased λ until the ef-
fective sample size after adding the first piece of information
from the likelihood was at least 10, 000; roughly speaking,
80% of the initial particles retained substantial weight. We
settled on the number of blocks by examining the behavior
of the adaptive scaling parameter c in a preliminary run. Set-
ting Nblocks = 6 ensured that the proposal variances were
never scaled down too much for sufficient mutation. For the
RWMH algorithm, we scale the proposal covariance to achieve
an acceptance rate of approximately 30% over 5 million draws
after a burn-in period of 5 million. Each RWMH chain was ini-
tialized with a draw from the prior distribution. A summary
of the configuration of the algorithms is provided in Table 6.4.

Results. Figure 6.6 depicts estimates of marginal posterior
densities for four parameters: the capital share parameter
α, the policy rule coefficient on output growth rδy, the wage
stickiness parameter ζw, and the degree of wage indexation to
lagged inflation and productivity growth ιw. These parameters
were chosen based on the shapes of the marginal posterior
distributions. The posterior of α is fairly symmetric around
its mean/mode, the posterior of r∆y is skewed toward the
right, the posterior of ξw is bimodal, and the posterior of ιw
has a long left tail.

The multimodal features of the posterior distribution are
discussed in detail in Herbst and Schorfheide (2014). At one
of the modes the values of the wage stickiness parameter, ξw,
and wage indexation parameter, ιw, are relatively low, while

7 16:09:57 UTC



Three Applications • 149

0.05 0.10 0.15 0.20 0.25 0.30
0

5

10

15

20

25 α

0.1 0.2 0.3 0.4 0.5
0
2
4
6
8

10
12 r∆y

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0
2
4
6
8

10
12
14
16 ξw

−0.20.0 0.2 0.4 0.6 0.8 1.0 1.2
0
1
2
3
4
5
6
7
8 ιw

Figure 6.6: SW Model: Precision of Quantile Approximations (Part 1).
Each panel depicts a Kernel estimate of the posterior density (solid)
and ln(Neff ) = ln(N/InEffN ) (light gray bars correspond to RWMH
and dark gray bars correspond to SMC) for τ equal to 0.025, 0.5, and
0.975.

the parameters governing the exogenous wage markup pro-
cess imply a lot of persistence. At the other mode, the relative
importance of endogenous and exogenous propagation is re-
versed. The persistence of measured wages is captured by ξw
and ιw that are close to one. The multimodality of the joint
posterior translates into a bimodal marginal posterior den-
sity of the wage stickiness parameter ζw, which peaks around
0.87 and 0.97, respectively.

In addition to the posterior densities Figure 6.6 also shows
an approximation of the number of iid draws that one has
to generate from the posterior distribution to achieve a quan-
tile approximation that is as accurate as the approximation
obtained from the posterior simulators:

Neff =
N

InEffN
. (6.7)
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The SMC approximations of the quantiles are generally more
accurate than the MCMC approximations from the RWMH-V
algorithm. This difference is most pronounced for the mon-
etary policy rule parameter r∆y and the wage stickiness pa-
rameter ζw. For the labor share parameter α, which has an
approximately Gaussian shape, the measure Neff does not
vary much as a function of the quantile τ . For the param-
eters ξw and ιw the efficiency measure is larger for the 0.95
and 0.975 quantiles, which may be due to the fact that we are
using a kernel density estimator to obtain π̂(q̂τ ) that does not
account for the upper bound of one for these two parameters.

The precision of the quantile approximations for all of the
estimated DSGE model parameters is summarized in Fig-
ure 6.7. Each panel corresponds to a particular quantile and
the bottom right panel contains results for the posterior mean.
Each dot in the scatter plots depicts Neff for the RWMH-V
and the SMC approximation of the posterior quantile of a par-
ticular parameter. Essentially all dots lie above the 45-degree
line, indicating that the SMC algorithm provides more ac-
curate approximations than the RWMH algorithm. For most
parameters the gain in accuracy from using the SMC algo-
rithm exceeds a factor of five. As with the quantile estimates
for the parameters, the SMC estimate of the marginal data
density is also more accurate. Herbst and Schorfheide (2014)
report that the standard deviation of the estimate of the log
marginal data density is five times larger under 50 simula-
tions from the RWMH-V than it is under the SMC sampler,
owing the poor performance of both the posterior simula-
tor and modified harmonic mean estimators on multi-modal
models. The log marginal likelihood estimates also imply that
making the prior distribution more diffuse improves the fit of
the SW model.

6.3 The Leeper-Plante-Traum Fiscal Policy Model

In the third application we revisit the estimation of a DSGE
model developed by Leeper, Plante, and Traum (2010), here-
after LPT, to analyze the effect of fiscal policy interventions.
The model is based on a real business cycle model with habit
formation in consumption, investment adjustment costs, and
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Figure 6.7: SW Model: Precision of Quantile Approximations (Part 2).
Neff for the RWMH-V and SMC quantile approximations. Each dot
corresponds to one parameter. The 45-degree line appears in solid.

variable capital utilization. Most importantly, the model in-
cludes a detailed description of fiscal policy. LPT estimate
their model with Bayesian techniques and use it to track the
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dynamics of fiscal financing and to assess the role of debt in
the determination of spending, taxes, and transfers. Here we
present only the portion of the model relevant to the fiscal
sector. The full set of log-linearized equations can be found
in Section A.2 of the Appendix.

There are three sources of time-varying distortionary taxes
in the model, represented by the tax rates τ ct , τkt , and τ lt . These
taxes are levied on consumption, capital, and labor income,
respectively. Households allocate their income between con-
sumption, ct (taxed at rate τ ct ); government bonds, bt; and
capital investment, it. Household income is composed of la-
bor income (wtlt, taxed at rate τ lt ), utilized-capital income
(Rkt utkt−1, taxed at rate τkt ), income from the sale of risk-
less government bonds (Rt−1bt−1), and transfers zt. The (flow)
budget constraint of the households can be written as:

(1 + τ ct )ct + it + bt (6.8)
= (1− τ lt )wtlt + (1− τkt )Rkt utkt−1 +Rt−1bt−1 + zt.

The government uses the income from these taxes to finance
government spending, Gt. The budget constraint for the gov-
ernment, using capital letters to denote aggregate quantities,
is:

Bt+τ
k
t R

k
t utKt−1+τ ltwtLt+τ

c
t Ct = Rt−1Bt−1+Gt+Zt. (6.9)

The tax rates are assumed to be functions of the state of
the economy and some exogenous shocks. These functions
are called fiscal policy rules, because they in part describe
the reaction of the fiscal authority to the level of output and
debt in the economy. Letting x̂t denote the log deviation from
steady state of xt, the fiscal policy rules take the form:

τ̂kt = ϕkŶt + γkB̂t−1 + φklû
l
t + φkcû

c
t + ûkt , (6.10)

τ̂ lt = ϕlŶt + γlB̂t−1 + φlkû
k
t + φlcû

c
t + ûlt, (6.11)

τ̂ ct = φckû
k
t + φclû

l
t + ûct . (6.12)

Capital and labor taxes respond to output, Ŷt, capturing the
effects of automatic stabilizers via parameters ϕk and ϕl, and
the level of debt, B̂t−1, via parameters γk and γl for capital
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and labor, respectively. The processes uct , ukt , and ult capture
exogenous movements in tax and transfer rates. Exogenous
movements of one tax category can contemporaneously affect
the other tax rates. The degree of comovement is controlled by
the parameters φkl, φkc, and φlc. The exogenous movements
in taxes follow AR(1) processes:

ûkt = ρkû
k
t−1 + σkε

k
t , εkt ∼ N(0, 1), (6.13)

ûlt = ρlû
l
t−1 + σlε

l
t, εlt ∼ N(0, 1), (6.14)

ûct = ρcû
c
t−1 + σcε

c
t , εct ∼ N(0, 1). (6.15)

On the outlays side, the fiscal rule for government spend-
ing, Ĝt, is a function of current output and the previous pe-
riod’s debt, controlled by the parameters, ϕg and γg, respec-
tively. Spending is also affected by an exogenous, AR(1) pro-
cess, ugt . In log deviations from steady state, the government
spending rule is given by:

Ĝt = −ϕgŶt − γgB̂t−1 + ûgt , (6.16)
ûgt = ρgû

g
t−1 + σgε

g
t , εgt ∼ N(0, 1). (6.17)

The fiscal authority also facilitates lump-sum transfers to the
households, Ẑt, according to a rule that again responds to
output (via parameter ϕZ ) and debt (via parameter γz). More-
over, transfers are affected by the exogenous AR(1) shock
uzt . Expressed in log deviations from steady state, the trans-
fer rule is given by:

Ẑt = −ϕzŶt − γzB̂t−1 + ûzt , (6.18)
ûzt = ρzû

z
t−1 + σzε

z
t , εzt ∼ N(0, 1). (6.19)

The level of debt adjusts to ensure that the government bud-
get constraint is satisfied.

Prior Specifications. We will subsequently compare estima-
tion results obtained based on two different prior distribu-
tions. The first prior distribution is the original one used by
LPT. The second prior distribution is obtained by increas-
ing the prior variance of some of the fiscal policy parameters
and by removing some of the constraints on the sign of these
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parameters. In general, LPT use tight but defensible priors
for the fiscal parameters. Nonetheless, there is likely to be
disagreement among analysts about these prior distributions
and there are reasonable arguments for considering more dif-
fuse distributions.

For example, in the original LPT prior, ϕg, the response of
government spending to output is restricted to be greater than
zero, implying counter-cyclical fiscal policy. There is room to
relax the sign restriction because a priori it is plausible to al-
low for pro-cyclical government spending. Moreover, informa-
tion on many of the tax comovement parameters, for example
φkc and φlc, is difficult to elicit. Thus, it is plausible to assign
a higher prior variance to these parameters than in the orig-
inal estimation. Finally, estimation with diffuse priors allows
us to parse the effects of the original LPT priors.

The LPT and our diffuse prior distributions for the fiscal
policy parameters are displayed in Table 6.5. The prior distri-
bution for the γ parameters, which determine the responses
of spending, taxes, and transfers to movements in the lagged
level of debt, are changed from gamma distributions centered
tightly around 0.4 to uniform distributions on the interval
[0, 5]. While the γ’s are still restricted to be nonnegative, con-
sistent with stable government debt dynamics, there is much
more uncertainty about plausible values. Moreover, our mod-
ified prior is flat, denying the posterior a potential source of
curvature.

The ϕ parameters control the extent to which current out-
put affects spending, taxation, and transfers. The paramet-
ric assumption of Gamma distributions implies that spend-
ing and transfers are countercyclical, while capital and la-
bor taxes are procyclical. These hard restrictions might seem
undesirable, because there is substantial evidence that, for
example, government spending is procyclical at times. Our
diffuse priors on these parameters are centered at the same
values as their original counterparts, but with substantially
higher standard deviations (between a three- and ten-fold in-
crease). Finally, we increase the prior standard deviations on
the tax comovement parameters φ by a factor of 10. The priors
for all other parameters are kept identical to the ones used
by LPT, and are summarized in Table 6.6.

7 16:09:57 UTC



Three Applications • 155

Table 6.5: LPT Model: Prior Distributions for Fiscal Rule Parameters

LPT Prior Diffuse Prior
Type Para (1) Para (2) Type Para (1) Para (2)

Debt Response Parameters
γg G 0.4 0.2 U 0 5
γtk G 0.4 0.2 U 0 5
γtl G 0.4 0.2 U 0 5
γz G 0.4 0.2 U 0 5

Output Response Parameters
ϕtk G 1.0 0.3 N 1.0 1
ϕtl G 0.5 0.25 N 0.5 1
ϕg G 0.07 0.05 N 0.07 1
ϕz G 0.2 0.1 N 0.2 1

Exogenous Tax Comovement Parameters
φkl N 0.25 0.1 N 0.25 1
φkc N 0.05 0.1 N 0.05 1
φlc N 0.05 0.1 N 0.05 1

Notes: Para (1) and Para (2) correspond to the mean and standard
deviation of the Beta (B), Gamma (G), and Normal (N) distributions
and to the upper and lower bounds of the support for the Uniform
(U) distribution. For the Inv. Gamma (IG) distribution, Para (1) and
Para (2) refer to s and ν, where p(σ|ν, s) ∝ σ−ν−1e−νs

2/2σ2

.

Data and Tuning of Algorithm. LPT use U.S. data from
1960:Q1 to 2008:Q1 on nine series to estimate the model:
the deviations of log real per capita consumption, invest-
ment, hours, government debt, government spending, capital
tax revenues, labor tax revenues, consumption tax revenues,
and government transfers from independent linear trends.
Details on the construction of the data set are available in
the Appendix of LPT. Under the diffuse prior the posterior dis-
tribution is multimodal. Because we already highlighted the
difficulty of the RWMH-V algorithm with multimodal posterior
surfaces above, we focus on the substantive results obtained
from a single run of the SMC algorithm. The configuration of
the algorithm is summarized in Table 6.7.
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Table 6.6: LPT Model: Common Prior Distributions

Type Para (1) Para (2) Type Para (1) Para (2)
Endogenous Propagation Parameters

γ G 1.75 0.5 s′′ G 5 0.5
κ G 2.0 0.5 δ2 G 0.7 0.5
h B 0.5 0.2

Exogenous Process Parameters
ρa B 0.7 0.2 σa IG 1 4
ρb B 0.7 0.2 σb IG 1 4
ρl B 0.7 0.2 σl IG 1 4
ρi B 0.7 0.2 σi IG 1 4
ρg B 0.7 0.2 σg IG 1 4
ρtk B 0.7 0.2 σtk IG 1 4
ρtl B 0.7 0.2 σtl IG 1 4
ρtc B 0.7 0.2 σtc IG 1 4
ρz B 0.7 0.2 σz IG 1 4

Notes: Para (1) and Para (2) correspond to the mean and standard
deviation of the Beta (B), Gamma (G), and Normal (N) distributions
and to the upper and lower bounds of the support for the Uniform
(U) distribution. For the Inv. Gamma (IG) distribution, Para (1) and
Para (2) refer to s and ν, where p(σ|ν, s) ∝ σ−ν−1e−νs

2/2σ2

.

Table 6.7: LPT Model: SMC Configuration

N = 6, 000 Nφ = 500

Nblocks = 3 NMH = 1

λ = 4.0

Run Time [mm:ss]: 48:00 (12 cores)

Results. Table 6.8 summarizes the posterior distribution of
the key parameters related to fiscal policy in the model.2 The
posterior means for the debt-response parameters are more
or less that same across prior settings, indicating that the

2The posterior distribution of the other parameters is similar under the
two priors and can be seen in Table A-3 in the Appendix.
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Table 6.8: LPT Model: Posterior Moments (Part 1)

Based on LPT Prior Based on Diff. Prior
Mean [5%, 95%] Int. Mean [5%, 95%] Int.

Debt Response Parameters
γg 0.16 [ 0.07, 0.27] 0.10 [ 0.01, 0.23]
γtk 0.39 [ 0.22, 0.60] 0.38 [ 0.16, 0.62]
γtl 0.11 [ 0.04, 0.21] 0.04 [ 0.00, 0.11]
γz 0.32 [ 0.17, 0.47] 0.32 [ 0.14, 0.49]

Output Response Parameters
ϕtk 1.67 [ 1.18, 2.18] 2.06 [ 1.44, 2.69]
ϕtl 0.29 [ 0.11, 0.53] 0.11 [ -0.34, 0.58]
ϕg 0.06 [ 0.01, 0.13] -0.43 [ -0.87, 0.02]
ϕz 0.17 [ 0.06, 0.33] -0.07 [ -0.56, 0.41]

Exogenous Tax Comovement Parameters
φkl 0.19 [ 0.14, 0.24] 1.57 [ 1.29, 1.87]
φkc 0.03 [ -0.03, 0.08] -0.33 [ -2.84, 2.73]
φlc -0.02 [ -0.07, 0.04] 0.20 [ -1.23, 1.40]

Innovations to Fiscal Rules
σg 3.03 [ 2.79, 3.30] 2.91 [ 2.66, 3.19]
σtk 4.36 [ 4.01, 4.75] 1.26 [ 1.08, 1.46]
σtl 2.95 [ 2.71, 3.22] 2.00 [ 1.71, 2.33]
σtc 3.99 [ 3.67, 4.33] 1.14 [ 0.96, 1.35]
σz 3.34 [ 3.07, 3.63] 3.34 [ 3.07, 3.63]

prior is not substantially influencing the posterior. On the
other hand, the posterior distribution of the elasticities of
taxes, spending, and transfers with respect to output (the ϕ
parameters) are substantially different under the two priors.
In particular, the restriction that ϕi > 0 for i ∈ {tk, tl, g, z},
embodied in the LPT prior, is ‘‘binding’’ in the sense that the
posterior under the diffuse prior has substantial density for
ϕtl, ϕg, and ϕz < 0. Indeed, as shown in Figure 6.8, once this
restriction is relaxed, the sign of the posterior for ϕg and ϕz
switches.

Figure 6.9 depicts scatter plots of draws from bivariate
posterior distributions in the off-diagonal panels and density
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Figure 6.8: LPT Model: Posterior of Output Response Parameters.
The figure depicts posterior densities under the LPT prior (solid) and
the diffuse prior (dashed).

plots for univariate posteriors of the tax comovement param-
eters φlc, φkc, and φkl. Under the LPT prior distribution the
posteriors appear to be unimodal and concentrated near zero.
As the prior distribution is relaxed, the posterior distributions
become multimodal. The marginal posterior of φlc has modes
near −1 and 1, and the posterior of φkc has modes near −3
and 3. The posterior distributions are not symmetric. For φlc
there is more mass in the positive region of the parameter
space, whereas for φkc most of the posterior mass is in the
negative region of the parameter space.

The multimodal posterior for the parameters translates
into a multimodal posterior for impulse responses. The re-
sponses to a labor income tax shock εlt are depicted in Fig-
ure 6.10. The figure depicts four types of posterior mean re-
sponses: the baseline responses obtained from the posterior
distribution that is associated with the LPT prior; the uncon-
ditional posterior mean responses associated with the diffuse
prior; posterior mean responses based on the diffuse prior
that condition on φlc > 0, φkc < 0 or φlc < 0, φkc > 0, respec-
tively. The lower right panel shows the response of the labor
tax rate τ̂l. To facilitate the comparison between the four sets
of impulse responses, we normalize the labor tax innovation
to one percent. If the steady state labor tax rate is 30% then
a one percent increase raises the tax rate to 30.3%.

Under the diffuse prior distribution capital taxes increase
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Figure 6.9: LPT Model: Posterior of Tax Comovement Parameters.
The plots on the diagonal depict posterior densities under the LPT
prior (solid) and the diffuse prior (dashed). The plots on the off-
diagonals depict draws from the posterior distribution under the
LPT prior (circles) and the diffuse prior (crosses).

in response to a labor tax shock, because τkl is unambigu-
ously positive. Under the LPT prior the capital tax response
is more muted and turns negative after one period. While the
spillover from the labor tax innovation onto the consumption
tax rate is roughly zero on average, under the diffuse prior
the response is bimodal: conditional on the φlc > 0 (φlc < 0)
there is a 1.2% rise (fall) in the consumption tax. In general,
the increase in the labor tax lowers the labor supply, and the
hours worked response is quite similar for all four cases. The
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Figure 6.10: LPT Model: Impulse Response to a Labor Tax Innova-
tion. The figure depicts posterior mean impulse responses under
LPT prior (solid); diffuse prior (dashed); diffuse prior with φlc > 0,
φkl < 0 (dotted); and diffuse prior with φlc < 0, φkl > 0 (dots
and short dashes). Ĉt, Ît and L̂t are consumption, investment, and
hours worked in deviation from steady state.

increase in capital taxes lowers investment conditional on the
diffuse prior distribution. The drop in investment is amplified
(dampened) if the consumption tax falls (rises) in response to
the labor tax innovation, which creates a bimodal investment
response. Falling (rising) consumption taxes create an incen-
tive to allocate more (less) income to consumption and less
(more) to investment. In turn, the consumption response is
also bimodal.
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Estimation of Nonlinear DSGE Models



Chapter 7

From Linear to Nonlinear DSGE

Models

All of the DSGE models considered in this book are inherently
nonlinear. Thus far, we considered approximate solutions to
the equilibrium dynamics associated with these models that
are linear (or log-linear) and we assumed that the innovations
to the exogenous shock processes are Gaussian. This allowed
us to use the Kalman filter to evaluate the DSGE model likeli-
hood function and we could focus our attention on generating
draws from the posterior distribution p(θ|Y ) ∝ p(Y |θ)p(θ). In
the third part of the book, we will present computational tech-
niques that can be used to estimate DSGE models that have
been solved with nonlinear techniques such as higher-order
perturbation methods or projection methods.

From the perspective of Bayesian estimation, the key dif-
ference between DSGE models that have been solved with
a linearization technique and models that have been solved
nonlinearly is that in the former case the resulting state-space
representation is linear:

yt = Ψ0(θ) + Ψ1(θ)t+ Ψ2(θ)st + ut, (7.1)
ut ∼ N(0,Σu),

st = Φ1(θ)st−1 + Φε(θ)εt, εt ∼ N(0,Σε)

whereas in the latter case it takes the general nonlinear form

yt = Ψ(st, t; θ) + ut, ut ∼ Fu(·; θ) (7.2)
st = Φ(st−1, εt; θ), εt ∼ Fε(·; θ).

As in the linear case, the functions Ψ(st; θ) and Φ(st−1, εt; θ)
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are generated numerically by the solution method and ut is
an additive measurement error.

The remaining chapters of this book will focus on con-
structing sequential Monte Carlo approximations to the likeli-
hood function associated with the nonlinear state-space model
(7.2) and the consequences of using an approximate likeli-
hood function for the accuracy of posterior simulations. Be-
fore delving into the Bayesian computations, we provide a
brief discussion of nonlinear solution techniques for DSGE
models in Section 7.1. Section 7.2 highlights some of the fea-
tures that researchers have introduced into DSGE models to
capture important nonlinearities in the data. Throughout this
chapter, we use the small-scale New Keynesian DSGE model
as illustrative example. This chapter is not meant to be a
self-contained tutorial on nonlinear DSGE model solutions.
Instead, its goal is to provide some context for the particle
filtering techniques discussed in Chapter 8.

7.1 Nonlinear DSGE Model Solutions

When discussing nonlinear solutions to DSGE models, it is
convenient to follow the convention in the dynamic program-
ming literature and to distinguish between control and state
variables.1 In the small-scale DSGE model the control vari-
ables, which we denote in slight abuse of notation by ct,
are inflation, consumption, and output. The lagged interest
rate is an endogenous state variable, which we denote by xt,
and the technology growth shock, the government spending
shock, and the monetary policy shock are exogenous state
variables, which we denote by zt. The DSGE model solution
will have the following structure:

ct = Φc(xt, zt), xt+1 = Φx(xt, zt), zt+1 = Φz(zt, εt+1). (7.3)

The control variables depend on the current values of the en-
dogenous and exogenous state variables. The function Φc(·)
summarizes the decision rules of the firms and households

1This distinction was not necessary to implement the solution algorithm
for a linear rational expectations system discussed in Section 2.1.
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that solve the underlying intertemporal optimization prob-
lems of the economic agents. In the context of the underlying
dynamic programming problems, the decision rules are called
policy functions. The functions Φx(·) and Φz(·) characterize
the laws of motion of the state variables. The endogenous
state variables in the subsequent period depend on the cur-
rent values of the endogenous and exogenous state variables,
and the exogenous state variables in period t + 1 depend on
the period t value and the period t+ 1 innovation.

For the sake of concreteness, we reproduce the equilibrium
conditions for the small-scale DSGE model, written in terms
of percentage deviations from steady state values (recall that
ŷt = ln(yt/y) and so forth):

1 = βEt
[
e−τĉt+1+τĉt+R̂t−ẑt+1−π̂t+1

]
(7.4)

0 =
(
eπ̂t − 1

) [(
1− 1

2ν

)
eπ̂t +

1

2ν

]
(7.5)

−β Et
[(
eπ̂t+1 − 1

)
e−τĉt+1+τĉt+ŷt+1−ŷt+π̂t+1

]
+

1− ν
νφπ2

(
1− eτĉt

)
eĉt−ŷt = e−ĝt − φπ2g

2

(
eπ̂t − 1

)2
(7.6)

R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t (7.7)
+(1− ρR)ψ2 (ŷt − ĝt) + εR,t

ĝt = ρg ĝt−1 + εg,t (7.8)
ẑt = ρz ẑt−1 + εz,t. (7.9)

The vector of control variables is ct = [ĉt, ŷt, π̂t]
′. The endoge-

nous state variable is xt = R̂t−1 and the vector of exogenous
state variables is zt = [ẑt, ĝt, εR,t]

′. Finally, the innovation
vector is given by εt = [εz,t, εg,t, εR,t]

′. The law of motion Φz(·)
of the exogenous state variables is given by (7.8) and (7.9)
as well as the trivial identity εR,t+1 = εR,t+1. The key step
of the nonlinear solution algorithm is to find decision rules
Φc,ĉ(xt, zt) and Φc,π̂(xt, zt) for consumption and inflation, re-
spectively, such that the nonlinear rational expectations dif-
ference equations (7.4) to (7.9) and the model variables are
non-explosive. Once the decision rules for consumption and
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inflation are determined, the decision rule Φc,y(xt, zt) for out-
put can be directly obtained from the aggregate resource con-
straint (7.6). Finally, the law of motion of the endogenous
state variable Φx(·) is obtained by substituting Φc,π̂(·) and
Φc,y(·) into the monetary policy rule (7.7).

Nonlinear solution techniques for DSGE models can be
broadly classified into global approximations and local per-
turbations. A global approximation method applied to the
small-scale New Keynesian DSGE model would express the
decision rules Φc,ĉ(xt, zt) and Φc,π̂(xt, zt) as flexible func-
tions, e.g., Chebyshev polynomials, indexed by coefficient vec-
tors ϑĉ and ϑπ̂. The coefficient vectors are determined as fol-
lows: (i) specify a grid of points G in the model’s state space; (ii)
determine ϑĉ and ϑπ̂ by minimizing the discrepancy between
the left-hand side and the right-hand side of (7.4) and (7.5),
summed over all (xt, zt) ∈ G. Note that the evaluation of the
right-hand side of the intertemporal optimality conditions re-
quires the numerical approximation of conditional expecta-
tions. A textbook treatment of global solution techniques is
provided by Judd (1998).

The log-linear approximation of the DSGE model discussed
in Section 2.1 is an example of a first-order perturbation ap-
proximation. Suppose that we pre-multiply the shock innova-
tions εz,t, εg,t, and εR,t in (7.7) to (7.9) by a scaling constant
σ. For σ = 0 the system is in its steady state, meaning that
the model variables expressed in percentage deviations are
equal to zero. The basic idea of a perturbation solution, say
of order two, is to construct an approximation of the form

ct = Φc(xt, zt) = c(0) + σc
(1)
t + σ2c

(2)
t +Op(σ3)

xt+1 = Φx(xt, zt) = x(0) + σx
(1)
t+1 + σ2x

(2)
t+1 +Op(σ3)

that satisfies the equilibrium conditions. The terms c(0) and
x(0) correspond to steady states (or are equal to zero if the sys-
tem is written in deviations from the steady state). The terms
c
(1)
t and x

(1)
t are identical to the laws of motion that are im-

plicitly obtained with the solution technique for linear ratio-
nal expectations models discussed in Section 2.1. The terms
c
(2)
t and x

(2)
t+1 capture nonlinearities arising from quadratic

terms of the form xj,txk,t, zj,tzk,t, and xj,tzk,t. Finally, the
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remainder can be bounded by a term that converges to zero
at least at the rate σ3 as σ −→ 0. A second-order perturba-
tion solution requires a second-order Taylor approximation
of the equilibrium conditions. An introduction to perturba-
tions methods is provided by Holmes (1995) and algorithms
to compute second-order perturbation for DSGE models have
been developed in Schmitt-Grohé and Uribe (2004) and Kim,
Kim, Schaumburg, and Sims (2008). A comparison of linear
and nonlinear solution techniques can be found in Aruoba,
Fernández-Villaverde, and Rubio-Ramı́rez (2006).

7.2 Adding Nonlinear Features to DSGE Models

The nonlinearities that arise in the small-scale DSGE model
under parameterizations that are consistent with U.S. data
are fairly small. The decision rules are essentially linear in the
neighborhood of the steady state. The model requires unreal-
istically volatile shocks or a large risk-aversion parameter τ
to generate substantial nonlinearities. To capture the nonlin-
earities that are present in actual U.S. data, it is necessary to
add some additional features to the small-scale DSGE model.
We briefly discuss four such features in the remainder of this
chapter.

Stochastic Volatility. One of the most striking features of
postwar U.S. data is the reduction in the volatility of output
growth and its components around 1984. This phenomenon
has been termed the Great Moderation and was also observed
for many other industrialized countries. To investigate the
sources of this volatility reduction, Justiniano and Primiceri
(2008) allow the volatility of structural shocks in an SW-
style model to vary stochastically over time. In the context
of our small-scale DSGE model the introduction of stochastic
volatility would amount to assuming that the shock innova-
tions are distributed according to

εj,t ∼ N(0, σ2
j v

2
j,t), ln vj,t = ρv,jvj,t−1 + ηj,t,

ηj,t ∼ N(0, ω2
j ), j ∈ {g, z, R}. (7.10)

Stochastic volatility is not just important to capture the Great
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Moderation. It is also useful to capture increases in macroeco-
nomic volatility during recessions as well as the time-varying
volatility of financial data such as short-term interest rates,
bond yields, and equity returns. Fernández-Villaverde and
Rubio-Ramı́rez (2013) present empirical evidence for the im-
portance of modeling macroeconomic volatility, show how non-
linear DSGE models with shocks that exhibit stochastic volatil-
ity along the lines of (7.10) can be estimated using particle
filtering techniques, and provide some empirical illustrations.

Markov Switching. Hamilton (1989) developed a Markov-
switching autoregressive model for U.S. output growth and
showed that the regime switching process is able to cap-
ture recession and expansion periods. Markov-switching pro-
cesses can also be incorporated into DSGE models. For in-
stance, in the small-scale DSGE model we could replace the
constant technology growth rate γ by a two-state Markov pro-
cess, γ(mt), where mt is either zero (say, expansion) or one
(say, recession). The process mt is described by the transition
probabilities P{mt = l|mt−1 = k} = ηlk. This modification
would be able to match the same features of output growth
that Hamilton (1989) was able to match with his regime-
switching model. Schorfheide (2005) replaced the constant
target inflation rate π∗ by a time-varying target inflation rate
π∗(mt) that is assumed to follow a two-state Markov process,
capturing shifts to a high target inflation rate in the 1970s
and the reversion to a low target inflation rate in the early
1980s. Markov switching can also be introduced into parame-
ters that are unrelated to exogenous processes, e.g., the mon-
etary policy coefficients ψ1 and ψ2. Davig and Leeper (2007)
and Bianchi (2013) use DSGE models with regime switch-
ing to study the interaction between U.S. monetary and fiscal
policy. Solution methods for Markov-switching DSGE models
are provided in Farmer, Waggoner, and Zha (2009) and Foer-
ster, Rubio-Ramirez, Waggoner, and Zha (2014).

Asymmetric Adjustment Costs. The nonlinearity of DSGE
models can also be enhanced by introducing asymmetric ad-
justment costs. For instance, it might be more costly for firms
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to lower nominal wages than to raise nominal wages. While
wages in our small-scale model are flexible, we could make
the price adjustment costs asymmetric by replacing

ACt(j) =
φ

2

(
Pt(j)

Pt−1(j)
− π

)2

Yt(j),

with the linex function

ÃCt(j) = φ

(
exp{−ζ[Pt(j)/Pt(j − 1)− π]}

ζ2
(7.11)

+
ζ[Pt(j)/Pt(j − 1)− π]− 1

ζ2

)
Yt(j).

Here the additional parameter ζ controls the direction and
the degree of asymmetry. Note that ÃCt(j) −→ ACt(j) as
ζ −→ 0. DSGE models with asymmetric adjustment costs
have been analyzed, for instance, in Kim and Ruge-Murcia
(2009) and Aruoba, Bocola, and Schorfheide (2013).

Occasionally Binding Constraints. Short-term interest rates
in the United States have been essentially equal to zero in the
United States since 2009. The availability of money as a non-
interest-bearing asset effectively creates a zero lower bound
(ZLB) for nominal interest rates. The baseline monetary pol-
icy rule in (7.7) ignores this ZLB and allows net interest rates
to become negative. However, the ZLB can be easily imposed
using a max operator as follows:

R̂t = max

{
− ln(rπ∗), ρRR̂t−1 + (1− ρR)ψ1π̂t

+(1− ρR)ψ2 (ŷt − ĝt) + εR,t

}
. (7.12)

Because the interest rates are expressed in percentage de-
viations from the steady state R = rπ∗, the ZLB translates
into a lower bound of − ln(rπ∗). The ZLB is an example of
an occasionally binding constraint, in the sense that it only
becomes binding if the economy is hit by adverse shocks that
lead interest rates to fall to zero. Occasionally binding con-
straints often generate decision rules with kinks. Perturba-
tion techniques, which rely on smoothness restrictions, are
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not well suited to solve such models. Papers by Fernández-
Villaverde, Gordon, Guerrón-Quintana, and Rubio-Ramı́rez
(2015); Gust, Lopez-Salido, and Smith (2012); Aruoba, Cuba-
Borda, and Schorfheide (2014); and Maliar and Maliar (2015)
all use global approximation methods to solve DSGE models
with a ZLB constraint.
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Particle Filters

The key difficulty that arises when the Bayesian estimation
of DSGE models is extended from linear to nonlinear models
is the evaluation of the likelihood function. Throughout this
book, we focus on the use of particle filters to accomplish
this task. Our starting point is a state-space representation
for the nonlinear DSGE model of the form

yt = Ψ(st, t; θ) + ut, ut ∼ Fu(·; θ) (8.1)
st = Φ(st−1, εt; θ), εt ∼ Fε(·; θ).

As discussed in the previous chapter, the functions Ψ(st, t; θ)
and Φ(st−1, εt; θ) are generated numerically by the solution
method. For reasons that will become apparent below, we
require that the measurement error ut in the measurement
equation is additively separable and that the probability den-
sity function p(ut|θ) can be evaluated analytically. In many
applications, ut ∼ N(0,Σu). While the exposition of the algo-
rithms in this chapter focuses on the nonlinear state-space
model (8.1), the numerical illustrations and empirical appli-
cations are based on the linear Gaussian model

yt = Ψ0(θ) + Ψ1(θ)t+ Ψ2(θ)st + ut, (8.2)
ut ∼ N(0,Σu),

st = Φ1(θ)st−1 + Φε(θ)εt, εt ∼ N(0,Σε)

obtained by solving a log-linearized DSGE model. For model
(8.2) the Kalman filter described in Table 2.1 delivers the exact
distributions p(yt|Y1:t−1, θ) and p(st|Y1:t, θ) against which the
accuracy of the particle filter approximation can be evaluated.
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There exists a large literature on particle filters. Surveys
and tutorials can be found, for instance, in Arulampalam,
Maskell, Gordon, and Clapp (2002), Cappé, Godsill, and Mou-
lines (2007), Doucet and Johansen (2011), Creal (2012). Kan-
tas, Doucet, Singh, Maciejowski, and Chopin (2014) discuss
using particle filters in the context of estimating the param-
eters of state-space models. These papers provide detailed
references to the literature. The basic bootstrap particle filter-
ing algorithm is remarkably straightforward, but may perform
quite poorly in practice. Thus, much of the literature focuses
on refinements of the bootstrap filter that increases the effi-
ciency of the algorithm; see, for instance, Doucet, de Freitas,
and Gordon (2001). Textbook treatments of the statistical the-
ory underlying particle filters can be found in Cappé, Mou-
lines, and Ryden (2005), Liu (2001), and Del Moral (2013).

The remainder of this chapter is organized as follows. We
introduce the bootstrap particle filter in Section 8.1. This fil-
ter is easy to implement and has been widely used in DSGE
model applications. The bootstrap filter is a special case of
a sequential importance sampling with resampling (SISR) al-
gorithm. This more general algorithm is presented in Sec-
tion 8.2. An important step in the generic particle filter algo-
rithm is to generate draws that reflect the distribution of the
states in period t conditional on the information Y1:t. These
draws are generated through an importance sampling step
in which states are drawn from a proposal distribution and
reweighted. For the bootstrap particle filter, this proposal dis-
tribution is based on the state transition equation. Unfortu-
nately, the forward iteration of the state transition equation
might produce draws that are associated with highly vari-
able weights, which in turn leads to imprecise Monte Carlo
approximations.

The accuracy of the particle filter can be improved by choos-
ing other proposal distributions. We discuss in Section 8.3
how to construct more efficient proposal distributions. While
the tailoring (or adaption) of the proposal distributions tends
to require additional computations, the number of particles
can often be reduced drastically, which leads to an improve-
ment in efficiency. DSGE model-specific implementation is-
sues of the particle filter are examined in Section 8.4. Finally,
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we present the auxiliary particle filter and a filter recently
proposed by DeJong, Liesenfeld, Moura, Richard, and Dhar-
marajan (2013) in Section 8.5. Various versions of the parti-
cle filter are applied to the small-scale New Keynesian DSGE
model and the SW model in Sections 8.6 and 8.7. We close
this chapter with some computational considerations in Sec-
tion 8.8. Throughout this chapter we condition on a fixed
vector of parameter values θ and defer the topic of parameter
estimation to Chapters 9 and 10.

8.1 The Bootstrap Particle Filter

We begin with a version of the particle filter in which the parti-
cles representing the hidden state vector st are propagated by
iterating the state-transition equation in (8.1) forward. This
version of the particle filter is due to Gordon, Salmond, and
Smith (1993) and called bootstrap partical filter. As in Algo-
rithm 8, we use the sequence {ρt}Tt=1 to indicate whether the
particles are resampled in period t. A resampling step is nec-
essary to prevent the distribution of the particle weights from
degenerating. We discuss the adaptive choice of ρt below. The
function h(·) is used to denote transformations of interest of
the state vector st. The particle filter algorithm closely follows
the steps of the generic filter in Algorithm 1.

Algorithm 11 (Bootstrap Particle Filter)

1. Initialization. Draw the initial particles from the distri-

bution sj0
iid∼ p(s0|θ) and set W j

0 = 1, j = 1, . . . ,M .

2. Recursion. For t = 1, . . . , T :

(a) Forecasting st. Propagate the period t−1 particles
{sjt−1,W

j
t−1} by iterating the state-transition equa-

tion forward:

s̃jt = Φ(sjt−1, ε
j
t ; θ), εjt ∼ Fε(·; θ). (8.3)

An approximation of E[h(st)|Y1:t−1, θ] is given by

ĥt,M =
1

M

M∑
j=1

h(s̃jt )W
j
t−1. (8.4)
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(b) Forecasting yt. Define the incremental weights

w̃jt = p(yt|s̃jt , θ). (8.5)

The predictive density p(yt|Y1:t−1, θ) can be approx-
imated by

p̂(yt|Y1:t−1, θ) =
1

M

M∑
j=1

w̃jtW
j
t−1. (8.6)

If the measurement errors are N(0,Σu) then the
incremental weights take the form

w̃jt = (2π)−n/2|Σu|−1/2 (8.7)

× exp

{
− 1

2

(
yt −Ψ(s̃jt , t; θ)

)′
×Σ−1

u

(
yt −Ψ(s̃jt , t; θ)

)}
,

where n here denotes the dimension of yt.

(c) Updating. Define the normalized weights

W̃ j
t =

w̃jtW
j
t−1

1
M

∑M
j=1 w̃

j
tW

j
t−1

. (8.8)

An approximation of E[h(st)|Y1:t, θ] is given by

h̃t,M =
1

M

M∑
j=1

h(s̃jt )W̃
j
t . (8.9)

(d) Selection. Case (i): If ρt = 1 resample the parti-
cles via multinomial resampling. Let {sjt}Mj=1 denote
M iid draws from a multinomial distribution char-
acterized by support points and weights {s̃jt , W̃ j

t }
and set W j

t = 1 for j =, 1 . . . ,M .
Case (ii): If ρt = 0, let sjt = s̃jt and W j

t = W̃ j
t for

j =, 1 . . . ,M .
An approximation of E[h(st)|Y1:t, θ] is given by

h̄t,M =
1

M

M∑
j=1

h(sjt )W
j
t . (8.10)
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3. Likelihood Approximation. The approximation of the
log-likelihood function is given by

ln p̂(Y1:T |θ) =
T∑
t=1

ln

 1

M

M∑
j=1

w̃jtW
j
t−1

 . (8.11)

As for the SMC Algorithm 8, we can define an effective
sample size (in terms of number of particles) as

ÊSSt = M
/ 1

M

M∑
j=1

(W̃ j
t )2

 (8.12)

and replace the deterministic sequence {ρt}Tt=1 by an adap-
tively chosen sequence {ρ̂t}Tt=1, for which ρ̂t = 1 whenever
ÊSSt falls below a threshold, say M/2. In the remainder of
this section we discuss the asymptotic properties of the par-
ticle filters, letting the number of particles M −→∞, and the
role of the measurement errors ut in the bootstrap particle
filter.

8.1.1 Asymptotic Properties

The convergence theory underlying the particle filter is similar
to the theory sketched in Section 5.2.4 for the SMC sampler.
As in our presentation of the SMC sampler, in the subse-
quent exposition we will abstract many of the technical details
that underly the convergence theory for the SMC sampler.
Our exposition will be mainly heuristic, meaning that we will
present some basic convergence results and the key steps for
their derivation. Rigorous derivations are provided in Chopin
(2004). As in Section 5.2.4 the asymptotic variance formulas
are represented in recursive form. While this renders them
unusable for the computation of numerical standard errors,
they do provide some qualitative insights into the accuracy
of the Monte Carlo approximations generated by the particle
filter.

To simplify the notation, we drop the parameter vector θ
from the conditioning set. Starting point is the assumption
that Monte Carlo averages constructed from the t− 1 particle
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swarm {sjt−1,W
j
t−1}Mj=1 satisfy an SLLN and a CLT of the form

h̄t−1,M
a.s.−→ E[h(st−1)|Y1:t−1], (8.13)√

M
(
h̄t−1,M − E[h(st−1)|Y1:t−1]

)
=⇒ N

(
0,Ωt−1(h)

)
.

Based on this assumption, we will show the convergence of
ĥt,M , p̂(yt|Y1:t−1), h̃t,M , and h̄t,M . We write Ωt−1(h) to indi-
cate that the asymptotic covariance matrix depends on the
function h(st) for which the expected value is computed. The
filter is typically initialized by directly sampling from the ini-
tial distribution p(s0), which immediately delivers the SLLN
and CLT provided the required moments of h(s0) exist. We
now sketch the convergence arguments for the Monte Carlo
approximations in Steps 2(a) to 2(d) of Algorithm 11. A rig-
orous proof would involve verifying the existence of moments
required by the SLLN and CLT and a careful characterization
of the asymptotic covariance matrices.

Forecasting Steps. Forward iteration of the state-transition
equation amounts to drawing st from a conditional density
gt(st|sjt−1). In Algorithm 11 this density is given by

gt(st|sjt−1) = p(st|sjt−1).

We denote expectations under this density as Ep(·|sjt−1)[h] and
decompose

ĥt,M − E[h(st)|Y1:t−1] (8.14)

=
1

M

M∑
j=1

(
h(s̃jt )− Ep(·|sjt−1)[h]

)
W j
t−1

+
1

M

M∑
j=1

(
Ep(·|sjt−1)[h]W j

t−1 − E[h(st)|Y1:t−1]
)

= I + II,

say. This decomposition is similar to the decomposition (5.31)
used in the analysis of the mutation step of the SMC algo-
rithm.
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Conditional on the particles {sjt−1,W
j
t−1}Mi=1 the weights

W j
t−1 are known and the summands in term I form a triangu-

lar array of mean-zero random variables that within each row
are independently but not identically distributed. Provided
the required moment bounds for h(s̃jt )W

j
t−1 are satisfied, I

converges to zero almost surely and satisfies a CLT. Term II
also converges to zero because

1

M

M∑
j=1

Ep(·|sjt−1)[h]W j
t−1 (8.15)

a.s.−→ E
[
Ep(·|st−1)[h]

∣∣Y1:t−1

]
=

∫ [∫
h(st)p(st|st−1)dst

]
p(st−1|Y1:t−1)dst−1

= E[h(st)|Y1:t−1].

Thus, under suitable regularity conditions

ĥt,M
a.s.−→ E[h(st)|Y1:t−1], (8.16)√

M
(
ĥt,M − E[h(st)|Y1:t−1]

)
=⇒ N

(
0, Ω̂t(h)

)
.

The asymptotic covariance matrix Ω̂t(h) is given by the sum
of the asymptotic variances of the terms

√
M · I and

√
M · II

in (8.14). The convergence of the predictive density approxi-
mation p̂(yt|Y1:t−1) to p(yt|Y1:t−1) in Step 2(b) follows directly
from (8.16) by setting h(st) = p(yt|st).

Updating and Selection Steps. The goal of the updating step
is to approximate posterior expectations of the form

E[h(st)|Y1:t] =

∫
h(st)p(yt|st)p(st|Y1:t−1)dst∫
p(yt|st)p(st|Y1:t−1)dst

(8.17)

≈
1
M

∑M
j=1 h(s̃jt )w̃

j
tW

j
t−1

1
M

∑M
j=1 w̃

j
tW

j
t−1

= h̃t,M .

The Monte Carlo approximation of E[h(st)|Y1:t] has the same
form as the Monte Carlo approximation of h̃n,M in (5.24) in
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the correction step of the SMC Algorithm 8, and its conver-
gence can be analyzed in a similar manner. Define the nor-
malized incremental weights as

vt(st) =
p(yt|st)∫

p(yt|st)p(st|Y1:t−1)dst
. (8.18)

Then, under suitable regularity conditions, the Monte Carlo
approximation satisfies a CLT of the form

√
M
(
h̃t,M − E[h(st)|Y1:t]

)
=⇒ N

(
0, Ω̃t(h)

)
, (8.19)

where

Ω̃t(h) = Ω̂t
(
vt(st)(h(st)− E[h(st)|Y1:t])

)
.

The expression for the asymptotic covariance matrix Ω̃t(h)
highlights that the accuracy depends on the distribution of
the incremental weights. Roughly, the larger the variance of
the particle weights, the less accurate the approximation.

Finally, the selection step in Algorithm 11 is identical to
the selection step in Algorithm 8 and it adds some additional
noise to the approximation. If ρt = 1, then under multinomial
resampling

√
M
(
h̄t,M − E[h(st)|Y1:t]

)
=⇒ N

(
0,Ωt(h)

)
, (8.20)

where
Ωt(h) = Ω̃t(h) + V[h(st)|Y1:t].

As discussed in Section 5.2.3, the variance can be reduced
by replacing the multinomial resampling with a more efficient
resampling scheme.

8.1.2 Unbiasedness of the Likelihood Approximation

An important property of the particle filter is that it gener-
ates an unbiased approximation of the likelihood function.
We will use this property subsequently when we embed the
filter into posterior samplers for DSGE model parameters θ. At
first glance, this unbiasedness property is surprising because
importance sampling approximations are typically biased as
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they involve ratios of random variables. A general proof of the
unbiasedness (as well as other properties of particle filter ap-
proximations) based on mean field theory was first provided
by Del Moral (2004). Subsequently, Pitt, Silva, Giordani, and
Kohn (2012) provided a proof that relies on less sophisticated
mathematical tools and exploits the recursive structure of
the algorithm. The exposition below closely follows Pitt, Silva,
Giordani, and Kohn (2012).

The unbiasedness result can be formally stated as

E
[
p̂(Y1:T |θ)

]
= E

 T∏
t=1

 1

M

M∑
j=1

w̃jtW
j
t−1

 (8.21)

= p(Y1:T |θ).
The results can be proved by showing that for any h such that
0 ≤ h ≤ T − 1

E [p̂(YT−h:T |Y1:T−h−1, θ)|FT−h−1,M ] (8.22)

=
1

M

M∑
j=1

p(YT−h:T |sjT−h−1, θ)W
j
T−h−1,

where the information set Ft−1,M consists of the particle sys-

tem Ft−1,M =
{

(sj0,W
j
0 ), . . . , (sjt−1,W

j
t−1)

}M
j=1

and

p̂(YT−h:T |Y1:T−h−1, θ) =

T∏
t=T−h

 1

M

M∑
j=1

w̃jtW
j
t−1

 .

Setting h = T − 1, we can deduce from (8.22) that

E [p̂(Y1:T |θ)|F0,M ] =
1

M

M∑
j=1

p(Y1:T |sj0, θ)W j
0 , (8.23)

where sj0 ∼ p(s0) and W j
0 = 1. Thus,

E
[
p̂(Y1:T |θ)

]
= E

[
E
[
p̂(Y1:T |θ)|F0,M

]]
(8.24)

=

∫
p(Y1:T |s0, θ)p(s0)ds0

= p(Y1:T |θ)
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as desired.
We now have to verify (8.22). We proceed by induction.

First note that

E [p̂(yt|Y1:t−1, θ)|Ft−1,M ] (8.25)

=
1

M

M∑
j=1

E
[
w̃jt
∣∣Ft−1,M

]
W j
t−1

=
1

M

M∑
j=1

[∫
p(yt|s̃jt , θ)p(s̃jt |sjt−1, θ)ds̃

j
t

]
W j
t−1

=
1

M

M∑
j=1

p(yt|sjt−1, θ)W
j
t−1.

Setting t = T in (8.25) we have verified that (8.22) is correct
for h = 0. To complete the proof, we show that if (8.22) holds
for h, it also has to hold for h+ 1:

E [p̂(YT−h−1:T |Y1:T−h−2, θ)|FT−h−2,M ]

= E
[
E
[
p̂(Yt−h:T |Y1:T−h−1, θ)

∣∣FT−h−1,M

]
×p̂(yT−h−1|Y1:T−h−2, θ)

∣∣∣∣FT−h−2,M

]
.

=
1

M

M∑
j=1

E
[
p(YT−h:T |s̃jT−h−1, θ)W

j
T−h−1

×p̂(yT−h−1|Y1:T−h−2, θ)
∣∣FT−h−2,M

]
=

1

M

M∑
j=1

E
[
p(YT−h:T |s̃jT−h−1, θ)

w̃jT−h−1W
j
T−h−2

1
M

∑M
k=1 w̃

k
T−h−1W

k
T−h−2

×
(

1

M

M∑
i=1

w̃iT−h−1W
i
T−h−2

)∣∣∣∣FT−h−2,M

]

=
1

M

M∑
j=1

(∫
p(YT−h:T |s̃jT−h−1, θ)p(yT−h−1|s̃jT−h−1, θ)

×p(s̃jT−h−1|s
j
T−h−2, θ)ds̃

j
T−h−1

)
W j
T−h−2
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=
1

M

M∑
j=1

p(YT−h−1:T |sjT−h−2, θ)W
j
T−h−2

Note that Ft−h−2,M ⊂ Ft−h−1,M . Thus, the first equality fol-
lows from the law of iterated expectations. The second equal-
ity follows from the inductive hypothesis—the assumption
that (8.22) holds for h. The third equality uses the definition of
the period-likelihood approximation in (8.6) of Algorithm 11
and the definition of the normalized particles weights. The
average in the denominator of the particle weights cancels
with the expression for the estimate of the period likelihood
function p̂(yT−h−1|Y1:T−h−2, θ), which ultimately leads to the
unbiasedness result.

8.1.3 The Role of Measurement Errors

Many DSGE models, e.g., the ones considered in this book,
do not assume that the observables yt are measured with er-
ror. Instead, the number of structural shocks is chosen to be
equal to the number of observables, which means that the
likelihood function p(Y1:T |θ) is nondegenerate. It is apparent
from the formulas in Table 2.1 that the Kalman filter itera-
tions are well defined even if the measurement error covari-
ance matrix Σu in the linear Gaussian state-space model (8.2)
is equal to zero, provided that the number of shocks εt is not
smaller than the number of observables and the forecast error
covariance matrix Ft|t−1 is invertible.

For the bootstrap particle filter the case of Σu = 0 presents
a serious problem. The incremental weights w̃jt in (8.7) are
degenerate if Σu = 0 because the conditional distribution of
yt|(st, θ) is a pointmass. For a particle j, this pointmass is lo-
cated at yjt = Ψ(s̃jt , t; θ). If the innovation εjt is drawn from a
continuous distribution in the forecasting step and the state
transition equation Φ(st−1, εt; θ) is a smooth function of the
lagged state and the innovation εt, then the probability that
yjt = yt is zero, which means that w̃jt = 0 for all j and the par-
ticles vanish after one iteration. The intuition for this result
is straightforward. The incremental weights are large for par-
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ticles j for which yjt = Ψ(s̃jt , t; θ) is close to the actual yt. Un-
der Gaussian measurement errors, the metric for closeness
is given by Σ−1

u . Thus, all else equal, decreasing the measure-
ment error variance Σu increases the discrepancy between yjt
and yt and therefore the variance of the particle weights.

Consider the following stylized example (we are omitting
the j superscripts). Suppose that yt is scalar, the measure-
ment errors are distributed as ut ∼ N(0, σ2

u), Wt−1 = 1, and
let δ = yt − Ψ(st, t; θ). Suppose that in population the δ is
distributed according to a N(0, 1). In this case vt(st) in (8.18)
can be viewed as a population approximation of the normal-
ized weights W̃t constructed in the updating step (note that
the denominator of these two objects is slightly different):

W̃t(δ) ≈ vt(δ) =
exp

{
− 1

2σ2
u
δ2
}

(2π)−1/2
∫

exp
{
− 1

2

(
1 + 1

σ2
u

)
δ2
}
dδ

=

(
1 +

1

σ2
u

)1/2

exp

{
− 1

2σ2
u

δ2

}
.

The asymptotic covariance matrix Ω̃t(h) in (8.19) which cap-
tures the accuracy of h̃t,M as well as the heuristic effective
sample size measure defined in (8.12) depend on the variance
of the particle weights, which in population is given by∫

v2
t (δ)dδ =

1 + 1/σ2
u√

1 + 2/σ2
u

=
1

σu

1 + σ2
u√

2 + σ2
u

−→∞

as σu −→ 0. Thus, a decrease in the measurement error vari-
ance raises the variance of the particle weights and thereby
decreases the effective sample size. More importantly, the in-
creasing dispersion of the weights translates into an increase
in the limit covariance matrix Ω̃t(h) and a deterioration of the
Monte Carlo approximations generated by the particle filter.
In sum, all else equal, the smaller the measurement error
variance, the less accurate the particle filter.

8.2 A Generic Particle Filter

In the basic version of the particle filter the time t particles
were generated by simulating the state transition equation

7 16:10:31 UTC



Particle Filters • 183

forward. However, the naive forward simulation ignores in-
formation contained in the current observation yt and may
lead to a very uneven distribution of particle weights, in par-
ticular if the measurement error variance is small or if the
model has difficulties explaining the period t observation in
the sense that for most particles s̃jt the actual observation
yt lies far in the tails of the model-implied distribution of
yt|(s̃jt , θ). The particle filter can be generalized by allowing s̃jt
in the forecasting step to be drawn from a generic importance
sampling density gt(·|sjt−1, θ), which leads to the following al-
gorithm:

Algorithm 12 (Generic Particle Filter)

1. Initialization. (Same as Algorithm 11)

2. Recursion. For t = 1, . . . , T :

(a) Forecasting st. Draw s̃jt from density gt(s̃t|sjt−1, θ)
and define the importance weights

ωjt =
p(s̃jt |sjt−1, θ)

gt(s̃
j
t |sjt−1, θ)

. (8.26)

An approximation of E[h(st)|Y1:t−1, θ] is given by

ĥt,M =
1

M

M∑
j=1

h(s̃jt )ω
j
tW

j
t−1. (8.27)

(b) Forecasting yt. Define the incremental weights

w̃jt = p(yt|s̃jt , θ)ωjt . (8.28)

The predictive density p(yt|Y1:t−1, θ) can be approx-
imated by

p̂(yt|Y1:t−1, θ) =
1

M

M∑
j=1

w̃jtW
j
t−1. (8.29)

(c) Updating. (Same as Algorithm 11)

(d) Selection. (Same as Algorithm 11)
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3. Likelihood Approximation. (Same as Algorithm 11).

The only difference between Algorithms 11 and 12 is the
introduction of the importance weights ωjt which appear in
(8.27) as well as the definition of the incremental weights w̃jt
in (8.28). The unbiasedness result discussed in Section 8.1.2
can be easily extended to the generic particle filter. The main
goal of replacing the forward iteration of the state-transition
equation by an importance sampling step is to improve the
accuracy of p̂(yt|Y1:t−1, θ) in Step 2(b) and h̃t,M in Step 2(c).

We subsequently focus on the analysis of p̂(yt|Y1:t−1, θ).
Emphasizing the dependence of ωjt on both s̃jt and sjt−1, write

p̂(yt|Y1:t−1)− p(yt|Y1:t−1) (8.30)

=
1

M

M∑
j=1

(
p(yt|s̃jt )ωjt (s̃jt , sjt−1)

−Egt(·|sjt−1)[p(yt|s̃
j
t )ω

j
t (s̃

j
t , s

j
t−1)]

)
W j
t−1

+
1

M

M∑
j=1

(
Egt(·|sjt−1)[p(yt|s̃

j
t )ω

j
t (s̃

j
t , s

j
t−1)]

−p(yt|Y1:t−1)

)
W j
t−1

= I + II,

say. Consider term II. First, notice that

1

M

M∑
j=1

Egt(·|sjt−1)[p(yt|s̃
j
t )ω

j
t (s̃

j
t , s

j
t−1)]W j

t−1 (8.31)

a.s.−→ E
[
Egt(·|st−1)[p(yt|s̃jt )ωt(s̃jt , st−1)]

]
=

∫ [∫
p(yt|s̃jt )

p(s̃jt |st−1)

gt(s̃
j
t |st−1)

gt(s̃
j
t |st−1)ds̃jt

]
×p(st−1|Y1:t−1)dst−1

= p(yt|Y1:t−1),

which implies that term II converges to zero almost surely
and ensures the consistency of the Monte Carlo approxima-
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tion. Second, because

Egt(·|st−1)[p(yt|s̃jt )ωt(s̃jt , st−1)] (8.32)

=

∫
p(yt|s̃jt )

p(s̃jt |st−1)

gt(s̃
j
t |st−1)

gt(s̃
j
t |st−1)ds̃jt = p(yt|st−1),

the variance of term II is independent of the choice of the
importance density gt(s̃

j
t |sjt−1).

Now consider term I. Conditional on {sjt−1,W
j
t−1}Mj=1 the

weights W j
t−1 are known and the summands form a trian-

gular array of mean-zero random variables that are indepen-
dently distributed within each row. Recall that

p(yt|s̃jt )ωjt (s̃jt , sjt−1) =
p(yt|s̃jt )p(s̃jt |sjt−1)

gt(s̃
j
t |sjt−1)

. (8.33)

Choosing a suitable importance density gt(s̃
j
t |sjt−1) that is

a function of the time t observation yt can drastically re-
duce the variance of term I conditional on {sjt−1,W

j
t−1}Mj=1.

Such filters are called adapted particle filters. In turn, this
leads to a variance reduction of the Monte Carlo approxi-
mation of p(yt|Y1:t−1). A similar argument can be applied to
the variance of h̃t,M . The bootstrap particle filter simply sets
gt(s̃

j
t |sjt−1) = p(s̃jt |sjt−1) and ignores the information in yt. We

will subsequently discuss more efficient choices of gt(s̃
j
t |sjt−1).

8.3 Adapting the Generic Filter

There exists a large literature on the implementation and the
improvement of the particle filters in Algorithms 11 and 12.
Detailed references to this literature are provided, for instance,
in Doucet, de Freitas, and Gordon (2001); Cappé, Godsill,
and Moulines (2007); Doucet and Johansen (2011); and Creal
(2012). We will focus in this section on the choice of the
proposal density gt(s̃

j
t |sjt−1). The starting point is the condi-

tionally optimal importance distribution. In nonlinear DSGE
models it is typically infeasible to generate draws from this
distribution, but it might be possible to construct an approx-
imately conditionally optimal proposal. Finally, we consider a
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conditionally linear Gaussian state-space model for which it
is possible to use Kalman filter updating for a subset of state
variables conditional on the remaining elements of the state
vector.

8.3.1 Conditionally Optimal Importance Distribution

The conditionally optimal distribution, e.g., Liu and Chen
(1998), is defined as the distribution that minimizes the Monte
Carlo variation of the importance weights. However, this no-
tion of optimality conditions on the current observation yt as
well as the t− 1 particle sjt−1. Given (yt, s

j
t−1) the weights w̃jt

are constant (as a function of s̃t) if

gt(s̃t|sjt−1) = p(s̃t|yt, sjt−1), (8.34)

that is, s̃t is sampled from the posterior distribution of the
period t state given (yt, s

j
t−1). In this case

w̃jt =

∫
p(yt|st)p(st|sjt−1)dst. (8.35)

In a typical (nonlinear) DSGE model application it is not pos-
sible to sample directly from p(s̃t|yt, sjt−1). One could use an
accept-reject algorithm as discussed in Künsch (2005) to gen-
erate draws from the conditionally optimal distribution. How-
ever, for this approach to work efficiently, the user needs to
find a good proposal distribution within the accept-reject al-
gorithm.

As mentioned above, our numerical illustrations below are
all based on DSGE models that take the form of the linear
Gaussian state-space model (8.2). In this case, one can obtain
p(s̃t|yt, sjt−1) from the Kalman filter updating step described
in Table 2.1. Let

s̄jt|t−1 = Φ1s
j
t−1

Pt|t−1 = ΦεΣεΦ
′
ε

ȳjt|t−1 = Ψ0 + Ψ1t+ Ψ2s̄
j
t|t−1

Ft|t−1 = Ψ2Pt|t−1Ψ′2 + Σu
s̄jt|t = s̄jt|t−1 + Pt|t−1Ψ′2F

−1
t|t−1(yt − ȳt|t−1)

Pt|t = Pt|t−1 − Pt|t−1Ψ′2F
−1
t|t−1Ψ2Pt|t−1.
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The conditionally optimal proposal distribution is given by

s̃t|(sjt−1, yt) ∼ N
(
s̄jt|t, Pt|t

)
. (8.36)

We will use (8.36) as a benchmark to document how accurate
a well-adapted particle filter could be. In applications with
nonlinear DSGE models, in which it is not possible to sample
directly from p(s̃t|yt, sjt−1), the documented level of accuracy
is typically not attainable.

8.3.2 Approximately Conditionally Optimal Distributions

In a typical DSGE model application, sampling from the con-
ditionally optimal importance distribution is infeasible or com-
putationally too costly. Alternatively, one could try to sample
from an approximately conditionally optimal importance dis-
tribution. For instance, if the DSGE model nonlinearity arises
from a higher-order perturbation solution and the nonlinear-
ities are not too strong, then an approximately conditionally
optimal importance distribution could be obtained by apply-
ing the one-step Kalman filter updating in (8.36) to the first-
order approximation of the DSGE model. More generally, as
suggested in Guo, Wang, and Chen (2005), one could use
the updating steps of a conventional nonlinear filter, such
as an extended Kalman filter, unscented Kalman filter, or a
Gaussian quadrature filter, to construct an efficient proposal
distribution. Approximate filters for nonlinear DSGE mod-
els have been developed by Andreasen (2013) and Kollmann
(2015).

8.3.3 Conditional Linear Gaussian Models

Certain DSGE models have a conditional linear structure that
can be exploited to improve the efficiency of the particle filter.
These models include the class of Markov-switching linear
rational expectations (MS-LRE) models analyzed in Farmer,
Waggoner, and Zha (2009) as well as models that are linear
conditional on exogenous stochastic volatility processes, e.g.,
the linearized DSGE model with heteroskedastic structural
shocks estimated by Justiniano and Primiceri (2008) and the
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long-run risks model studied in Schorfheide, Song, and Yaron
(2014).

For concreteness, consider an MS-LRE model obtained by
replacing the fixed target-inflation rate π∗ in the monetary
policy rule (1.24) with a time-varying process π∗t (mt) of the
form

π∗t = mtπ
∗
L+(1−mt)π

∗
H , P{mt = l|mt−1 = l} = ηll, (8.37)

where l ∈ {0, 1}. This model was estimated in Schorfheide
(2005).1 Log-linearizing the model with Markov-switching tar-
get inflation rate leads to a MS-LRE similar to (2.1), except
that the log-linearized monetary policy rule now contains an
intercept that depends on mt. The solution to an MS-LRE
model can be expressed as

yt = Ψ0(mt) + Ψ1(mt)t+ Ψ2(mt)st + ut, (8.38)
ut ∼ N(0,Σu),

st = Φ0(mt) + Φ1(mt)st−1 + Φε(mt)εt, εt ∼ N(0,Σε),

where mt follows a discrete Markov-switching process. In
(8.38) we allow for Markov switches in all coefficient matri-
ces, which may arise if not only the intercepts but also the
slope coefficients of the linear rational expectations system
depend on mt as, for instance, in Davig and Leeper (2007)
and Bianchi (2013). Solution methods for general MS-LRE
models are provided by Farmer, Waggoner, and Zha (2009).

The state-space representation in (8.38) is linear condi-
tional on mt. In a slight abuse of notation, we abbreviate the
transition kernel for mt by p(mt|mt−1) and use the notation
p(mt|Y1:t) for the distribution of mt given Y1:t. The joint dis-
tribution of (mt, st) can be factorized as follows:

p(mt, st|Y1:t) = p(mt|Y1:t)p(st|mt, Y1:t). (8.39)

In conditionally linear Gaussian state-space models, the dis-
tribution p(st|mt, Y1:t) is normal:

st|(mt, Y1:t) ∼ N
(
s̄t|t(mt), Pt|t(mt)

)
. (8.40)

1A richer DSGE model with a Markov-switching target inflation rate was
subsequently estimated by Liu, Waggoner, and Zha (2011).
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We abbreviate the density of

st|(mt, Y1:t) by pN
(
st|s̄t|t(mt), Pt|t(mt)

)
,

where the N subscript emphasizes the conditional Normal
distribution. Because the vector of means s̄t|t(mt) and the
covariance matrix Pt|t(m)t are sufficient statistics for the con-
ditional distribution of st, we approximate (mt, st)|Y1:t by
the quadruplets {mj

t , s̄
j
t|t, P

j
t|t,W

j
t }Ni=1. The swarm of parti-

cles approximates∫
h(mt, st)p(mt, st, Y1:t)d(mt, st) (8.41)

=

∫ [∫
h(mt, st)p(st|mt, Y1:t)dst

]
p(mt|Y1:t)dmt

≈ 1

M

M∑
j=1

[∫
h(mj

t , s
j
t )pN

(
st|s̄jt|t, P

j
t|t
)
dst

]
W j
t .

The Monte Carlo approximation in (8.42) is constructed by
first integrating out st|mj

t based on the conditional Normal
distribution, which for many functions h(mt, st) can be done
analytically, and then use Monte Carlo averaging to integrate
out mt. This approach is called Rao-Blackwellization. It is a
variance reduction technique that exploits the following in-
equality:

V[h(st,mt)] = E
[
V[h(st,mt)|mt]

]
+ V

[
E[h(st,mt)|mt]

]
≥ V

[
E[h(st,mt)|mt]

]
. (8.42)

Algorithm 12 can easily be modified to exploit the con-
ditionally Gaussian structure and integrate out st|mt an-
alytically. The modification is due to Chen and Liu (2000)
who referred to the resulting algorithm as a mixture Kalman
filter (see also Liu, Chen, and Logvinenko (2001)). Suppose
that {mj

t−1, s̄
j
t−1|t−1, P

j
t−1|t−1,W

j
t−1} satisfies (8.42). To fore-

cast the states in period t, generate m̃j
t from the importance

sampling distribution gt(m̃t|mj
t−1) and define the importance

weights:

ωjt =
p(m̃j

t |mj
t−1)

gt(m̃
j
t |mj

t−1)
. (8.43)

7 16:10:31 UTC



190 • Chapter 8

The Kalman filter forecasting step can be used to compute
the conditional mean and variances of st and yt given m̃j

t :

s̃jt|t−1 = Φ0(m̃j
t ) + Φ1(m̃j

t )s
j
t−1|t−1 (8.44)

P jt|t−1 = Φ1(m̃j
t )P

j
t−1|t−1Φ1(m̃j

t )
′ + Φε(m̃

j
t )Σε(m̃

j
t )Φε(m̃

j
t )
′

ỹjt|t−1 = Ψ0(m̃j
t ) + Ψ1(m̃j

t )t+ Ψ2(m̃j
t )s̃

j
t|t−1

F jt|t−1 = Ψ2(m̃j
t )P

j
t|t−1Ψ2(m̃j

t )
′ + Σu.

Then,∫
h(mt, st)p(mt, st|Y1:t−1)d(mt, st) (8.45)

=

∫ [∫
h(mt, st)p(st|mt, Y1:t−1)dst

]
p(mt|Y1:t−1)dmt

≈ 1

M

M∑
j=1

[∫
h(mj

t , s
j
t )pN

(
st|s̃jt|t−1, P

j
t|t−1

)
dst

]
ωjtW

j
t−1.

The likelihood approximation is based on the incremental
weights

w̃jt = pN
(
yt|ỹjt|t−1, F

j
t|t−1

)
ωjt . (8.46)

The mean ỹjt|t−1 and variance F jt|t−1 of the regime-conditional
predictive distribution were defined in (8.44). Conditional on
m̃j
t we can use the Kalman filter once more to update the

information about st in view of the current observation yt:

s̃jt|t = s̃jt|t−1 + P jt|t−1Ψ2(m̃j
t )
′(F jt|t−1

)−1 (8.47)

×(yt − ȳjt|t−1)

P̃ jt|t = P jt|t−1 − P
j
t|t−1Ψ2(m̃j

t )
′(F jt|t−1

)−1
Ψ2(m̃j

t )P
j
t|t−1.

Overall, this leads to the following algorithm:

Algorithm 13 (Particle Filter: Conditional Linear Models)

1. Initialization. Draw the initial particles from the dis-

tribution mj
0
iid∼ p(m0), specify sj0|0 and P j0|0, and set

W j
0 = 1, j = 1, . . . ,M .
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2. Recursion. For t = 1, . . . , T :

(a) Forecasting st. Draw m̃j
t from gt(m̃t|mj

t−1, θ), cal-

culate the importance weights ωjt in (8.43), and com-
pute s̃jt|t−1 and P jt|t−1 according to (8.44). An ap-

proximation ofE[h(st,mt)|Y1:t−1, θ] is given by (8.46).

(b) Forecasting yt. Compute the incremental weights
w̃jt according to (8.46). The predictive density
p(yt|Y1:t−1, θ) can be approximated by

p̂(yt|Y1:t−1, θ) =
1

M

M∑
j=1

w̃jtW
j
t−1. (8.48)

(c) Updating. Define the normalized weights

W̃ j
t =

w̃jtW
j
t−1

1
M

∑M
j=1 w̃

j
tW

j
t−1

(8.49)

and compute s̃jt|t and P̃ jt|t according to (8.47). An ap-

proximation of E[h(mt, st)|Y1:t, θ] can be obtained
by {m̃j

t , s̃
j
t|t, P̃

j
t|t, W̃

j
t } according to (8.42).

(d) Selection. (Same as Algorithm 11)

3. Likelihood Approximation. (Same as Algorithm 11).

8.4 Additional Implementation Issues

The implementation of Algorithm 12 requires the evaluation
of the density p(st|sjt−1). In a nonlinear DSGE model the
innovations εt typically enter the state-transition equation
st = Φ(sjt−1, εt) in a non-additive form, which makes it dif-
ficult to compute p(st|sjt−1). We show in this section that if
the proposal distribution gt(st|sjt−1) is implicitly generated
by iterating the state-transition equation forward based on
a draw ε̃jt from gεt (s

j
t−1), then the computation of the impor-

tance weights ωjt simplifies considerably and does not require
the evaluation of conditional densities of st. Moreover, we pro-
vide a more detailed discussion of filtering for DSGE models
that do not have measurement errors. In this regard, a parti-
cle filter with resample-move steps may become useful.
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8.4.1 Nonlinear and Partially Deterministic State Transitions

The implementation of Algorithm 12 requires the evaluation
of the density p(st|st−1). Two difficulties arise in nonlinear
DSGE model applications: first, the density is singular be-
cause some state variables, e.g., the capital stock, may evolve
according to a deterministic law of motion. Second, if the
state-transition equation is nonlinear and the innovations
do not enter in an additively separable way, it may be dif-
ficult to evaluate the density p(st|st−1) because of a compli-
cated change of variables. For illustrative purposes, consider
a modified version of the simple state-space model of Sec-
tion 4.3 with state transition equations:

s1,t = Φ1(st−1, εt), s2,t = Φ2(st−1), εt ∼ N(0, 1). (8.50)

Here the transition for the state s2,t is deterministic (think of
the capital accumulation equation in a DSGE model). Thus,
the joint distribution of s1,t and s2,t is a mixture of a contin-
uous and a discrete distribution with a pointmass at s2,t =
Φ2(st−1).

Now suppose we define the extended state vector ςt =
[s′t, ε

′
t]
′ and augment the state transitions in (8.50) by the

identity εt = εt. Using the independence of the innovation
εt from the lagged states ςt−1, we can factorize the density
p(ςt|ςt−1) as

p(ςt|ςt−1) = pε(εt)p(s1,t|st−1, εt)p(s2,t|st−1). (8.51)

Note that p(s1,t|st−1, εt) and p(s2,t|st−1) are pointmasses at
s1,t = Φ1(st−1, εt) and s2,t = Φ2(st−1), respectively. The eas-
iest way of designing an importance distribution gt(ςt|ςt−1)
that has support in the subspace of the state space that
satisfies (8.50) is to sample an innovation εt and iterate the
state-transition equation forward. Let gεt (εt|st−1) denote the
importance density for εt. Then

gt(ςt|ςt−1) = gεt (εt|st−1)p(s1,t|st−1, εt)p(s2,t|st−1). (8.52)
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In turn,

ωjt =
p(ς̃jt |ςjt−1)

gt(ς̃
j
t |ςjt−1)

(8.53)

=
pε(ε̃jt )p(s̃

j
1,t|sjt−1, ε̃

j
t )p(s̃

j
2,t|sjt−1)

gεt (ε̃
j
t |sjt−1)p(s̃j1,t|sjt−1, ε̃

j
t )p(s̃

j
2,t|sjt−1)

=
pε(ε̃jt )

gεt (ε̃
j
t |sjt−1)

.

Thus, the computation of ωjt only requires the evaluation of
the densities for εt.2 The importance sampling distribution
gεt (εt|st−1) can be constructed by applying the methods de-
scribed previously to a version of the DSGE model with ex-
tended state space ςt. We can now change the forecasting
step 2.(a) of Algorithm 12 to obtain a generalized bootstrap
particle filter:

Algorithm 14 (Generalized Bootstrap Particle Filter)
Replace Step 2.(a) in Algorithm 12 by:

2.(a)’ Forecasting st. Draw ε̃jt from density gεt (ε̃t|st−1), let
s̃jt = Φ(st−1, ε̃

j
t−1). The importance weights ωjt are given

by (8.53).

8.4.2 Degenerate Measurement Error Distributions

We saw in Section 8.1 that the bootstrap particle filter de-
teriorates as the measurement error variance decreases. If
the measurement error variance Σu = 0, then only parti-
cles that can exactly predict the current-period observation
will get non-zero weight. Under a continuous distribution of
the innovations εt the probability of generating such particles

2The derivation of (8.53) may appear a bit obscure because it involves
the factorization of a joint density for a degenerate probability distribution.
The reader may wonder why the Jacobian term that would arise under a
careful change-of-variables argument does not appear in (8.53). Notice that
we are ultimately using (8.53) in an importance sampling approximation of an
integral. The key insight (simplifying the notation considerably) is that if s =

Φ(ε) then Es[h(s)] =
∫
h(s)ps(s)ds =

∫
h(Φ(ε))pε(ε)dε = Eε[h(Φ(ε))].
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in the forecasting step is zero. Our discussion of the condi-
tionally optimal importance distribution suggests that in the
absence of measurement errors, one has to solve the system
of equations

yt = Ψ
(
Φ(sjt−1, ε̃

j
t )
)
, (8.54)

to determine ε̃jt as a function of sjt−1 and the current obser-
vation yt. One can then define

ωjt = pε(ε̃jt ) and s̃jt = Φ(sjt−1, ε̃
j
t ). (8.55)

In a nonlinear state-space system, e.g., one that arises
from a higher-order perturbation solution there maybe be
multiple solutions to the system even if the dimension of
yt and εt are equal. Let the solutions be denoted by ε̄jt (k),
k = 1, . . . ,K. The t subscript and j superscript indicate that
the solutions depend on yt and sjt−1. The importance distri-
bution represented by the density gεt (ε̃

j
t |sjt−1) in (8.53) is now

a multinomial distribution of the form

P{ε̃jt = ε̄it(k)} =
pε(ε̄jt (j))∑K
k=1 p

ε(ε̄jt (k))
, k = 1, . . . ,K, (8.56)

which leads to

ωjt =

K∑
k=1

pε(ε̄jt (k)). (8.57)

By construction, p(yt|s̃jt ) corresponds to a pointmass at yt for
each particle j. Thus, we can define the incremental weight
w̃jt in (8.28) simply as w̃jt = ωjt .

There are two computational challenges. First, one has to
find all the (real) solutions to a nonlinear system of equa-
tions. For instance, if the DSGE model has been solved with
a second-order perturbation method, then one has to solve
a system of quadratic equations for each particle j to deter-
mine the ε̄jt (k)’s.3 The second computational problem can be
illustrated in the context of the simple state-space model pre-
sented in Section 4.3:

yt = s1,t+ s2,t, s1,t = φ2s1,t−1 + εt, s2,t = φ3s1,t−1 +φ2s1,t−1.

3A solution to this computational problem is provided in Foerster, Rubio-
Ramirez, Waggoner, and Zha (2014).
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Note that due to the absence of measurement errors, it is
possible to recursively solve for the entire sequence of par-
ticles sj1:T conditional on the initial draws sj0 = (sj1,0, s

j
2,0)

and the observations Y1:T . The particles will be reweighted
based on pε(ε̃jt ) which captures the likelihood of observation
yt conditional on sjt−1. The resampling step of the filter du-
plicates the particles for which pε(ε̃jt ) is large. But, unlike in
the case of a model with measurement errors, the duplicate
particles do not mutate. If two particles i and j are identical
in period τ , i.e., siτ = sjτ , then sit = sjt for t > τ . Thus, the
degeneracy problem does not manifest itself in an uneven dis-
tribution of particles. Instead, it is reflected by the fact that
the particle values are mostly identical. This will lead to an
imprecise approximation of the likelihood function, which is
not surprising as the algorithm essentially approximates the
integral

∫
p(Y1:T |s0)p(s0)ds0 by sampling sj0 from p(s0) and

evaluating the Monte Carlo average 1
M

∑M
j=1 p(Y1:T |sj0).

There are two possible remedies for the second compu-
tational challenge. The first one is to introduce a resample-
move step into the particle filter, which is discussed below.
The second remedy is to append the initial state s0 to the
parameter vector θ, treat p(s0) as its prior distribution, and
use a posterior sampler to make inference on s0 and θ jointly.
This approach has been used, for instance, by Chang, Doh,
and Schorfheide (2007) to handle the initialization of non-
stationary exogenous state variables.

8.4.3 Resample-Move Steps

The resampling step of Algorithms 11 and 12 is designed
to equalize the distribution of particle weights and avoid a
degenerate particle distribution. However, as the discussion
of the model without measurement errors in Section 8.4.2
highlighted, it is possible that an even distribution of par-
ticle weights coincides with (nearly) identical particle values
(impoverishment), which leads to potentially very inaccurate
Monte Carlo approximations. While the sampling of s̃jt from
the proposal distribution gt(s̃t|sjt−1) leads to some diversity
of the period t particles even if the t − 1 particle values are
identical, a mutation step that ‘‘jitters’’ the particle values af-
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ter resampling may help to increase the diversity of particle
values and improve the accuracy of the filter. This ‘‘jittering’’
is comparable to the mutation step in the SMC Algorithm 8,
used for posterior inference on the model parameter vector θ.
Thus, the resampling step of the particle filter is augmented
by a ‘‘move’’ step as in Berzuini and Gilks (2001).

The resample-move algorithm presented below is a spe-
cial case of the algorithm described in Doucet and Johansen
(2011). To understand how a particle filter with resample-
move step works, it is useful to abstract from the resam-
pling first and to introduce the mutation right after the up-
dating in Step 2.(c) of Algorithm 12. The particle mutation
is based on a Markov transition kernel, which we denote by
K(yt,st−1)(st|s̃t). The transition kernel transforms the particle
s̃jt into a particle sjt by sampling from a conditional distribu-
tion of st given s̃t. The transition kernel depends on the cur-
rent observation yt as well as the period t−1 value of the state
st−1, which is indicated by the subscript. One can generate
the transition kernel from a sequence of MH steps. To simplify
the exposition we focus on the case of a single MH step, which
requires the user to specify a proposal density qt(ςt|s̃jt ). This
proposal density could be generated, for instance, through
a random walk step as in the particle mutation of the SMC
sampler described in Algorithm 9.

Algorithm 15 (Mutation for Resample-Move Algorithm)

1. Draw ςt from a density qt(ςt|s̃jt ).
2. Set sjt = ςt with probability

αt(ςt|s̃jt ) = min

{
1,

p(yt|ςt)p(ςt|sjt−1)/qt(ςt|s̃jt )
p(yt|s̃t)p(s̃t|sjt−1)/qt(s̃

j
t |ςt)

}
and sjt = s̃jt otherwise.

Using the same steps as in Section 3.5.2, one can establish
that the transition kernel satisfies the following invariance
property:∫

K(yt,st−1)(st|s̃t)p(yt|s̃t)p(s̃t|st−1)ds̃t (8.58)

= p(yt|st)p(st|st−1).
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Suppose that particle values are sampled according to

s̃jt ∼ gt(s̃jt |st−1) and sjt ∼ K(yt,s
j
t−1)(s

j
t |s̃jt ). (8.59)

Then, we obtain the following approximation:∫
st−1

∫
st

h(st)p(yt|st)p(st|st−1)p(st−1|Y1:t−1)dstdst−1

=

∫
st−1

∫
s̃t

∫
st

h(st)K(yt,st−1)(st|s̃t)
p(yt|s̃t)p(s̃t|st−1)

gt(s̃t|st−1)

×gt(s̃t|st−1)dstds̃tdst−1 (8.60)

≈ 1

M

M∑
j=1

h(sjt )w̃
j
tW

j
t−1, where w̃jt =

p(yt|s̃jt )p(s̃jt |sjt−1)

gt(s̃
j
t |sjt−1)

.

To complete the heuristic derivations for the resample-
move algorithm, notice that we can introduce a resampling
step before the mutation step in which we generate draws
(ŝjt , ŝ

j
t−1) from a multinomial distribution characterized by

the support points and weights
{

(s̃jt , s
j
t−1), W̃ j

t

}
with W̃ j

t ∝
w̃jtW

j
t−1. Resampling before an MCMC step will always lead

to greater sample diversity than performing the steps in the
other order. After the resampling we can set the weights
W j
t = 1 and draw sjt ∼ K(yt,ŝ

j
t−1)(st|ŝ

j
t ), which leads to the

following approximation:∫
st−1

∫
st

h(st)p(yt|st)p(st|st−1)p(st−1|Y1:t−1)dstdst−1

≈ 1

M

M∑
j=1

h(sjt )W
j
t . (8.61)

The sequential importance sampling algorithm with resample-
move step can be summarized as follows:
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Algorithm 16 (Particle Filter with Resample-Move Step)
Replace Step 2.(d) of Algorithm 12 by:

2.(d)’ Resample-Move Step:

(i) Resample the particles via multinomial resampling.
Let {(ŝjt , ŝjt−1}Ni=1 denote N iid draws from a multi-
nomial distribution characterized by support points
and weights

{
{(s̃jt , sjt−1), W̃ j

t

}
and set W j

t = 1.

(ii) Use Algorithm 15 to generate draws sjt from Markov-
transition kernel K(yt,ŝ

j
t−1)(st|ŝ

j
t ).

8.5 Adapting st−1 Draws to the Current Observation

In Section 8.3 we discussed in general terms how to improve
the performance of the basic bootstrap particle filter by using
a more general proposal distribution for the state st|st−1 that
is adapted to the current observation yt. When constructing
a Monte Carlo approximation of∫ ∫

h(st)p(yt|st)p(st|st−1)p(st−1|Y1:t−1)dst−1dst, (8.62)

we realized that taking into account p(yt|st) when gener-
ating a proposal distribution for st, which we denoted by
gt(st|st−1), can lead to drastic improvements in efficiency.
However, because of the recursive structure of the particle
filter, thus far we made no attempt to also adapt the proposal
density for st−1 to the current observation yt. We now discuss
two algorithms that do, namely the auxiliary particle filter
developed by Pitt and Shephard (1999) and the efficient im-
portance sampling (EIS) filter of DeJong, Liesenfeld, Moura,
Richard, and Dharmarajan (2013). In a nutshell, the idea is
to factorize

p(yt|st)p(st|st−1)p(st−1|Y1:t−1) (8.63)
= p(st, st−1|yt, Y1:t−1)p(yt|Y1:t−1)

and to construct an importance sampling approximation of
(8.62) by generating joint draws of (st, st−1) from a carefully
chosen proposal distribution gt(st, st−1).
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8.5.1 Auxiliary Particle Filter

The original version of the auxiliary particle filter used auxil-
iary variables and contained two resampling steps. However,
subsequent research has shown that a single resampling step
is preferable and that it is not necessary to introduce auxil-
iary variables. We present a version of the auxiliary particle
filter that has the same structure as Algorithm 12 and uses
only one resampling step. Our description of the algorithm
follows Doucet and Johansen (2011). The proposal density
gt(st, st−1) is factorized as follows:

gt(st, st−1) = gt(st|st−1)p̃(st−1|yt, Y1:t−1). (8.64)

The density gt(st|st−1) could be chosen to p(st, st−1) as in
the bootstrap particle filter, or it could be chosen based on
the same considerations as in Section 8.3. The subsequent
exposition will focus on the construction of p̃(st−1|yt, Y1:t−1).

Let p̃(yt|st−1) be an approximation of the one-step-ahead
predictive density p(yt|st−1). The density p̃(yt|st−1) can be
obtained, for instance, by iterating the state-transition equa-
tion forward (based on the sjt−1’s and draws of εt), averaging
the simulated st’s to form an s̄jt|t and using a modified ver-
sion of the measurement equation to form a fat-tailed density
p̃(yt|s̄jt|t). Using the predictive density p̃(yt|st−1) we can form
the auxiliary posterior distribution

p̃(st−1|Y1:t) =
p̃(yt|st−1)p(st−1|Y1:t−1)

p̃(yt|Y1:t−1)
. (8.65)

The auxiliary marginal data density is defined as

p̃(yt|Y1:t−1) =

∫
p̃(yt|st−1)p(st−1|Y1:t−1)dst−1. (8.66)

A complication arises from the fact that the numerator of the
importance weights
p(st, st−1|yt, Y1:t)/gt(st, st−1) cannot be directly evaluated.

The auxiliary particle filter is based on two sets of weights.
The first set of weights tracks the distribution p̃(st−1|Y1:t)
and the second set of weights is needed to approximate the
posterior of interest p(st|Y1:t). We begin the derivations with
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the assumption that the t−1 particle swarm {sjt−1,W
j
t−1}Mj=1

approximates the auxiliary posterior distribution

1

M

M∑
j=1

h(sjt−1)W j
t−1 ≈

∫
h(st−1)p̃(st−1|Y1:t)dst−1 (8.67)

and then manipulate the particle swarm to obtain an approx-
imation of p̃(st|Y1:t+1). Once the recursion for {sjt ,W j

t }Mj=1

is established, we discuss the Monte Carlo approximation of
h(st) and the likelihood increment p(yt|Yt−1).

Suppose that the time t particles s̃jt are sampled from
the importance density gt(s̃t|sjt−1). Define the incremental
weights

w̃jt = p(yt|s̃jt )
p(s̃jt |sjt−1)

gt(s̃
j
t |sjt−1)

p̃(yt+1|s̃jt )
p̃(yt|sjt−1)

. (8.68)

These weights replace the incremental weights in (8.28) of
Algorithm 12. Using the definitions of p̃(st−1|Y1:t) and w̃jt
in (8.65) and (8.68), respectively, we deduce that

1

M

M∑
j=1

h(sjt )w̃
j
tW

j
t−1 (8.69)

≈
∫ ∫

h(st)p(yt|st)
p(st|st−1)p̃(yt+1|st)
gt(st|st−1)p̃(yt|st−1)

×gt(st|st−1)p̃(st−1|Y1:t)dst−1dst

=
1

p̃(yt|Y1:t−1)

∫
h(st)p(yt|st)p̃(yt+1|st)

×
[∫

p(st|st−1)p(st−1|Y1:t−1)dst−1

]
dst.

=
1

p̃(yt|Y1:t−1)

∫
h(st)p̃(yt+1|st)p(yt|st)p(st|Y1:t−1)dst

=
p(yt|Y1:t−1)

p̃(yt|Y1:t−1)

∫
h(st)p̃(yt+1|st)p(st|Y1:t)dst.

The first equality follows from (8.65) and the third equal-
ity utilizes Bayes Theorem to obtain a posterior for st given
(yt, Y1:t−1). The factor in front of the last integral is a nui-
sance, but it cancels once we take ratios. Define (this deriva-
tion ignores the distinction between the updated normalized
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weights W̃ j
t and the weights W j

t after the resampling step in
the particle filter algorithms)

W j
t =

w̃jtW
j
t−1

1
M

∑M
j=1 w̃

j
tW

j
t−1

(8.70)

and notice that

1

M

M∑
j=1

h(sjt )W
j
t ≈

∫
h(st)p̃(yt+1|st)p(st|Y1:t)dst∫
p̃(yt+1|st)p(st|Y1:t)dst

=

∫
h(st)p̃(st|Y1:t+1)dst, (8.71)

which is the time t version of (8.67).
A second set of weights is necessary, because unlike in

the original Algorithm 12 the particle swarm {s̃jt ,W j
t } does

not deliver approximations to the objects of interest, which
are the density of the state p(st|Y1:t) and the predictive like-
lihood p(yt|Y1:t−1). Dividing w̃jt in (8.68) by p̃(yt+1|s̃jt ) yields
the alternative weights:

w̄jt = p(yt|s̃jt )
p(s̃jt |sjt−1)

gt(s̃
j
t |sjt−1)

1

p̃(yt|sjt−1)
, (8.72)

W̄ j
t =

w̄jtW
j
t−1

1
M

∑M
j=1 w̄

j
tW

j
t−1

.

Using the same steps as in (8.69) one can verify that

1

M

M∑
j=1

h(s̃jt )w̄
j
tW

j
t−1 (8.73)

≈ p(yt|Y1:t−1)

p̃(yt|Y1:t−1)

∫
h(st)p(st|Y1:t)dst.

It follows immediately that the posterior of st|Y1:t can be ap-
proximated according to:

1

M

M∑
j=1

h(sjt )W̄
j
t ≈

∫
h(st)p(st|Y1:t)dst. (8.74)
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The factor p(yt|Y1:t−1)/p̃(yt|Y1:t−1) cancels due to the defini-
tion of W̄ j

t in (8.72) as a ratio.
In the generic particle filter we approximated the likelihood

increments by averaging the unnormalized particle weights.
For the auxiliary particle filter the two sets of particle weights
deliver the following approximations:

1

M

M∑
j=1

w̃jtW
j
t−1 ≈ p(yt|Y1:t−1)

p̃(yt+1|Y1:t)

p̃(yt|Y1:t−1)
, (8.75)

1

M

M∑
j=1

w̄jtW
j
t−1 ≈ p(yt|Y1:t−1)

p̃(yt|Y1:t−1)
.

Thus, neither of the two Monte Carlo averages deliver the de-
sired object directly. Correcting the average of the w̄jt requires
an estimate of p̃(yt|Y1:t−1), which can be obtained from:

1

M

M∑
j=1

1

p̃(yt|sjt−1)
W j
t−1 (8.76)

≈
∫

1

p̃(yt|st−1)

p̃(yt|st−1)p(st−1|Y1:t−1)

p̃(yt|Y1:t−1)
dst−1

=
1

p̃(yt|Y1:t−1)
.

Here we used (8.65) and (8.67). Thus, we obtain 1

M

M∑
j=1

1

p̃(yt|sjt−1)
W j
t−1

−1 1

M

M∑
j=1

w̄jtW
j
t−1


≈ p(yt|Y1:t−1). (8.77)

Alternatively, note that 1

M

M∑
j=1

w̄jTW
j
T−1


T−1∏
t=1

 1

M

M∑
j=1

w̃jtW
j
t−1

 (8.78)

≈ p(yT |Y1:T−1)p(yT−1|Y1:T−2) · · · p(y2|y1)p(y1)
1

p̃(y1)

=
p(Y1:T )

p̃(y1)
,

7 16:10:31 UTC



Particle Filters • 203

which can be adjusted by an estimate of p̃(y1) to obtain a
likelihood function approximation.

The potential advantage of the auxiliary particle filter is
that the incremental weights, w̄jt , are more stable than in the
generic particle filter even under the bootstrap proposal den-
sity gt(·|sjt−1) = p(·|sjt−1). In this case w̄jt = p(yt|s̃jt )/p̃(yt|sjt−1)

which potentially has much lower variance than p(yt|s̃jt ). As
in any importance sampling approximation, it is important
that the density p̃(yt|sjt−1) has fatter tails than p(yt|s̃jt ). The
auxiliary particle filter can be summarized as follows:

Algorithm 17 (Auxiliary Particle Filter)

1. Initialization. Draw the initial particles from the distri-

bution sj0
iid∼ p(s0) and set w̃j0 = p̃(y1|sj0) and W j

0 =

w̃j0/
1
M

∑M
j=1 w̃

j
0.

2. Recursion. For t = 1, . . . , T :

(a) Importance Sampling. Draw s̃jt from gt(s̃t|sjt−1, θ)

and compute the incremental weights w̃jt defined
in (8.68) and w̄jt in (8.72). Also compute the normal-
ized weights W̃ j

t ∝ w̃jt and W̄ j
t ∝ w̄jt .

(b) Forecasting yt. The predictive density p(yt|Y1:t−1, θ)
can be approximated by (8.77).

(c) Updating. An approximation of E[h(st)|Y1:t, θ] is
given by (8.74).

(d) Selection. (Same as Algorithm 11)

3. Likelihood Approximation. The approximation of the
log-likelihood function can be obtained based on (8.77)
or (8.78).

8.5.2 EIS Filter

A second filter that adapts the proposal distribution of st−1 to
yt was developed by DeJong, Liesenfeld, Moura, Richard, and
Dharmarajan (2013). The algorithm is based on the assump-
tion that at the end of iteration t − 1 one inherits a continu-
ous filtering approximation p̂(st−1|Y1:t−1) (as opposed to the
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discrete approximation generated by the particle filter). The
importance sampling step in iteration targets the density

ϕt(st, st−1) = p(yt|st)p(st|st−1)p̂(st−1|Y1:t−1),

using a joint proposal density for st−1 and st, denoted by
gt(st, st−1), which is factorized as

gt(st, st−1) = gt(st)gt(st−1|st).

The proposal density is constructed by approximating the tar-
get distribution ϕt(st, st−1) with a parametric class of dis-
tributions. The parameterization is selected to minimize the
Monte Carlo variance of the importance sampling ratio
ϕt(st, st−1)/gt(st)gt(st−1|st), which is what the authors re-
fer to as efficient importance sampling. The iterations of the
algorithm turn the approximation p̂(st−1|Y1:t−1) into an ap-
proximation p̂(st|Y1:t). For the actual implementation of the
EIS filter we refer the reader to DeJong, Liesenfeld, Moura,
Richard, and Dharmarajan (2013), who provide numerical il-
lustrations of their method in the context of small-scale DSGE
models.

8.6 Application to the Small-Scale DSGE Model

To illustrate the particle filtering techniques, we will use the
bootstrap PF, the conditionally optimal PF, and the auxil-
iary PF to evaluate the likelihood function associated with the
small-scale New Keynesian DSGE model. We do so for two
parameter vectors, which are denoted by θm and θl and tabu-
lated in Table 8.1. The value θm is chosen by searching among
the posterior draws {θi}Ni=1 (see Section 4.2) for the draw as-
sociated with the highest likelihood. Note that this value is
neither the posterior mode (because the mode is determined
by the product of likelihood and prior) nor necessarily the
maximum of the likelihood function (because the posterior
sampler does not necessarily visit the area of the parameter
space in which the likelihood function is maximized). The log
likelihood at θm is ln p(Y |θm) = −306.49. The second param-
eter value, θl, is chosen to be associated with a lower log-
likelihood value. Based on our choice, ln p(Y |θl) = −313.36.
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Table 8.1: Small-Scale Model: Parameter Values

Parameter θm θl Parameter θm θl

τ 2.09 3.26 κ 0.98 0.89
ψ1 2.25 1.88 ψ2 0.65 0.53
ρr 0.81 0.76 ρg 0.98 0.98
ρz 0.93 0.89 r(A) 0.34 0.19
π(A) 3.16 3.29 γ(Q) 0.51 0.73
σr 0.19 0.20 σg 0.65 0.58
σz 0.24 0.29 ln p(Y |θ) -306.5 -313.4

To put the likelihood differentials into perspective, twice the
log-likelihood differential, 13.8, can be compared to the 5%
χ2 critical value for the hypothesis θ = θm vs. θ = θl is 22.4.
Thus, while the data prefer θm, they do not provide over-
whelming evidence against θl.

The particle filters generate approximations of the period t
contribution of the likelihood function, p̂(yt|Y1:t−1, θ), and the
distribution of the filtered states, p̂(st|Y1:t, θ). Because we are
using the linearized version of the small-scale DSGE model,
we can compare the approximations p̂(·) to the exact densities
p(·) obtained from the Kalman filter. We begin with a single
run of the filters over the period 1983:I to 2002:IV. This is the
period that has been previously used to estimate the DSGE
model. We compare the output of the Kalman filter, the boot-
strap PF, and the conditionally optimal PF. To facilitate the
use of particle filters, we augment the measurement equa-
tion of the DSGE model by independent measurement errors,
whose standard deviations we set to be 20% of the standard
deviation of the observables.4 We use 40,000 particles for the
bootstrap PF and 400 particles for the conditionally optimal
PF. We expect the conditionally optimal PF to deliver much
more precise approximations than the bootstrap PF, which is
why we use a substantially smaller number of particles.

Throughout this chapter, the bootstrap PF can be viewed

4The measurement error standard deviations are 0.1160 for output
growth, 0.2942 for inflation, and 0.4476 for the interest rates.
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as providing a lower bound on the accuracy of particle-filter-
based likelihood approximation, because this filter can be
easily implemented in DSGE model applications provided that
the measurement equation contains measurement errors. As
mentioned in Section 8.3, the conditionally optimal filter is
typically not implementable for nonlinear DSGE models, but
an approximate version that utilizes some other nonlinear
filter to generate the proposal distribution may be imple-
mentable. Thus, we view it as a realistic upper bound on the
accuracy that can be achieved with particle filters in DSGE
model applications.

Figure 8.1 depicts the sequence of log-likelihood incre-
ments as well as the mean E[ĝt|Y1:t], where ĝt is the exoge-
nous government spending in percentage deviations from its
steady state. The log-likelihood approximation generated by
the conditionally optimal PF is visually indistinguishable from
the exact log likelihood. The bootstrap PF approximation de-
viates from the actual log likelihood more strongly, in par-
ticular in periods in which the likelihood is low, e.g., around
1986 and 1991. The results for the filtered demand shock are
similar: the approximation of E[gt|Y1:t, θ

m] obtained from the
conditionally optimal PF is fairly accurate, whereas there is
a substantial discrepancy between the estimated path of ĝt
produced by the Kalman filter and the bootstrap PF. A gap
of about 2 percentages opens up in 1991, at the same time
when the log likelihood drops below −10. Due to the persis-
tence in the ĝt process (ρg = 0.98), the gap does not close for
the remainder of the sample.

To assess the accuracy of the particle filter approximation
of the likelihood function, we now run the filters Nrun = 100
times and examine the sampling properties of the discrepancy

∆̂1 = ln p̂(Y1:T |θ)− ln p(Y1:T |θ). (8.79)

The results are depicted in Figure 8.2. The left panel com-
pares the accuracy of the bootstrap filter for θm and θl. Con-
ditional on θm, most of the simulated values for ∆̂1 fall in
the range from −8 to 5 log-likelihood units. At θl the disper-
sion of ∆̂1 is much larger and more skewed toward the left,
encompassing values from −20 to 5. The deterioration of fit
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ln p̂(yt|Y1:t−1, θ
m) vs. ln p(yt|Y1:t−1, θ
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Figure 8.1: Small-Scale Model: Log-Likelihood Approximation and
Filtered ĝt. The results depicted in the figure are based on a sin-
gle run of the bootstrap PF (dashed), the conditionally optimal PF
(dotted), and the Kalman filter (solid).

is associated with a deterioration in the approximation accu-
racy. This is not surprising because the bootstrap PF gener-
ates proposal draws for st through forward simulation of the
state-transition equation. The worse the fit of the model, the
greater the mismatch between the proposal distribution and
the target posterior distribution of st.
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Bootstrap PF: θm vs. θl
θm: Bootstrap vs.

Cond. Opt. PF
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Figure 8.2: Small-Scale Model: Distribution of Log-Likelihood Ap-
proximation Errors (Part 1). Density estimate of ∆̂1 = ln p̂(Y1:T |θ)−
ln p(Y1:T |θ) based on Nrun = 100 runs of the PF. Solid lines depict
densities for θ = θm and bootstrap PF (M = 40, 000); dashed line de-
picts density for θ = θl and bootstrap PF (M = 40, 000); dotted line
depicts density for θ = θm and conditionally optimal PF (M = 400).

The right panel of Figure 8.2 compares the distribution of
∆̂1 for the bootstrap and the conditionally optimal PF at θm.
The latter is a lot more precise than the former and the em-
pirical distribution of ∆̂1 is tightly centered around zero. The
biases and standard deviations of ∆̂1 for the two filters are
summarized in Table 8.2. Conditional on θm, the standard
deviation of ∆̂1 is about six times larger for the bootstrap PF
than for the conditionally optimal PF. Changing the param-
eter to θl increases the standard deviation by a factor of 2.3
(1.4) for the bootstrap PF (conditionally optimal PF). Thus, the
bootstrap PF is much more sensitive to the fit of the model
specification than the conditionally optimal PF.

As an alternative to the bootstrap PF and the conditionally
optimal PF we also consider the auxiliary PF. To configure the
auxiliary PF we set gt(s̃

j
t |sjt−1) = p(s̃jt |sjt−1) and p̃(yt|sjt−1) is a

normal distribution with mean E[yt|sjt−1] and a variance that
equals the measurement error variance scaled by a factor
of 10. The distribution of log-likelihood approximation errors
∆̂1 is plotted in Figure 8.3.5 Visually, results from the aux-

5The log-likelihood approximations based on (8.77) and (8.78) are numer-
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Table 8.2: Small-Scale Model: PF Summary Statistics

Bootstrap Cond. Opt. Auxiliary
Number of Particles M 40,000 400 40,000
Number of Repetitions 100 100 100

High Posterior Density: θ = θm

Bias ∆̂1 -1.39 -0.10 -2.83
StdD ∆̂1 2.03 0.37 1.87
Bias ∆̂2 0.32 -0.03 -0.74

Low Posterior Density: θ = θl

Bias ∆̂1 -7.01 -0.11 -6.44
StdD ∆̂1 4.68 0.44 4.19
Bias ∆̂2 -0.70 -0.02 -0.50

Notes: The likelihood discrepancies ∆̂1 and ∆̂2 are defined in (8.79)
and (8.80). Results are based on Nrun = 100 runs of the particle
filters.

iliary PF and the bootstrap PF are very similar. For θm the
downward bias is a bit more pronounced for the auxiliary PF,
whereas for θl the distribution of ∆̂1 is less skewed to the left.
The last column of Table 8.2 reports sample moments for ∆̂1

and ∆̂2. While the auxiliary PF is able to reduce the variability
of the log-likelihood discrepancies, the small-sample bias for
∆̂1 increases by a factor of 2 for θm compared to the bootstrap
PF.

In Chapters 9 and 10 we will embed a particle filter into a
posterior sampler. This is necessary to implement posterior
inference for a nonlinear DSGE model. The key requirement
for such algorithms to generate draws that can be used to
consistently approximate moments and quantiles of the pos-
terior distribution of θ based on a finite number of particles
M is that the particle filter generates an unbiased approxi-
mation of the likelihood function p(Y1:T |θ) and its increments
p(yt|Y1:t−1, θ). While particle filter likelihood approximations
are unbiased in theory, in practice the sampling distribution

ically very similar. In the figures and tables we report the former.
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High Post. Density Param θm Low Post. Density Param θl
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Figure 8.3: Small-Scale Model: Distribution of Log-Likelihood Ap-
proximation Errors (Part 2). Density estimates of ∆̂1 = ln p̂(Y |θ) −
ln p(Y |θ) based on Nrun = 100 runs of the particle filters. Solid
lines depict densities for bootstrap PF; dashed lines correspond to
auxiliary PF. The number of particles is M = 40, 000.

of the approximation may be highly skewed and fat-tailed,
such that finite sample averages across a modest number of
repetitions may appear biased. This may translate into slow
convergence (or failure of convergence) of posterior samplers
that rely on particle filter approximations.

We previously focused on the distribution of the log-likeli-
hood approximation ln p̂(Y1:T |θ) in Figure 8.2. It is quite ap-
parent that the particle filters provide a downward-biased
estimate of ln p(Y1:T |θ). The negative bias is expected from
Jensen’s inequality if the approximation of the likelihood func-
tion is unbiased, because the logarithmic transformation is
concave. Assessing the bias of p̂(Y1:T |θ) is numerically deli-
cate because exponentiating a log-likelihood value of around
−300 leads to a missing value. Instead, we will consider the
following statistic:

∆̂2 =
p̂(Y1:T |θ)
p(Y1:T |θ)

− 1 (8.80)

= exp[ln p̂(Y1:T |θ)− ln p(Y1:T |θ)]− 1.

The computation of ∆̂2 requires us to exponentiate the differ-
ence in log-likelihood values, which is feasible if the particle
filter approximation is reasonably accurate. If the particle fil-

7 16:10:31 UTC



Particle Filters • 211

ter approximation is unbiased, then the sampling mean of ∆̂2

is equal to zero.
By construction, ∆̂2 is bounded below by -1. The right

panel of our earlier Figure 8.2 suggests that for the boot-
strap PF, we expect the distribution of ∆̂2 to have significant
mass near -1 (note that exp[−5] ≈ 0.007) and a long right tail
(exp[3] ≈ 20). Table 8.2 reports the means of ∆̂2 across 100
repetitions: for the conditionally optimal PF the means given
θm and θl are essentially zero. For the bootstrap PF the mean
is close to zero conditional on θm, but substantially below
zero for θl. The auxiliary PF is not able to reduce the small-
sample bias of ∆̂2 compared to the bootstrap PF. In fact, at
θm the bias of the auxiliary PF is more than twice as large (in
absolute terms) as the bias of the bootstrap filter.

By construction, the accuracy of the bootstrap PF is very
sensitive to outliers in the observations. To the extent that
outliers are unlikely under the entertained DSGE model, the
forward simulation of the state vector is unlikely to yield many
proposed states s̃jt that can rationalize the observation yt.
This leads to an uneven distribution of particle weights and
inaccurate Monte Carlo approximations. The recent Great Re-
cession in 2008–09 was a large outlier from the perspective of
DSGE models (as well as other popular time series models).
Holding the parameter values θm and θl fixed, we now run the
filters on the sample 2003:I to 2013:IV. Results are depicted
in Figure 8.4.

The top left panel of Figure 8.4 depicts the sequence of
log-likelihood increments. In 2008:IV, which is when out-
put growth collapsed, the log-likelihood increment is sub-
stantially lower than in any other period. The conditionally
optimal PF still does well in tracking the actual likelihood,
whereas the bootstrap PF approximation becomes highly in-
accurate. The bootstrap PF underestimates the likelihood in-
crement by about 250 units on a log scale. Interestingly, the
bootstrap PF recovers fairly quickly in subsequent periods.
The top right panel depicts 90% bands for the approximations
of the likelihood increments across 100 repetitions. The width
of the band for the bootstrap PF is generally less than 1 unit
on the log scale. The bottom panel shows the log standard
deviation of the log-likelihood increments. For the condition-
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Mean of Log-Likelihood Increments ln p̂(yt|Y1:t−1, θ
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Figure 8.4: Small-Scale Model: Particle Filtering during the Great
Recession and Beyond. Solid lines represent results from Kalman
filter. Dashed lines correspond to bootstrap PF (M = 40, 000) and
dotted lines correspond to conditionally optimal PF (M = 400). Re-
sults are based on Nrun = 100 runs of the filters.

ally optimal PF the log standard deviation stays fairly stable
over time, though there appears to be a slight increase after
2008. For the bootstrap PF, the standard deviations are gen-
erally larger than for the conditionally optimal PF and there
is a large spike in 2008:Q4.

8.7 Application to the SW Model

Our second application of the particle filter considers the SW
model. From a computational perspective, the SW model dif-
fers from the small-scale DSGE model in terms of the num-
ber of observables used in the estimation and with respect
to the number of latent state variables. For the estimation of
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the small-scale New Keynesian model we used three observ-
ables and the model has one endogenous state variable and
three exogenous shocks. The SW model is estimated based on
seven variables and it has more than a dozen state variables.
We will examine the extent to which the increased model size
leads to a deterioration of the accuracy of the particle filter
approximation. The large state space makes it more difficult
to accurately integrate out the hidden state variables with the
filter, and the relatively large number of observables creates a
potential for model misspecification, which in turn may lead
to a deterioration of the bootstrap PF. Recall that the boot-
strap PF is sensitive to the accuracy of forecasts of yt based
on the distribution st−1|Y1:t−1.

As in the previous section, we compute the particle filter
approximations conditional on two sets of parameter values,
θm and θl, which are summarized in Table 8.3. θm is the pa-
rameter vector associated with the highest likelihood value
among the draws that we previously generated with our pos-
terior sampler. θl is a parameter vector that attains a lower
likelihood value. The log-likelihood difference between the two
parameter vectors is approximately 13. The standard devia-
tions of the measurement errors are chosen to be approx-
imately 20% of the sample standard deviation of the time
series.6 We run the filter Nrun = 100 times over the period
1966:Q1 to 2004:Q4.

Figure 8.5 depicts density plots of the log-likelihood dis-
crepancy ∆̂1 for the bootstrap PF and the conditionally op-
timal PF. A comparison to Figure 8.2 highlights that the ac-
curacy of the PF deteriorates substantially by moving from
a small-scale DSGE model to a medium-scale DSGE model.
The results depicted in the top row of Figure 8.5 are based
on 40,000 particles for the bootstrap particle filter, which is
the same number of particles used for the small-scale DSGE
model. According to Table 8.4, the bias of ∆̂1 at θm is−238.49
and the standard deviation is 68.28. The corresponding sam-
ple moments obtained for the small-scale model are −1.39

6The standard deviations for the measurement errors are: 0.1731 (output
growth), 0.1394 (consumption growth), 0.4515 (investment growth), 0.1128
(wage growth), 0.5838 (log hours), 0.1230 (inflation), 0.1653 (interest rates).
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Table 8.3: SW Model: Parameter Values

θm θl θm θl

β̃ 0.159 0.182 π̄ 0.774 0.571
l̄ −1.078 0.019 α 0.181 0.230
σ 1.016 1.166 Φ 1.342 1.455
ϕ 6.625 4.065 h 0.597 0.511
ξw 0.752 0.647 σl 2.736 1.217
ξp 0.861 0.807 ιw 0.259 0.452
ιp 0.463 0.494 ψ 0.837 0.828
rπ 1.769 1.827 ρ 0.855 0.836
ry 0.090 0.069 r∆y 0.168 0.156
ρa 0.982 0.962 ρb 0.868 0.849
ρg 0.962 0.947 ρi 0.702 0.723
ρr 0.414 0.497 ρp 0.782 0.831
ρw 0.971 0.968 ρga 0.450 0.565
µp 0.673 0.741 µw 0.892 0.871
σa 0.375 0.418 σb 0.073 0.075
σg 0.428 0.444 σi 0.350 0.358
σr 0.144 0.131 σp 0.101 0.117
σw 0.311 0.382 ln p(Y |θ)−943.0 −956.1

Notes: β̃ = 100(β−1 − 1).

and 2.03.
Increasing the number of particles from 40,000 to 400,000

improves the accuracy of the filter somewhat as shown in the
bottom row of Figure 8.5, but also increases the computa-
tional time. For the conditionally optimal PF we used 4,000
particles, which is ten times more than for the small-scale
DSGE model. Compared to the bootstrap PF, there is a sub-
stantial gain from using the refined proposal distribution. Ac-
cording to Table 8.4 the small-sample bias of ∆̂1 drops by
more than a factor of 20 and the standard deviation is re-
duced by more than a factor of 15 relative to the bootstrap
PF with 40,000 particles. Unlike for the small-scale DSGE
model, the likelihood approximation of the conditionally opti-
mal PF appears to be biased in the small sample: the means
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High Post. Density Param. θm Low Post. Density Param. θl
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Figure 8.5: SW Model: Distribution of Log-Likelihood Approximation
Errors. Density estimates of ∆̂1 = ln p̂(Y |θ) − ln p(Y |θ) based on
Nrun = 100. Solid densities summarize results for the bootstrap
(BS) PF; dashed densities summarize results for the conditionally
optimal (CO) PF.

of ∆̂2 are −0.87 and −0.97 for θm and θl, respectively.
The left panel of Figure 8.6 plots the filtered exogenous

shock process ĝt from a single run of the Kalman filter, the
bootstrap PF, and the conditionally optimal PF. In the first
half of the sample, the conditionally optimal PF tracks
E[ĝt|Y1:t] very closely. In the early 1980s, a gap between the
conditionally optimal PF approximation and the true mean of
ĝt opens up and for a period of about 40 quarters, the boot-
strap PF approximation follows the path of E[ĝt|Y1:t] more
closely. The right panel of the figure shows the standard de-
viation of the two particle filter approximations across 100
repetitions. The conditionally optimal PF produces a more
accurate approximation than the bootstrap PF, but both ap-
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Table 8.4: SW Model: PF Summary Statistics

Bootstrap Cond. Opt.
No. of Particles M 40,000 400,000 4,000 40,000
No. of Repetitions 100 100 100 100

High Posterior Density: θ = θm

Bias ∆̂1 −238.49 −118.20 −8.55 −2.88

StdD ∆̂1 68.28 35.69 4.43 2.49

Bias ∆̂2 −1.00 −1.00 −0.87 −0.41

Low Posterior Density: θ = θl

Bias ∆̂1 −253.89 −128.13 −11.48 −4.91

StdD ∆̂1 65.57 41.25 4.98 2.75

Bias ∆̂2 −1.00 −1.00 −0.97 −0.64

Notes: Results are based on Nrun = 100. The likelihood discrepan-
cies ∆̂1 and ∆̂2 are defined in (8.79) and (8.80).

proximations are associated with considerable variability. For
the conditionally optimal PF, the smallest value of the stan-
dard deviation of Ê[ĝt|Y1:t] is 0.4 and the largest value is 1.4.

8.8 Computational Considerations

The illustrations in Sections 8.6 and 8.7 highlighted that
a careful specification of the proposal distribution in Algo-
rithm 12 is very important. Because of the ease of implemen-
tation, the results for the bootstrap PF provide a lower bound
on the accuracy of particle filter approximations for DSGE
model likelihood functions, whereas the results from the con-
ditionally optimal PF provide an upper bound that in applica-
tions with nonlinear DSGE models is generally not attainable.
As discussed in Section 8.3.2, an approximate conditionally
optimal filter could be obtained by using an extended Kalman
filter or an unscented Kalman filter to construct an efficient
proposal distribution. If the nonlinearities in the DSGE model
are mild, then a Kalman filter updating step applied to a lin-
earized version of the DSGE model could be used to obtain
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Figure 8.6: SW Model: Filtered Government Spending Process ĝt.
Mean and standard deviations of Ê[ĝt|Y1:t] are computed across
Nrun = 100 runs of the filters. The mean for the Kalman filter ap-
pears in solid, results for the bootstrap PF (M = 40, 000) are repre-
sented by dashed lines, and results for the conditionally optimal PF
(M = 4, 000) are dotted.

a good proposal distribution. While the computation of effi-
cient proposal distribution requires additional time, it makes
it possible to reduce the number of particles, which can speed
up the particle filter considerably.

While it is possible to parallelize the forecasting steps of the
particle filter algorithms, a massive parallelization is difficult
because of the high communication costs in the subsequent
updating and selection steps. In fact, the speed of the re-
sampling routine may become the biggest bottleneck and it
is important to use a fast routine, e.g., stratified resampling.
DSGE model solutions often generate redundant state vari-
ables. In high-dimensional systems it is useful to reduce the
dimension of the state vector to its minimum. This reduces
the memory requirements to store the particles and it avoids
numerical difficulties that may arise from singularities in the
distribution of the states.
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Chapter 9

Combining Particle Filters with MH

Samplers

We previously focused on the particle filter approximation of
the likelihood function of a potentially nonlinear DSGE model.
In order to conduct Bayesian inference, the approximate like-
lihood function has to be embedded into a posterior sampler.
We begin by combining the particle filtering methods of Chap-
ter 8 with the MCMC methods of Chapter 4. In a nutshell, we
replace the actual likelihood functions that appear in the for-
mula for the acceptance probability α(ϑ|θi−1) in Algorithm 5
with particle filter approximations p̂(Y |θ). This idea was first
proposed for the estimation of nonlinear DSGE models by
Fernández-Villaverde and Rubio-Ramı́rez (2007). We refer to
the resulting algorithm as PFMH algorithm. It is a special case
of a larger class of algorithms called particle Markov chain
Monte Carlo (PMCMC). The theoretical properties of PMCMC
methods were established in Andrieu, Doucet, and Holen-
stein (2010). Applications of PFMH algorithms in other areas
of econometrics are discussed in Flury and Shephard (2011).

9.1 The PFMH Algorithm

The statistical theory underlying the PFMH algorithm is very
complex and beyond the scope of this book. We refer the inter-
ested reader to Andrieu, Doucet, and Holenstein (2010) for a
careful exposition. Below we will sketch the main idea behind
the algorithm. The exposition is based on Flury and Shephard
(2011). We will distinguish between {p(Y |θ), p(θ|Y ), p(Y )}
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and {p̂(Y |θ), p̂(θ|Y ), p̂(Y )}. The first triplet consists of the
exact likelihood function p(Y |θ) and the resulting posterior
distribution and marginal data density defined as

p(θ|Y ) =
p(Y |θ)p(θ)
p(Y )

, p(Y ) =

∫
p(Y |θ)p(θ)dθ. (9.1)

The second triplet consists of the particle filter approximation
of the likelihood function denoted by p̂(Y |θ) and the resulting
posterior and marginal data density:

p̂(θ|Y ) =
p̂(Y |θ)p(θ)
p̂(Y )

, p̂(Y ) =

∫
p̂(Y |θ)p(θ)dθ. (9.2)

By replacing the exact likelihood function p(θ|Y ) with the
particle filter approximation p̂(Y |θ) in Algorithm 5, one might
expect to obtain draws from the approximate posterior p̂(θ|Y )
instead of the exact posterior p(θ|Y ). The surprising implica-
tion of the theory developed in Andrieu, Doucet, and Holen-
stein (2010) is that the distribution of draws from the PFMH
algorithm that replaces p(Y |θ) by p̂(Y |θ) in fact does converge
to the exact posterior. The algorithm takes the following form:

Algorithm 18 (PFMH Algorithm) For i = 1 to N :

1. Draw ϑ from a density q(ϑ|θi−1).

2. Set θi = ϑ with probability

α(ϑ|θi−1) = min

{
1,

p̂(Y |ϑ)p(ϑ)/q(ϑ|θi−1)

p̂(Y |θi−1)p(θi−1)/q(θi−1|ϑ)

}
and θi = θi−1 otherwise. The likelihood approximation
p̂(Y |ϑ) is computed using Algorithm 12.

Any of the particle filters described in Chapter 8 could be
used in the PFMH algorithm. Suppose we use the generic fil-
ter described in Algorithm 12. At each iteration the filter gen-
erates draws s̃jt from the proposal distribution gt(·|sjt−1). Let
S̃t =

(
s̃1
t , . . . , s̃

M
t

)′ and denote the entire sequence of draws by
S̃1:M

1:T . In the selection step we are using multinomial resam-
pling to determine the ancestor for each particle in the next
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iteration. Thus, we can define a random variable Ajt that con-
tains this ancestry information. For instance, suppose that
during the resampling particle j = 1 was assigned the value
s̃10
t then A1

t = 10. Let At =
(
A1
t , . . . , A

N
t

)
and use A1:T to

denote the sequence of At’s.
The PFMH algorithm operates on a probability space that

includes the parameter vector θ as well as S̃1:T and A1:T . We
use U1:T to denote the sequence of random vectors that are
used to generate S̃1:T and A1:T . U1:T can be thought of as an
array of iid uniform random numbers. The transformation of
U1:T into (S̃1:T , A1:T ) typically depends on θ and Y1:T because
the proposal distribution gt(s̃t|sjt−1) in Algorithm 12 depends
on the current observation yt as well as the parameter vector
θ which enters measurement and state-transitions equations;
see (8.1).

Consider, for instance, the conditionally optimal particle
filter for a linear state-space model described in Section 8.3.1.
The implementation of this filter requires sampling from a
N(s̄jt|t, Pt|t) distribution for each particle j. The mean of this
distribution depends on yt and both mean and covariance
matrix depend on θ through the system matrices of the state-
space representation (8.2). Draws from this distribution can
in principle be obtained, by sampling iid uniform random
variates, using a probability integral transform to convert
them into iid draws from a standard normal distribution,
and then converting them into draws from a N(s̄jt|t, P

j
t|t).

Likewise, in the selection step, the multinomial resampling
could be implemented based on draws from iid uniform ran-
dom variables. Therefore, we can express the particle filter
approximation of the likelihood function as

p̂(Y1:T |θ) = g(Y1:T |θ, U1:T ), (9.3)

where

U1:T ∼ p(U1:T ) =
T∏
t=1

p(Ut). (9.4)

The PFMH algorithm can be interpreted as operating on an
enlarged probability space for the triplet (Y1:T , θ, U1:T ). Define
the joint distribution

pg
(
Y1:T , θ, U1:T

)
= g(Y1:T |θ, U1:T )p

(
U1:T

)
p(θ). (9.5)

7 16:11:02 UTC



Combining Particle Filters with MH Samplers • 221

The PFMH algorithm samples from the joint posterior

pg
(
θ, U1:T |Y1:T

)
∝ g(Y |θ, U1:T )p

(
U1:T

)
p(θ) (9.6)

and discards the draws of
(
U1:T

)
. For this procedure to be

valid, it has to be the case that marginalizing the joint pos-
terior pg

(
θ, U1:T |Y1:T

)
with respect to

(
U1:T

)
yields the exact

posterior p(θ|Y1:T ). In other words, we require that the parti-
cle filter produces an unbiased simulation approximation of
the likelihood function for all values of θ:

E[p̂(Y1:T |θ)] (9.7)

=

∫
g(Y1:T |θ, U1:T )p

(
U1:T

)
dU1:T = p(Y1:T |θ).

In Section 8.1.2 we verified that the particle filter does indeed
satisfy the unbiasedness requirement.

It turns out that the acceptance probability for the MH al-
gorithm that operates on the enlarged probability space can
be directly expressed in terms of the particle filter approxima-
tion p̂(Y1:T |θ). On the enlarged probability space, one needs
to generate a proposed draw for both θ and U1:T . We de-
note these draws by ϑ and U∗1:T . The proposal distribution for
(ϑ,U∗1:T ) in the MH algorithm is given by q(ϑ|θ(i−1))p(U∗1:T ).
There is no need to keep track of the draws (U∗1:T ), because
the acceptance probability for Algorithm 18 can be written as
follows (omitting the time subscripts):

α(ϑ|θi−1) (9.8)

= min

1,

g(Y |ϑ,U∗)p(U∗)p(ϑ)
q(ϑ|θ(i−1))p(U∗)

g(Y |θ(i−1),U(i−1))p(U(i−1))p(θ(i−1))
q(θ(i−1)|θ∗)p(U(i−1))


= min

{
1,

p̂(Y |ϑ)p(ϑ)
/
q(ϑ|θ(i−1))

p̂(Y |θ(i−1))p(θ(i−1))
/
q(θ(i−1)|ϑ)

}
.

The terms p(U∗) and p(U (i−1)) cancel from the expression in
the first line of (9.8) and it suffices to record the particle filter
likelihood approximations p̂(Y |ϑ) and p̂(Y |θ(i−1)).
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9.2 Application to the Small-Scale DSGE Model

We now apply the PFMH algorithm to the small-scale New
Keynesian model, which is estimated over the period 1983:I
to 2002:IV. We use the 1-block RWMH-V algorithm and com-
bine it with the Kalman filter, the bootstrap PF, and the con-
ditionally optimal PF. According to the theory sketched in
the previous section the PFMH algorithm should accurately
approximate the posterior distribution of the DSGE model
parameters. Our results are based on Nrun = 20 runs of
each algorithm. In each run we generate N = 100, 000 pos-
terior draws and discard the first N0 = 50, 000. As in Sec-
tion 8.6, we use M = 40, 000 particles for the bootstrap filter
and M = 400 particles for the conditionally optimal filter.
A single run of the RWMH-V algorithm takes 1 minute and
30 seconds with the Kalman filter, approximately 40 minutes
with the conditionally optimal PF, and approximately 1 day
with the bootstrap PF.

The results are summarized in Table 9.1. Most notably,
despite the inaccurate likelihood approximation of the boot-
strap PF documented in Section 8.6, the PFMH works remark-
ably well. Columns 2 to 4 of the table report posterior means
which are computed by pooling the draws generated by the 20
runs of the algorithms. Except for some minor discrepancies
in the posterior mean for τ and r(A), which are parameters
with a high posterior variance, the posterior mean approxi-
mations are essentially identical for all three likelihood eval-
uation methods. Columns 5 to 7 contain the inefficiency fac-
tors InEffN (θ̄) for each parameter and the last three columns
of Table 9.1 contain the standard deviations of the posterior
mean estimates across the 20 runs. Not surprisingly, the pos-
terior sampler that is based on the bootstrap PF is the least
accurate. The standard deviations are two to four times as
large as for the samplers that utilize either the Kalman filter
or the conditionally optimal PF. Under the Kalman filter the
inefficiency factors range from 35 to about 150, whereas un-
der the bootstrap particle filter they range from 575 to 1,890.
As stressed in Section 9.1 the most important requirement
for PFMH algorithms is that the particle filter approximation
is unbiased—it does not have to be exact.
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Figure 9.1: Autocorrelation of PFMH Draws. The figure depicts au-
tocorrelation functions computed from the output of the 1 Block
RWMH-V algorithm based on the Kalman filter (solid), the condi-
tionally optimal particle filter (dashed), and the bootstrap particle
filter (solid with dots).

In Figure 9.1 we depict autocorrelation functions for pa-
rameter draws computed based on the output of the PFMH
algorithms. As a benchmark, the figure also contains auto-
correlation functions obtained from the sampler that uses the
exact likelihood function computed with the Kalman filter.
While under the conditionally optimal particle filter the per-
sistence of the Markov chain for the DSGE model parameters
is comparable to the persistence under the Kalman filter, the
use of the bootstrap particle filter raises the serial correlation
of the parameter draws drastically, which leads to the less
precise Monte Carlo approximations reported in Table 9.1.

9.3 Application to the SW Model

We now use the PF-RWMH-V algorithm to estimate the SW
model. Unlike in Section 6.2, where we used a more diffuse
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prior distribution to estimate the SW model, we now revert
back to the prior originally specified by Smets and Wouters
(2007). This prior is summarized in Table A-2 in the Appendix.
As shown in Herbst and Schorfheide (2014), under the origi-
nal prior distribution the RWMH algorithm is much better be-
haved than under our diffuse prior, because it leads to a pos-
terior distribution that does not exhibit multiple modes. The
estimation sample is 1966:I to 2004:IV. Using the RWMH-V
algorithm, we estimate the model posteriors using the Kalman
filter and the conditionally optimal PF, running each algo-
rithm Nrun = 20 times. The bootstrap particle filters with
M = 40, 000 and M = 400, 000 particles turned out to be too
inaccurate to deliver reliable posterior estimates.

Table 9.2 shows the results for the Kalman filter and the
conditionally optimal PF. While the MCMC chains generated
using the KF and CO-PF generate roughly the same means
for the parameter draws on average, the variability across the
chains is much higher for the CO-PF. According to inefficiency
factors, the KF chains are about ten times more efficient than
the CO-PF.

The results are summarized in Table 9.2. Due to the com-
putational complexity of the PF-RWMH-V algorithm, the re-
sults reported in the table are based on N = 10, 000 instead
of N = 100, 000 draws from the posterior distribution. We
used the conditionally optimal PF with M = 40, 000 particles
and a single-block RWMH-V algorithm in which we scaled the
posterior covariance matrix that served as covariance matrix
of the proposal distribution by c2 = 0.252 for the KF and
c2 = 0.052 for the conditionally optimal PF. This leads to ac-
ceptance rates of 33% for the KF and 24% for the conditionally
optimal PF.

In our experience, the noisy approximation of the like-
lihood function through the PF makes it necessary to re-
duce the variance of the proposal distribution to maintain
a targeted acceptance rate. In the SW application the pro-
posed moves using the PF approximation are about five times
smaller than under the exact KF likelihood function. This
increases the persistence of the Markov chain and leads to
a reduction in accuracy. Because of the difference in preci-
sion of PF approximations at different points in the param-
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Table 9.2: SW Model: PFMH Accuracy

Mean (θ̄N ) Ineff. Factors StdD (θ̄N )

KF CO-PF KF CO-PF KF CO-PF
β̃ 0.14 0.14 172.58 3732.90 0.007 0.034
π̄ 0.73 0.74 185.99 4343.83 0.016 0.079
l̄ 0.51 0.37 174.39 3133.89 0.130 0.552
α 0.19 0.20 149.77 5244.47 0.003 0.015
σc 1.49 1.45 86.27 3557.81 0.013 0.086
Φ 1.47 1.45 134.34 4930.55 0.009 0.056
ϕ 5.34 5.35 138.54 3210.16 0.131 0.628
h 0.70 0.72 277.64 3058.26 0.008 0.027
ξw 0.75 0.75 343.89 2594.43 0.012 0.034
σl 2.28 2.31 162.09 4426.89 0.091 0.477
ξp 0.72 0.72 182.47 6777.88 0.008 0.051
ιw 0.54 0.53 241.80 4984.35 0.016 0.073
ιp 0.48 0.50 205.27 5487.34 0.015 0.078
ψ 0.45 0.44 248.15 3598.14 0.020 0.078
rπ 2.09 2.09 98.32 3302.07 0.020 0.116
ρ 0.80 0.80 241.63 4896.54 0.006 0.025
ry 0.13 0.13 243.85 4755.65 0.005 0.023
r∆y 0.21 0.21 101.94 5324.19 0.003 0.022

Notes: β̃ = 100(β−1−1). Results are based onNrun = 20 runs of the
PF-RWMH-V algorithm. Each run of the algorithm generates N =

10, 000 draws. The likelihood function is computed with the Kalman
filter (KF) or conditionally optimal particle filter (CO-PF). The CO-PF
uses M = 40, 000 particles to compute the likelihood. We report
means and standard deviations of posterior mean approximations
θ̄N for the Nrun = 20 runs.
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Table 9.2: (Continued) SW Model: PFMH Accuracy

Mean (θ̄N ) Ineff. Factors StdD (θ̄N )

KF CO-PF KF CO-PF KF CO-PF
ρa 0.96 0.96 153.46 1358.87 0.002 0.005
ρb 0.22 0.21 325.98 4468.10 0.018 0.068
ρg 0.97 0.97 57.08 2687.56 0.002 0.011
ρi 0.71 0.70 219.11 4735.33 0.009 0.044
ρr 0.54 0.54 194.73 4184.04 0.020 0.094
ρp 0.80 0.81 338.69 2527.79 0.022 0.061
ρw 0.94 0.94 135.83 4851.01 0.003 0.019
ρga 0.41 0.37 196.38 5621.86 0.025 0.133
µp 0.66 0.66 300.29 3552.33 0.025 0.087
µw 0.82 0.81 218.43 5074.31 0.011 0.052
σa 0.34 0.34 128.00 5096.75 0.005 0.034
σb 0.24 0.24 186.13 3494.71 0.004 0.016
σg 0.51 0.49 208.14 2945.02 0.006 0.021
σi 0.43 0.44 115.42 6093.72 0.006 0.043
σr 0.14 0.14 193.37 3408.01 0.004 0.016
σp 0.13 0.13 194.22 4587.76 0.003 0.013
σw 0.22 0.22 211.80 2256.19 0.004 0.012
ln p̂(Y ) −964 −1018 0.298 9.139

Notes: β̃ = 100(β−1−1). Results are based onNrun = 20 runs of the
PF-RWMH-V algorithm. Each run of the algorithm generates N =

10, 000 draws. The likelihood function is computed with the Kalman
filter (KF) or conditionally optimal particle filter (CO-PF). The CO-PF
uses M = 40, 000 particles to compute the likelihood. We report
means and standard deviations of posterior mean approximations
θ̄N for the Nrun = 20 runs.
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eter space, the RWMH-V acceptance rate varies much more
across chains. For example, the standard deviation of the ac-
ceptance rate for the CO-PF PMCMC is 0.09, about ten times
larger than for the KF runs.

While the pooled posterior means using the KF and the
conditionally optimal PF reported in Table 9.1 are very simi-
lar, the standard deviation of the means across runs is three
to five times larger if the PF approximation of the likelihood
function is used. Because the PF approximation of the log-
likelihood function is downward-biased, the log marginal data
density approximation obtained with the PF is much smaller
than the one obtained with the KF.

Reducing the number of particles for the conditionally opti-
mal PF to 4,000 or switching to the bootstrap PF with 40,000
or 400,000 particles was not successful in the sense that the
acceptance rate quickly dropped to zero. Reducing the vari-
ance of the proposal distribution did not solve the problem
because to obtain a nontrivial acceptance rate the step-size
had to be so small that the sampler would not be able to
traverse the high posterior density region of the parameter
space in a reasonable amount of time. In view of the accuracy
of the likelihood approximation reported in Table 8.4, this
is not surprising. The PF approximations are highly volatile
and even though the PF approximation is unbiased in theory,
finite sample averages appear to be severely biased.

If the variation in the likelihood approximation, conditional
on a particular value of θ, is much larger than the variation
that we would observe along a Markov chain (evaluating the
likelihood for the sequence θi, i = 1, . . . , N ) that is generated
by using the exact likelihood function, the sampler is likely
to get stuck, meaning the acceptance rate for proposed draws
drops to zero, for the following reason. Once the PF has gen-
erated an estimate p̂(Y |θi) that exceeds p(Y |θi) by a wide
margin, it becomes extremely difficult to move to a nearby θ̃.
A θi and a θ̃ that are close to each other tend to be associ-
ated with similar exact likelihood values. Because most of the
PF evaluations underestimate p(Y |θ̃) and because previously
p̂(Y |θi) overestimated p(Y |θi), the acceptance probability will
drop to essentially zero.
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9.4 Computational Considerations

We implement the PFMH algorithm on a single machine, uti-
lizing up to twelve cores. Efficient parallelization of the al-
gorithm is difficult, because it is challenging to parallelize
MCMC algorithms and it is not profitable to use distributed
memory parallelization for the filter. For the small-scale DSGE
model it takes 30:20:33 [hh:mm:ss] hours to generate 100,000
parameter draws using the bootstrap PF with 40,000 parti-
cles. Under the conditionally optimal filter we only use 400
particles, which reduces the run time to 00:39:20 minutes.
Thus, with the conditionally optimal filter, the PFMH algo-
rithm runs about fifty times faster and delivers highly ac-
curate approximations of the posterior means. For the SW
model the computational time is substantially larger. It took
05:14:20:00 [dd:hh:mm:ss] days to generate 10,000 draws
using the conditionally optimal PF with 40,000 particles.

In practical applications with nonlinear DSGE models the
conditionally optimal PF that we used in our numerical illus-
trations is typically not available and has to be replaced by
one of the other filters, possibly an approximately condition-
ally optimal PF. Having a good understanding of the accuracy
of the PF approximation is crucial. Thus, we recommend as-
sessing the variance of the likelihood approximation at vari-
ous points in the parameter space as we did in Sections 8.6
and 8.7 and tailoring the filter until it is reasonably accurate.
To put the accuracy of the filter approximation into perspec-
tive, one could compare it to the variation in the likelihood
function of a linearized DSGE model fitted to the same data,
along a sequence of posterior draws θi. If the variation in
the likelihood function due to the PF approximation is larger
than the variation generated by moving through the parame-
ter space, the PF-MH algorithm is unlikely to produce reliable
results.

In general, likelihood evaluations for nonlinear DSGE mod-
els are computationally very costly. Rather than spending
computational resources on tailoring the proposal density for
the PF to reduce the number of particles, one can also try to
lower the number of likelihood evaluations in the MH algo-
rithm. Smith (2012) developed a PFMH algorithm based on
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surrogate transitions. In summary, the algorithm proceeds
as follows: Instead of evaluating the posterior density (and
thereby the DSGE model likelihood function) for every pro-
posal draw ϑ, one first evaluates the likelihood function for
an approximate model, e.g., a linearized DSGE model, or one
uses a fast approximate filter, e.g., an extended Kalman filter,
to obtain a likelihood value for the nonlinear model. Using the
surrogate likelihood, one can compute the acceptance proba-
bility α. For ϑ’s rejected in this step, one never has to execute
the time-consuming PF computations. If the proposed draw
ϑ is accepted in the first stage, then a second randomization
that requires the evaluation of the actual likelihood is neces-
sary to determine whether θi = ϑ or θi = θi−1. If the surrogate
transition is well tailored, then the acceptance probability in
the second step is high and the overall algorithm accelerates
the posterior sampler by reducing the number of likelihood
evaluations for poor proposals ϑ.
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Combining Particle Filters with SMC

Samplers

Following recent work by Chopin, Jacob, and Papaspiliopou-
los (2012), we now combine the SMC algorithm of Chapter 5
with the particle filter approximation of the likelihood func-
tion developed in Chapter 8 to develop an SMC2 algorithm.

10.1 An SMC2 Algorithm

As with the PFMH algorithm, our goal is to obtain a posterior
sampler for the DSGE model parameters for settings in which
the likelihood function of the DSGE model cannot be evalu-
ated with the Kalman filter. The starting point is the SMC
Algorithm 8. However, we make a number of modifications
to our previous algorithm. Some of these modifications are
important, others are merely made to simplify the exposition.
First and foremost, we add data sequentially to the likelihood
function rather than tempering the entire likelihood function:
we consider the sequence of posteriors πDn (θ) = p(θ|Y1:tn),
defined in (5.3), where tn = bφnT c. The advantage of using
data tempering is that the particle filter can deliver an unbi-
ased estimate of the incremental weight p(Ytn−1+1:tn |θ) in the
correction step—see Section 8.1.2—whereas the estimate of a
concave transformation p(Y1:T |θ)φn−φn−1 tends to be biased.
Moreover, in general one has to evaluate the likelihood only
for tn observations instead of all T observations, which can
speed up computations considerably.

Second, the evaluation of the incremental and the full like-
lihood function in the correction and mutation steps of Algo-
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rithm 8 are replaced by the evaluation of the respective parti-
cle filter approximations. Using the same notation as in (9.3),
we write the particle approximations as

p̂(ytn−1+1:tn |Y1:tn−1
, θ) = g(ytn−1+1:tn |Y1:tn−1

, θ, U1:tn),

p̂(Y1:tn |θn) = g(Y1:tn |θn, U1:tn). (10.1)

As before, U1:tn is an array of iid uniform random variables
generated by the particle filter with density p(U1:tn); see (9.4).
The approximation of the likelihood increment also depends
on the entire sequence p(U1:tn): the particle approximation
of p(stn−1+1|Y1:tn−1

, θ) is dependent on the approximation of
p(stn−1

|Y1:tn−1
, θ). The distribution of U1:tn neither depends

on θ nor on Y1:tn and can be factorized as

p(U1:tn) = p(U1:t1)p(Ut1+1:t2) · · · p(Utn−1+1:tn). (10.2)

To describe the particle system, we follow the convention
of Chapter 5 and index the parameter vector θ by the stage
n of the SMC algorithm and write θn. The particles generated
by the SMC sampler are indexed i = 1, . . . , N and the parti-
cles generated by the particle filter are indexed j = 1, . . . ,M .
At stage n we have a particle system {θin,W i

n}Ni=1 that rep-
resents the posterior distribution p(θn|Y1:tn). Moreover, for
each θin we have a particle system that represents the distri-
bution p(st|Y1:tn , θ

i
n). To distinguish the weights used for the

particle values that represent the conditional distribution of
θt from the weights used to characterize the conditional dis-
tribution of st, we denote the latter byW instead of W . More-
over, because the distribution of the states is conditional on
the value of θ, we use i, j superscripts: {si,jt ,Wi,j

t }Mj=1. The
particle system can be arranged in the matrix form given in
Table 10.1.

Finally, to streamline the notation used in the description
of the algorithm, we assume that during each stage n exactly
one observation is added to the likelihood function. Thus, we
can write θt instead of θn and Y1:t instead of Y1:tn and the
number of stages is Nφ = T . Moreover, we resample the θ
particles at every iteration of the algorithm (which means we
do not have to keep track of the resampling indicator ρt) and
we only use one MH step in the mutation phase.
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Table 10.1: SMC2 Particle System after Stage n

Parameter State
(θ1
n,W

1
n) (s1,1

tn
,W1,1

tn
) (s1,2

tn
,W1,2

tn
) · · · (s1,M

tn
,W1,M

tn
)

(θ2
n,W

2
n) (s2,1

tn
,W2,1

tn
) (s2,2

tn
,W2,2

tn
) · · · (s2,M

tn
,W2,M

tn
)

...
...

...
. . .

...
(θNn ,W

N
n ) (sN,1tn

,WN,1
tn

) (sN,2tn
,WN,2

tn
) · · · (sN,Mtn

,WN,M
tn

)

Algorithm 19 (SMC2)

1. Initialization. Draw the initial particles from the prior:

θi0
iid∼ p(θ) and W i

0 = 1, i = 1, . . . , N .

2. Recursion. For t = 1, . . . , T ,

(a) Correction. Reweight the particles from stage t−1
by defining the incremental weights

w̃it = p̂(yt|Y1:t−1, θ
i
t−1) = g(yt|Y1:t−1, θ

i
t−1, U

i
1:t)

(10.3)
and the normalized weights

W̃ i
t =

w̃inW
i
t−1

1
N

∑N
i=1 w̃

i
tW

i
t−1

, i = 1, . . . , N. (10.4)

An approximation of Eπt [h(θ)] is given by

h̃t,N =
1

N

N∑
i=1

W̃ i
th(θit−1). (10.5)

(b) Selection. Resample the particles via multinomial
resampling. Let {θ̂it}Mi=1 denote M iid draws from
a multinomial distribution characterized by support
points and weights {θit−1, W̃

i
t }Mj=1 and set W i

t =
1. Define the vector of ancestors At with elements
Ait by setting Ait = k if the ancestor of resampled
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particle i is particle k, that is, θ̂it = θkt−1.
An approximation of Eπt [h(θ)] is given by

ĥt,N =
1

N

N∑
j=1

W i
th(θ̂it). (10.6)

(c) Mutation. Propagate the particles {θ̂it,W i
t } via 1

step of an MH algorithm. The proposal distribution
is given by

q(ϑit|θ̂it)p(U∗i1:t) (10.7)

and the acceptance probability can be expressed as

α(ϑit|θ̂it) = min

{
1,
p̂(Y1:t|ϑit)p(ϑit)/q(ϑit|θ̂it)
p̂(Y1:t|θ̂it)p(θ̂it)/q(θ̂it|ϑit)

}
.

(10.8)
An approximation of Eπt [h(θ)] is given by

h̄t,N =
1

N

N∑
i=1

h(θit)W
i
t . (10.9)

3. For t = T the final importance sampling approximation
of Eπ[h(θ)] is given by:

h̄T,N =
N∑
i=1

h(θiT )W i
T . (10.10)

A formal analysis of SMC2 algorithms is provided in Cho-
pin, Jacob, and Papaspiliopoulos (2012). We will provide a
heuristic explanation of why the algorithm correctly approxi-
mates the target posterior distribution and comment on some
aspects of the implementation. At the end of iteration t − 1
the algorithm has generated particles {θit−1,W

i
t−1}Ni=1. For

each parameter value θit−1 there is also a particle filter ap-
proximation of the likelihood function p̂(Y1:t−1|θit−1), a swarm
of particles {si,jt−1,Wi,j

t−1}Mj=1 that represents the distribution
p(st−1|Y1:t−1, θ

i
t−1), and the sequence of random vectorsU i1:t−1
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that underlies the simulation approximation of the particle fil-
ter. To gain an understanding of the algorithm it is useful to
focus on the triplets {θit−1, U

i
1:t−1,W

i
t−1}Ni=1. Suppose that∫ ∫

h(θ, U1:t−1)p(U1:t−1)p(θ|Y1:t−1)dU1:t−1dθ

≈ 1

N

N∑
i=1

h(θit−1, U
i
1:t−1)W i

t−1. (10.11)

This implies that we obtain the familiar approximation for
functions h(·) that do not depend on U1:t−1∫

h(θ)p(θ|Y1:t−1)dθ ≈ 1

N

N∑
i=1

h(θit−1)W i
t−1. (10.12)

Correction Step. The incremental likelihood p̂(yt|Y1:t−1, θ
i
t−1)

can be evaluated by iterating the particle filter forward for
one period, starting from {si,jt−1,Wi,j

t−1}Mj=1. Using the notation
in (10.1), the particle filter approximation of the likelihood in-
crement can be written as

p̂(yt|Y1:t−1, θ
i
t−1) = g(yt|Y1:t−1, U

i
1:t, θ

i
t−1). (10.13)

The value of the likelihood function for Y1:t can be tracked
recursively as follows:

p̂(Y1:t|θit−1) = p̂(yt|Y1:t−1, θ
i
t−1)p̂(Y1:t−1|θit−1) (10.14)

= g(yt|Y1:t, U
i
1:t, θ

i
t−1)g(Y1:t−1|U i1:t−1, θ

i
t−1)

= g(Y1:t|U i1:t, θ
i
t−1).

The last equality follows because conditioning the density
g(Y1:t−1|U i1:t−1, θ

i
t−1) also on Ut does not change the parti-

cle filter approximation of the likelihood function for Y1:t−1.
By induction, we can deduce from (10.11) that the Monte

Carlo average 1
N

∑N
i=1 h(θit−1)w̃itW

i
t−1 approximates the fol-

lowing integral:∫ ∫
h(θ)g(yt|Y1:t−1, U1:t, θ)p(U1:t)p(θ|Y1:t−1)dU1:tdθ

=

∫
h(θ)

[∫
g(yt|Y1:t−1, U1:t, θ)p(U1:t)dU1:t

]
×p(θ|Y1:t−1)dθ.
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Provided that the particle filter approximation of the likeli-
hood increment is unbiased, that is,

∫
g(yt|Y1:t−1, U1:t, θ)p(U1:t)dU1:t = p(yt|Y1:t−1, θ) (10.15)

for each θ, we deduce that h̃t,N is a consistent estimator of
Eπt [h(θ)].

Selection Step. The selection step Algorithm 19 is very sim-
ilar to Algorithm 8. To simplify the description of the SMC2

algorithm, we are resampling in every iteration. Moreover, we
are keeping track of the ancestry information in the vector
At. This is important, because for each resampled particle
i we not only need to know its value θ̂it but we also want
to track the corresponding value of the likelihood function
p̂(Y1:t|θ̂it) as well as the particle approximation of the state,
given by {si,jt ,W i,j

t }, and the set of random numbers U i1:t. In
the implementation of the algorithm, the likelihood values are
needed for the mutation step and the state particles are use-
ful for a quick evaluation of the incremental likelihood in the
correction step of iteration t+1 (see above). The U i1:t’s are not
required for the actual implementation of the algorithm but
are useful to provide a heuristic explanation for the validity
of the algorithm.

Mutation Step. The mutation step essentially consists of one
iteration of the PFMH algorithm described in Section 9.1. For
each particle i there is a proposed value ϑit, an associated
particle filter approximation p̂(Y1:t|ϑit) of the likelihood, and
a sequence of random vectors U∗1:t drawn from the distribu-
tion p(U1:t) in (10.2). As in (9.8), the densities p(U i1:t) and
p(U∗1:t) cancel from the formula for the acceptance probabil-
ity α(ϑit|θ̂it). For the implementation it is important to record
the likelihood value as well as the particle system for the state
st for each particle θit.
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10.2 Application to the Small-Scale DSGE Model

We now present an application of the SMC2 algorithm to
the small-scale DSGE model. The results in this section can
be compared to the results obtained in Section 9.2. Because
the SMC2 algorithm requires an unbiased approximation of
the likelihood function, we will use data tempering instead of
likelihood tempering as in Section 5.3. Overall, we compare
the output of four algorithms: SMC2 based on the condi-
tionally optimal PF; SMC2 based on the bootstrap PF; SMC
based on the Kalman filter likelihood function using data
tempering; and SMC based on the Kalman filter likelihood
function using likelihood tempering. In order to approximate
the likelihood function with the particle filter, we are using
M = 40, 000 particles for the bootstrap PF and M = 400 par-
ticles for the conditionally optimal PF. The approximation of
the posterior distribution is based on N = 4, 000 particles
for θ, Nφ = T + 1 = 81 stages under data tempering, and
Nblocks = 3 blocks for the mutation step.

Table 10.2 summarizes the results from running each al-
gorithm Nrun = 20 times. We report pooled posterior means
from the output of the 20 runs as well as inefficiency factors
InEffN (θ̄) and the standard deviation of the posterior mean
approximations across the 20 runs. The results in the column
labeled KF(L) are based on the Kalman filter likelihood eval-
uation and obtained from the same algorithm that was used
in Section 5.3. The results in column KF(D) are also based
on the Kalman filter, but the SMC algorithm uses data tem-
pering instead of likelihood tempering. The columns CO-PF
and BS-BF contain SMC2 results based on the conditionally
optimal and the bootstrap PF, respectively. The pooled means
of the DSGE model parameters computed from output of the
KF(L), KF(D), and CO-PF algorithms are essentially identical.
The log marginal data density approximations are less accu-
rate than the posterior mean approximations and vary for the
first three algorithms from −358.75 to −356.33.

A comparison of the standard deviations and the ineffi-
ciency factors indicates that moving from likelihood temper-
ing to data tempering leads to a deterioration of accuracy. For
instance, the standard deviation of the log marginal data den-
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sity increases from 0.12 to 1.19. As discussed in Section 5.3
in DSGE model applications it is important to use a convex
tempering schedule that adds very little likelihood informa-
tion in the initial stages. The implied tempering schedule of
our sequential estimation procedure is linear and adds a full
observation in stage n = 1 (recall that n = 0 corresponds to
sampling from the prior distribution). Replacing the Kalman
filter evaluation of the likelihood function by the condition-
ally optimal particle filter increases the standard deviations
further. Compared to KF(D) the standard deviations of the
posterior mean approximations increase by factors ranging
from 1.5 to 5. The inefficiency factors for the KF(D) algorithm
range from 1.5 to 40, whereas they range from 20 to 250 for
CO-PF. A comparison with Table 9.1 indicates that the SMC
algorithm is more sensitive to the switch from the Kalman
filter likelihood to the particle filter approximation. Using the
conditionally optimal particle filter, there seems to be no dete-
rioration in accuracy of the RWMH algorithm. Finally, replac-
ing the conditionally optimal PF by the bootstrap PF leads to
an additional deterioration in accuracy. Compared to KF(D)
the standard deviations for the BS-PF approach are an or-
der of magnitude larger and the smallest inefficiency factor
is 4,200. Nonetheless, the pooled posterior means are fairly
close to those obtained from the other three algorithms.

10.3 Computational Considerations

The SMC2 results reported in Table 10.2 are obtained by
utilizing forty processors. We parallelized the likelihood eval-
uations p̂(Y1:t|θit) for the θit particles rather than the particle
filter computations for the swarms {si,jt ,Wi,j

t }Mj=1. The like-
lihood evaluations are computationally costly and do not re-
quire communication across processors. The run time for the
SMC2 with conditionally optimal PF (N = 4, 000, M = 400)
is 23:24 [mm:ss] minutes, whereas the algorithm with boot-
strap PF (N = 4, 000 and M = 40, 000) runs for 08:05:35
[hh:mm:ss] hours. The bootstrap PF performs poorly in terms
of accuracy and run time.

After running the particle filter for the sample Y1:t−1 one
could in principle save the particle swarm for the final state
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st−1 for each θit. In the period t forecasting step, this informa-
tion can then be used to quickly evaluate the likelihood in-
crement. In our experience with the small-scale DSGE model,
the sheer memory size of the objects (in the range of 10–20
gigabytes) precluded us from saving the t − 1 state particle
swarms in a distributed parallel environment in which mem-
ory transfers are costly. Instead, we re-computed the entire
likelihood for Y1:t in each iteration.

Our sequential (data-tempering) implementation of the
SMC2 algorithm suffers from particle degeneracy in the ini-
tial stages, i.e., for small sample sizes. Instead of initially
sampling from the prior distribution, one could initialize the
algorithm by using an importance sampler with a student-t
proposal distribution that approximates the posterior distri-
bution obtained conditional on a small set of observations,
e.g., Y1:2 or Y1:5, as suggested in Creal (2007).
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Model Descriptions

A.1 Smets-Wouters Model

The log-linearized equilibrium conditions of the Smets and
Wouters (2007) model take the following form:

ŷt = cy ĉt + iy ît + zy ẑt + εgt (A.1)

ĉt =
h/γ

1 + h/γ
ĉt−1 +

1

1 + h/γ
Etĉt+1 (A.2)

+
wlc(σc − 1)

σc(1 + h/γ)
(l̂t − Et l̂t+1)

− 1− h/γ
(1 + h/γ)σc

(r̂t − Etπ̂t+1)− 1− h/γ
(1 + h/γ)σc

εbt

ît =
1

1 + βγ(1−σc)
ît−1 +

βγ(1−σc)

1 + βγ(1−σc)
Etît+1 (A.3)

+
1

ϕγ2(1 + βγ(1−σc))
q̂t + εit

q̂t = β(1− δ)γ−σcEtq̂t+1 − r̂t + Etπ̂t+1 (A.4)
+(1− β(1− δ)γ−σc)Etr̂kt+1 − εbt

ŷt = Φ(αk̂st + (1− α)l̂t + εat ) (A.5)

k̂st = k̂t−1 + ẑt (A.6)

ẑt =
1− ψ
ψ

r̂kt (A.7)
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k̂t =
(1− δ)
γ

k̂t−1 + (1− (1− δ)/γ)̂it (A.8)

+(1− (1− δ)/γ)ϕγ2(1 + βγ(1−σc))εit

µ̂pt = α(k̂st − l̂t)− ŵt + εat (A.9)

π̂t =
βγ(1−σc)

1 + ιpβγ(1−σc)
Etπ̂t+1 +

ιp
1 + βγ(1−σc)

π̂t−1 (A.10)

− (1− βγ(1−σc)ξp)(1− ξp)
(1 + ιpβγ(1−σc))(1 + (Φ− 1)εp)ξp

µ̂pt + εpt

r̂kt = l̂t + ŵt − k̂st (A.11)

µ̂wt = ŵt − σl l̂t −
1

1− h/γ (ĉt − h/γĉt−1) (A.12)

ŵt =
βγ(1−σc)

1 + βγ(1−σc)
(Etŵt+1 (A.13)

+Etπ̂t+1) +
1

1 + βγ(1−σc)
(ŵt−1 − ιwπ̂t−1)

−1 + βγ(1−σc)ιw
1 + βγ(1−σc)

π̂t

− (1− βγ(1−σc)ξw)(1− ξw)

(1 + βγ(1−σc))(1 + (λw − 1)εw)ξw
µ̂wt + εwt

r̂t = ρr̂t−1 + (1− ρ)(rππ̂t + ry(ŷt − ŷ∗t )) (A.14)
+r∆y((ŷt − ŷ∗t )− (ŷt−1 − ŷ∗t−1)) + εrt .

The exogenous shocks evolve according to

εat = ρaε
a
t−1 + ηat (A.15)

εbt = ρbε
b
t−1 + ηbt (A.16)

εgt = ρgε
g
t−1 + ρgaη

a
t + ηgt (A.17)

εit = ρiε
i
t−1 + ηit (A.18)

εrt = ρrε
r
t−1 + ηrt (A.19)

εpt = ρrε
p
t−1 + ηpt − µpηpt−1 (A.20)

εwt = ρwε
w
t−1 + ηwt − µwηwt−1. (A.21)
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The counterfactual no-rigidity prices and quantities evolve
according to

ŷ∗t = cy ĉ
∗
t + iy î

∗
t + zy ẑ

∗
t + εgt (A.22)

ĉ∗t =
h/γ

1 + h/γ
ĉ∗t−1 +

1

1 + h/γ
Etĉ∗t+1 (A.23)

+
wlc(σc − 1)

σc(1 + h/γ)
(l̂∗t − Et l̂∗t+1)

− 1− h/γ
(1 + h/γ)σc

r∗t −
1− h/γ

(1 + h/γ)σc
εbt

î∗t =
1

1 + βγ(1−σc)
î∗t−1 +

βγ(1−σc)

1 + βγ(1−σc)
Etî∗t+1

+
1

ϕγ2(1 + βγ(1−σc))
q̂∗t + εit (A.24)

q̂∗t = β(1− δ)γ−σcEtq̂∗t+1 − r∗t (A.25)

+(1− β(1− δ)γ−σc)Etrk∗t+1 − εbt
ŷ∗t = Φ(αks∗t + (1− α)l̂∗t + εat ) (A.26)

k̂s∗t = k∗t−1 + z∗t (A.27)

ẑ∗t =
1− ψ
ψ

r̂k∗t (A.28)

k̂∗t =
(1− δ)
γ

k̂∗t−1 + (1− (1− δ)/γ)̂it (A.29)

+(1− (1− δ)/γ)ϕγ2(1 + βγ(1−σc))εit

ŵ∗t = α(k̂s∗t − l̂∗t ) + εat (A.30)

r̂k∗t = l̂∗t + ŵ∗t − k̂∗t (A.31)

ŵ∗t = σl l̂
∗
t +

1

1− h/γ (ĉ∗t + h/γĉ∗t−1). (A.32)
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The steady state (ratios) that appear in the measurement
equation or the log-linearized equilibrium conditions are given
by

γ = γ̄/100 + 1 (A.33)
π∗ = π̄/100 + 1 (A.34)
r̄ = 100(β−1γσcπ∗ − 1) (A.35)

rkss = γσc/β − (1− δ) (A.36)

wss =

(
αα(1− α)(1−α)

Φrkss
α

) 1
1−α

(A.37)

ik = (1− (1− δ)/γ)γ (A.38)

lk =
1− α
α

rkss
wss

(A.39)

ky = Φl
(α−1)
k (A.40)

iy = (γ − 1 + δ)ky (A.41)
cy = 1− gy − iy (A.42)
zy = rkssky (A.43)

wlc =
1

λw

1− α
α

rkssky
cy

. (A.44)

The measurement equations take the form:

Y GRt = γ̄ + ŷt − ŷt−1 (A.45)
INFt = π̄ + π̂t

FFRt = r̄ + R̂t

CGRt = γ̄ + ĉt − ĉt−1

IGRt = γ̄ + ît − ît−1

WGRt = γ̄ + ŵt − ŵt−1

HOURSt = l̄ + l̂t.
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Table A-1: SW Model: Diffuse Prior

Type Para (1) Para (2) Type Para (1) Para (2)
ϕ N 4.00 4.50 α N 0.30 0.15
σc N 1.50 1.11 ρa U 0.00 1.00
h U 0.00 1.00 ρb U 0.00 1.00
ξw U 0.00 1.00 ρg U 0.00 1.00
σl N 2.00 2.25 ρi U 0.00 1.00
ξp U 0.00 1.00 ρr U 0.00 1.00
ιw U 0.00 1.00 ρp U 0.00 1.00
ιp U 0.00 1.00 ρw U 0.00 1.00
ψ U 0.00 1.00 µp U 0.00 1.00
Φ N 1.25 0.36 µw U 0.00 1.00
rπ N 1.50 0.75 ρga U 0.00 1.00
ρ U 0.00 1.00 σa IG 0.10 2.00
ry N 0.12 0.15 σb IG 0.10 2.00
r∆y N 0.12 0.15 σg IG 0.10 2.00
π G 0.62 0.30 σi IG 0.10 2.00
β̃ G 0.25 0.30 σr IG 0.10 2.00
l N 0.00 6.00 σp IG 0.10 2.00
γ N 0.40 0.30 σw IG 0.10 2.00

Notes: β̃ = 100(β−1 − 1). Para (1) and Para (2) correspond to the
mean and standard deviation of the Beta (B), Gamma (G), and
Normal (N) distributions and to the upper and lower bounds of
the support for the Uniform (U) distribution. For the Inv. Gamma
(IG) distribution, Para (1) and Para (2) refer to s and ν, where
p(σ|ν, s) ∝ σ−ν−1e−νs

2/2σ2

. The following parameters are fixed dur-
ing the estimation: δ = 0.025, gy = 0.18, λw = 1.50, εw = 10.0, and
εp = 10.
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Table A-2: SW Model: Original Prior

Type Para (1) Para (2) Type Para (1) Para (2)
ϕ N 4.00 1.50 α N 0.30 0.05
σc N 1.50 0.37 ρa B 0.50 0.20
h B 0.70 0.10 ρb B 0.50 0.20
ξw B 0.50 0.10 ρg B 0.50 0.20
σl N 2.00 0.75 ρi B 0.50 0.20
ξp B 0.50 0.10 ρr B 0.50 0.20
ιw B 0.50 0.15 ρp B 0.50 0.20
ιp B 0.50 0.15 ρw B 0.50 0.20
ψ B 0.50 0.15 µp B 0.50 0.20
Φ N 1.25 0.12 µw B 0.50 0.20
rπ N 1.50 0.25 ρga B 0.50 0.20
ρ B 0.75 0.10 σa IG 0.10 2.00
ry N 0.12 0.05 σb IG 0.10 2.00
r∆y N 0.12 0.05 σg IG 0.10 2.00
π G 0.62 0.10 σi IG 0.10 2.00
β̃ G 0.25 0.10 σr IG 0.10 2.00
l N 0.00 2.00 σp IG 0.10 2.00
γ N 0.40 0.10 σw IG 0.10 2.00

Notes: β̃ = 100(β−1 − 1). Para (1) and Para (2) correspond to the
mean and standard deviation of the Beta (B), Gamma (G), and
Normal (N) distributions and to the upper and lower bounds of
the support for the Uniform (U) distribution. For the Inv. Gamma
(IG) distribution, Para (1) and Para (2) refer to s and ν, where
p(σ|ν, s) ∝ σ−ν−1e−νs

2/2σ2

.
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A.2 Leeper-Plante-Traum Fiscal Policy Model

The log-linearized equilibrium conditions of the Leeper, Plante,
and Traum (2010) are given by:

ûbt −
γ(1 + h)

1− h Ĉt +
γh

1− hĈt−1 −
τ c

1 + τ c
τ̂ ct (A.46)

= R̂t −
τ c

1 + τ c
Etτ̂ ct+1 + Etubt+1 −

γ

1− hEtĈt+1

ûlt + (1 + κ)l̂t +
τ c

1 + τ c
τ̂ ct (A.47)

= Ŷt −
τ l

1 + τ l
τ̂ lt −

γ

1− hĈt +
γh

1− hĈt−1

q̂t = Etûbt+1 −
γ

1− hEtĈt+1 +
γ(1 + h)

1− h Ĉt (A.48)

− τ c

1 + τ c
Etτ ct+1 − ûbt −

γh

1− hĈt−1

+
τ c

1 + τ c
τ̂ ct + β(1− τk)α

Y

K
EtŶt+1

−β(1− τk)α
Y

K
K̂t − βτkα

Y

K
Etτ̂kt+1

−βδ1Etν̂t+1 + β(1− δ0)Etq̂t+1

Yt =
τk

1− τk τ̂
k
t + K̂t+1 + q̂t +

(
1 +

δ2
δ0

)
ν̂t (A.49)

0 =
1

s′′(1)
q̂t + (1− β)Ît + Ît−1 + βEtûit (A.50)

+βEtûit+1

Y Ŷt = CĈt +GĜt + IÎt (A.51)
K̂t = (1− δ0)Kt−1 + δ1ν̂t + δ0It (A.52)

B

β
R̂t−1 +

B

β
B̂t−1 +GĜt + ZẐt (A.53)

= BB̂t + τkαY (τ̂kt + Ŷt) + τ l(1− α)Y (τ̂ lt + Ŷt)

+τ cC(τ̂ ct + Ĉt)

Ŷt = ûat + ανt + αK̂t−1 + (1− α)L̂t. (A.54)

The fiscal policy rules and the law of motion of the exogenous
shock processes are provided in the main text (Section 6.3).
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Table A-3: LPT Model: Posterior Moments (Part 2)

Based on LPT Prior Based on Diff. Prior
Mean [5%, 95%] Int. Mean [5%, 95%] Int.

Endogenous Propagation Parameters
γ 2.5 [ 1.82, 3.35] 2.5 [ 1.81, 3.31]
κ 2.4 [ 1.70, 3.31] 2.5 [ 1.74, 3.37]
h 0.57 [ 0.46, 0.68] 0.57 [ 0.46, 0.67]
s′′ 7.0 [ 6.08, 7.98] 6.9 [ 6.06, 7.89]
δ2 0.25 [ 0.16, 0.39] 0.24 [ 0.16, 0.37]

Endogenous Propagation Parameters
ρa 0.96 [ 0.93, 0.98] 0.96 [ 0.93, 0.98]
ρb 0.65 [ 0.60, 0.69] 0.65 [ 0.60, 0.69]
ρl 0.98 [ 0.96, 1.00] 0.98 [ 0.96, 1.00]
ρi 0.48 [ 0.38, 0.57] 0.47 [ 0.37, 0.57]
ρg 0.96 [ 0.94, 0.98] 0.96 [ 0.94, 0.98]
ρtk 0.93 [ 0.89, 0.97] 0.94 [ 0.88, 0.98]
ρtl 0.98 [ 0.95, 1.00] 0.93 [ 0.86, 0.98]
ρtc 0.93 [ 0.89, 0.97] 0.97 [ 0.94, 0.99]
ρz 0.95 [ 0.91, 0.98] 0.95 [ 0.91, 0.98]
σb 7.2 [ 6.48, 8.02] 7.2 [ 6.47, 8.00]
σl 3.2 [ 2.55, 4.10] 3.2 [ 2.55, 4.08]
σi 5.7 [ 4.98, 6.47] 5.6 [ 4.98, 6.40]
σa 0.64 [ 0.59, 0.70] 0.64 [ 0.59, 0.70]
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Data Sources

B.1 Small-Scale New Keynesian DSGE Model

The data from the estimation comes from Lubik and Schorf-
heide (2006). Here we detail the construction of the extended
sample (2003:I to 2013:IV) for Section 8.6.

1. Per Capita Real Output Growth Take the level of real
gross domestic product, (FRED mnemonic ‘‘GDPC1’’),
call it GDPt. Take the quarterly average of the Civilian
Non-institutional Population (FREDmnemonic ‘‘CNP16OV’’
/ BLS series ‘‘LNS10000000’’), call it POPt. Then,

Per Capita Real Output Growth

= 100

[
ln

(
GDPt
POPt

)
− ln

(
GDPt−1

POPt−1

)]
.

2. Annualized Inflation. Take the CPI price level, (FRED
mnemonic ‘‘CPIAUCSL’’), call it CPIt. Then,

Annualized Inflation = 400 ln

(
CPIt
CPIt−1

)
.

3. Federal Funds Rate. Take the effective federal funds
rate (FREDmnemonic ‘‘FEDFUNDS’’), call it FFRt. Then,

Federal Funds Rate = FFRt.

B.2 Smets-Wouters Model

The data cover 1966:Q1 to 2004:Q4. The construction follows
that of Smets and Wouters (2007). Output data come from the
NIPA; other sources are noted in the exposition.
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1. Per Capita Real Output Growth. Take the level of real
gross domestic product (FREDmnemonic ‘‘GDPC1’’), call
it GDPt. Take the quarterly average of the Civilian Non-
institutional Population (FRED mnemonic
‘‘CNP16OV’’ / BLS series ‘‘LNS10000000’’), normalized
so that its 1992Q3 value is 1, call it POPt. Then,

Per Capita Real Output Growth

= 100

[
ln

(
GDPt
POPt

)
− ln

(
GDPt−1

POPt−1

)]
.

2. Per Capita Real Consumption Growth. Take the level
of personal consumption expenditures (FREDmnemonic
‘‘PCEC’’), call it CONSt. Take the level of the GDP price
deflator (FRED mnemonic ‘‘GDPDEF’’), call it GDPPt.
Then,

Per Capita Real Consumption Growth

= 100

[
ln

(
CONSt

GDPPtPOPt

)
− ln

(
CONSt−1

GDPPt−1POPt−1

)]
.

3. Per Capita Real Investment Growth. Take the level of
fixed private investment (FRED mnemonic ‘‘FPI’’), call it
INVt. Then,

Per Capita Real Investment Growth

= 100

[
ln

(
INVt

GDPPtPOPt

)
− ln

(
INVt−1

GDPPt−1POPt−1

)]
.

4. Per Capita Real Wage Growth. Take the BLS mea-
sure of compensation per hour for the nonfarm busi-
ness sector (FRED mnemonic ‘‘COMPNFB’’ / BLS series
‘‘PRS85006103’’), call it Wt. Then,

Per Capita Real Wage Growth

= 100

[
ln

(
Wt

GDPPt

)
− ln

(
Wt−1

GDPPt−1

)]
.
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5. Per Capita Hours Index. Take the index of average
weekly nonfarm business hours (FREDmnemonic / BLS
series ‘‘PRS85006023’’), call itHOURSt. Take the num-
ber of employed civilians (FRED mnemonic ‘‘CE16OV’’),
normalized so that its 1992Q3 value is 1, call it EMPt.
Then,

Per Capita Hours = 100 ln

(
HOURStEMPt

POPt

)
.

The series is then demeaned.

6. Inflation. Take the GDP price deflator, then,

Inflation = 100 ln

(
GDPPt
GDPPt−1

)
.

7. Federal Funds Rate. Take the effective federal funds
rate (FREDmnemonic ‘‘FEDFUNDS’’), call it FFRt. Then,

Federal Funds Rate = FFRt/4.

B.3 Leeper-Plante-Traum Fiscal Policy Model

The data cover 1960:Q1 to 2008:Q1. The construction fol-
lows that of Leeper, Plante, and Traum (2010). Output data
come from the NIPA; other sources are noted in the exposi-
tion. Each series has a (seperate) linear trend removed prior
to estimation.

1. Real Investment. Take nominal personal consump-
tion on durable goods (FRED mnemonic ‘‘PCDG’’), call
it PCEDt and deflate it by the GDP deflator for personal
consumption (FREDmnemonic ‘‘DPCERD3Q086SBEA’’),
call it Pt. Take the number of employed civilians (FRED
mnemonic ‘‘CE16OV’’), normalized so that its 1992Q3
value is 1, call it POPt. Then,

Real Investment = 100 ln

(
PCEDt/Pt
POPt

)
.
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2. Real Consumption.Take nominal personal consump-
tion on durable goods (FRED mnemonic ‘‘PCNG’’), call
it PCEt and deflate it by the GDP deflator for personal
consumption (FREDmnemonic ‘‘DPCERD3Q086SBEA’’),
call it Pt. Take the number of employed civilians (FRED
mnemonic ‘‘CE16OV’’), normalized so that its 1992Q3
value is 1, call it POPt. Then,

Real Consumption = 100 ln

(
PCEt/Pt
POPt

)
.

3. Real Hours Worked. Take the index of average weekly
nonfarm business hours (FRED mnemonic / BLS series
‘‘PRS85006023’’), call it HOURSt. Take the number of
employed civilians (FRED mnemonic ‘‘CE16OV’’), nor-
malized so that its 1992Q3 value is 1, call it EMPt.
Then,

Real Hours Worked = 100 ln

(
HOURStEMPt

POPt

)
.

4. Real Consumption Tax Revenues. Take federal goven-
ment current tax receipts from production and imports
(FREDmnemonic ‘‘W007RC1Q027SBEA’’), call itCTAXt.
Then,

Real Consumption Tax Revenues

= 100 ln

(
CTAXt/Pt
POPt

)
.

5. Real Labor Tax Revenues. Take personal current tax
revenues (FRED mnemonic ‘‘A074RC1Q027SBEA’’), call
it ITt, take wage and salary accruals (FRED mnemonic
‘‘WASCUR’’), call it Wt, and take proprietors’ incomes
(FRED mnemonic ‘‘A04RC1Q027SBEA’’), call it PRIt.
Take rental income (FRED mnemoic ‘‘RENTIN’’), call it
RENTt, take corporate profits (FRED mnemonic
‘‘CPROFIT’’), call it PROFt, and take interest income
(FRED mnemonic ‘‘W255RC1Q027SBEA’’), call it INTt.
Define capital income, CIt, as

CIt = RENTt + PROFT + INTt + PRI/2.
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Define the average personal income tax rate as

τpt =
ITt

Wt + PRIt/2 + CIt.

Take contributions for government social insurance
(FRED mnemonic ‘‘W780RC1Q027SBEA’’), call it CSIt,
and take compensation for employees (FRED mnemonic
‘‘A57RC1Q027SBEA’’), call it ECt. Define the average
labor income tax rate as

τ lt =
τpt (Wt + PRIt) + CSIt

ECt + PRIt/2
.

Take the tax base BASEt = PCEt + PCEDt. Then,

Real Labor Tax Revenues = 100 ln

(
τ ltBASEt/Pt

POPt

)
.

6. Real Capital Tax Revenues. Take taxes on corporate
income (FRED mnemonic ‘‘B075RC1Q027SBEA’’), call it
CTt, and take property taxes (FRED mnemonic
‘‘B249RC1Q027SBEA’’), and call it PTt. Define the av-
erage capital income tax rate as

τk =
τpCIt + CTt
CIt + PTt

.

Then,

Real Capital Tax Revenues = 100 ln

(
τkt BASEt/Pt

POPt

)
.

7. Real Government Expenditure. Take government con-
sumption expenditure (FRED mnemonic ‘‘FGEXPND’’),
call it GCt. Take government gross investment (FRED
mnemonic ‘‘A787RC1Q027SBEA’’), call it GIt. Take gov-
ernment net purchases of non-produced assets, (FRED
mnemonic ‘‘AD08RC1A027NBEA’’), call it GPt. Finally,
take government consumption of fixed capital (FRED
mnemonic ‘‘A918RC1Q027SBEA’’), call it GCKt. Define
Gt = GCt +GIt +GPt −GCKt. Then,

Real Government Expenditure = 100 ln

(
Gt/Pt
POPt

)
.
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8. Real Government Transfers. Take current transfer pay-
ments (FRED mnemonic ‘‘A084RC1Q027SBEA’’), call it
TRANSPAYt, and take current transfer receipts (FRED
mnemonic ‘‘A577RC1Q027SBEA’’), call it TRANSRECt.
Define net current transfers as

CURRTRANSt = TRANSPAYt − TRANSRECt.
Take capital transfer payments (FRED mnemonic
‘‘W069RC1Q027SBEA’’) call it CAPTRANSPAYt and
take capital transfer receipts (FRED mnemonic
‘‘B232RC1Q027SBEA’’), call it CAPTRANSRECt. De-
fine net capital transfers as

CAPTRANSt

= CAPTRANSPAYt − CAPTRANSRECt.
Take current tax receipts (FRED mnemonic
‘‘W006RC1Q027SBEA’’), call it TAXRECt, take income
receipts on assets (FRED mnemonic
‘‘W210RC1Q027SBEA’’), call it INCRECt, and take the
current surplus of government enterprises (FRED
mnemonic ‘‘A108RC1Q027SBEA’’), call itGOV SRPt. De-
fine the total tax revenue, Tt, as the sum on consump-
tion, labor, and capital tax revenues. Define the tax
residual as

TAXRESIDt = TAXREC + INCREC

+CSIt +GOV SRPt − Tt.
Define

TRt = CURRTRANSt + CAPTRANSt

−TAXRESIDt.

Then

Real Government Transfers = 100 ln

(
TRt/Pt
POPt

)
.

9. Real Government Debt. Take interest payments (FRED
mnemonic ‘‘A091RC1Q027SBEA’’), call it INTPAYt. De-
fine net borrowing as

NBt = Gt + INTt + TRt − Tt.
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Take the adjusted monetary base (FRED mnemonic
‘‘AMBSL’’), take quarterly averages, then call itMt. Then
define government debt—starting in 1947—as

Bt = NBt −∆Mt +Bt−1.

The value B1947Q1 is from Cox and Hirschhorn (1983).
Then,

Real Government Debt = 100 ln

(
Bt/Pt
POPt

)
.
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Künsch, H. R. (2005): ‘‘Recursive Monte Carlo Filters: Al-
gorithms and Theoretical Analysis,’’ Annals of Statistics,
33(5), 1983–2021.

Kydland, F. E., and E. C. Prescott (1982): ‘‘Time to Build and
Aggregate Fluctuations,’’ Econometrica, 50(6), 1345–1370.

Lancaster, T. (2004): An Introduction to Modern Bayesian
Econometrics. Blackwell Publishing.

Leamer, E. E. (1978): Specification Searches. John Wiley &
Sons.

Leeper, E. M., M. Plante, and N. Traum (2010): ‘‘Dynamics of
Fiscaling Financing in the United States,’’ Journal of Econo-
metrics, 156, 304–321.

Liu, J. S. (2001): Monte Carlo Strategies in Scientific Comput-
ing. Springer Verlag.

Liu, J. S., and R. Chen (1998): ‘‘Sequential Monte Carlo Meth-
ods for Dynamic Systems,’’ Journal of the American Statis-
tical Association, 93(443), 1032–1044.

Liu, J. S., R. Chen, and T. Logvinenko (2001): ‘‘A Theoretical
Franework for Sequential Importance Sampling with Re-
sampling,’’ in Sequential Monte Carlo Methods in Practice,
ed. by A. Doucet, N. de Freitas, and N. Gordon, pp. 225–246.
Springer Verlag.

7 16:11:53 UTC



266 • Bibliography

Liu, Z., D. F. Waggoner, and T. Zha (2011): ‘‘Sources of
Macroeconomic Fluctuations: A Regime-switching DSGE
Approach,’’ Quantitative Economics, 2, 251–301.

Lubik, T., and F. Schorfheide (2003): ‘‘Computing Sunspot
Equilibria in Linear Rational Expectations Models,’’ Jour-
nal of Economic Dynamics and Control, 28(2), 273–285.

(2006): ‘‘A Bayesian Look at the New Open Macroeco-
nomics,’’ NBER Macroeconomics Annual 2005.

Maliar, L., and S. Maliar (2015): ‘‘Merging Simulation and
Projection Approaches to Solve High-Dimensional Problems
with an Application to a New Keynesian Model,’’ Quantita-
tive Economics, 6(1), 1–47.

Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller,
and E. Teller (1953): ‘‘Equations of State Calculations by
Fast Computing Machines,’’ Journal of Chemical Physics,
21, 1087–1091.

Min, C.-K., and A. Zellner (1993): ‘‘Bayesian and Non-
Bayesian Methods for Combining Models and Forecasts
with Applications to Forecasting International Growth
Rates,’’ Journal of Econometrics, 56(1-2), 89–118.

Müller, U. (2011): ‘‘Measuring Prior Sensitivity and Prior
Informativeness in Large Bayesian Models,’’ Manuscript,
Princeton University.

Murray, L. M., A. Lee, and P. E. Jacob (2014): ‘‘Parallel
Resampling in the Particle Filter,’’ arXiv Working Paper,
1301.4019v2.

Neal, R. (2010): ‘‘MCMC using Hamiltonian Dynamics,’’ in
Handbook of Markov Chain Monte Carlo, ed. by S. Brooks,
A. Gelman, G. Jones, and X.-L. Meng, pp. 113–162. Chap-
man & Hall, CRC Press.

Otrok, C. (2001): ‘‘On Measuring the Welfare Costs of Busi-
ness Cycles,’’ Journal of Monetary Economics, 47(1), 61–92.

7 16:11:53 UTC



Bibliography • 267

Phillips, D., and A. Smith (1994): ‘‘Bayesian Model Comparison
via Jump Diffusions,’’ Technical Report: Imperial College of
Science, Technology, and Medicine, London, 94-02.

Pitt, M. K., and N. Shephard (1999): ‘‘Filtering via Simulation:
Auxiliary Particle Filters,’’ Journal of the American Statisti-
cal Association, 94(446), 590–599.

Pitt, M. K., R. d. S. Silva, P. Giordani, and R. Kohn (2012):
‘‘On Some Properties of Markov Chain Monte Carlo Sim-
ulation Methods Based on the Particle Filter,’’ Journal of
Econometrics, 171, 134–151.

Qi, Y., and T. P. Minka (2002): ‘‘Hessian-based Markov Chain
Monte-Carlo Algorithms,’’ Unpublished Manuscript.

Rı́os-Rull, J.-V., F. Schorfheide, C. Fuentes-Albero,
M. Kryshko, and R. Santaeulalia-Llopis (2012): ‘‘Methods
versus Substance: Measuring the Effects of Technology
Shocks,’’ Journal of Monetary Economics, 59(8), 826–846.

Robert, C. P. (1994): The Bayesian Choice. Springer Verlag.

Robert, C. P., and G. Casella (2004): Monte Carlo Statistical
Methods. Springer.

Roberts, G., and J. S. Rosenthal (1998): ‘‘Markov-Chain
Monte Carlo: Some Practical Implications of Theoretical Re-
sults,’’ Canadian Journal of Statistics, 25(1), 5–20.

Roberts, G., and O. Stramer (2002): ‘‘Langevin Diffusions and
Metropolis-Hastings Algorithms,’’ Methodology and Com-
puting in Applied Probability, 4, 337–357.

Roberts, G. O., A. Gelman, and W. R. Gilks (1997): ‘‘Weak Con-
vergence and Optimal Scaling of Random Walk Metropolis
Algorithms,’’ Annals of Applied Probability, 7(1), 110–120.

Roberts, G. O., and S. Sahu (1997): ‘‘Updating Schemes, Cor-
relation Structure, Blocking and Parameterization for the
Gibbs Sampler,’’ Journal of the Royal Statistical Society. Se-
ries B (Methodological), 59(2), 291–317.

7 16:11:53 UTC



268 • Bibliography

Roberts, G. O., and R. Tweedie (1992): ‘‘Exponential Conver-
gence of Langevin Diffusions and Their Discrete Approxi-
mations,’’ Bernoulli, 2, 341–363.

Rotemberg, J. J., and M. Woodford (1997): ‘‘An Optimization-
Based Econometric Framework for the Evaluation of Mon-
etary Policy,’’ in NBER Macroeconomics Annual 1997, ed. by
B. S. Bernanke, and J. J. Rotemberg. MIT Press.

Sargent, T. J. (1989): ‘‘Two Models of Measurements and
the Investment Accelerator,’’ Journal of Political Economy,
97(2), 251–287.
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distribution, 39
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monetary policy
rule, 7, 16, 27, 76, 78,

169, 188
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non-existence, 17
non-explosive solutions, 17
non-sample information, 24
nonlinear filter, xix, 187, 206
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approximately

conditionally
optimal, 187
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predictive distribution,
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expected loss
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quantile regression, 38, 145
quantiles, see posterior

quantiles

real business cycle model, 3,
150

reciprocal importance
sampling, 93

reduced-form parameters, 79
rejection probability, 55
rejection rate, 68
resample-move step, 195
resampling, 102, 104, 106

ancestor, 115
multinomial, 114
offspring, 115
residual, 118
stratified, 116
systematic, 118

reversibility, 55
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run time, 48, 88, 138, 147,
155, 229, 239

scaling factor, 69, 113
Schur decomposition, 17
selection step, 103, 106, 233

tuning, 112
sequential Monte Carlo

(SMC), 100, see
also algorithm

set identification, 43
state variable, 15, 79, 130,

141, 164, 186, 192,
195, 213

endogenous, 165
exogenous, 165
redundant, 217

state-space model, 15, 79,
see also DSGE
model solution,
state-space
representation

state-transition equation, 20,
172

steady state, 9, 20, 22, 72,
76, 142, 166

steady-state-related
parameters, 22

structural parameters, 14
sunspot shock, 19

target distribution, 52, 59,
61, 86, 104

target inflation, 7, 168, 188
tax shock, see fiscal policy

shock
Taylor rule, see monetary

policy rule
technology shock, 8, 75, 132,

135
tempering, 231, 237
transfer shock, see fiscal

policy shock
transversity condition, 17
tuning parameter, 73, 81,

85, 87, 95, 102,
111, 125

utility maximization, 7

vector autoregression, 11,
15, 19

wage rigidity, 11
wage stickiness, see wage

rigidity
Wunder, v

Zauberlehrling, v
zero lower bound (ZLB), 169
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