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Content

1 A lot on sunspots

2 A simple way to get policy rules in a linearized framework

• and an even simpler way based on time iteration
(an idea of Pontus Rendahl)
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Introduction

• What do we mean with non-unique solutions?

• multiple solution versus multiple steady states

• What are sunspots?

• Are models with sunspots scientific?
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Terminology

• Definitions are very clear

• (use in practice can be sloppy)

Model:

H(p+1, p) = 0

Solution:
p+1 = f (p)
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Unique solution & multiple steady states
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Multiple solutions & unique (non-zero) steady state
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Multiple steady states & sometimes multiple solutions
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positive expectations

negative expectations

From Den Haan (2007)
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Large sunspots (around 2000 at the peak)
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Past Sun Spot Cycles

Sun spots even had a "Great Moderation"
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Current cycle (at peak again)
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Cute NASA video

• https://www.youtube.com/watch?v=UD5VViT08ME
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Sunspots in economics

• Definition: a solution is a sunspot solution if it depends on a
stochastic variable from outside system

• Model:

0 = EH(pt+1, pt, dt+1, dt)

dt : exogenous random variable
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Sunspots in economics (Cass & Shell 1983)

• Non-sunspot solution:

pt = f (pt−1, pt−2, · · · , dt, dt−1, · · · )

• Sunspot:

pt = f (pt−1, pt−2, · · · , dt, dt−1, · · · , st)

st : random variable with E [st+1] = 0

13 / 54



Multiplicity Getting started General Derivation Examples Time iteration and linear solutions

Origin of sunspots in economics

• William Stanley Jevons (1835-82) explored empirical
relationship between sunspot activity (that is, the real thing!!!)
and the price of corn.

• Fortunately, Jevons had some other contributions as well, such
as "Jevons Paradox". His work is considered to be the start of
mathematical economics.
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Jevons Paradox
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Sunspots and science

Why are sunspots attractive

• sunspots: st matters, just because agents believe this

• self-fulfilling expectations don’t seem that unreasonable

• sunspots provide many sources of shocks

• number of sizable fundamental shocks small
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Sunspots and science

Why are sunspots not so attractive

• Purpose of science is to come up with predictions

• If there is one sunspot solution, there are zillion others as well

• Support for the conditions that make them happen not
overwhelming

• you need sufficiently large increasing returns to scale or
externality
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Overview

1 Getting started

• simple examples

2 General derivation of Blanchard-Kahn solution

• When unique solution?
• When multiple solution?
• When no (stable) solution?

3 When do sunspots occur?

4 Numerical algorithms and sunspots
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Getting started

•

Model: yt = ρyt−1
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Getting started

•

Model: yt = ρyt−1

• infinite number of solutions, independent of the value of ρ
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Getting started

•

Model:
yt+1 = ρyt

y0 is given
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Getting started

•

Model:
yt+1 = ρyt

y0 is given

• unique solution, independent of the value of ρ
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Getting started

• Blanchard-Kahn conditions apply to models that add as a
requirement that the series do not explode

yt+1 = ρyt

Model:
yt cannot explode

• ρ > 1: unique solution, namely yt = 0 for all t

• ρ < 1: many solutions

• ρ = 1: many solutions

• be careful with ρ = 1, uncertainty matters
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State-space representation

Ayt+1 + Byt = εt+1

E [εt+1|It] = 0

yt :
is an n× 1 vector
m ≤ n elements are not determined

some elements of εt+1 are not exogenous shocks but prediction errors
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Neoclassical growth model and state space representation

(
exp(zt)kα

t−1 + (1− δ)kt−1 − kt

)−γ
=

E

[
β (exp(zt+1)k

α
t + (1− δ)kt − kt+1)

−γ

×
(

α exp (zt+1) kα−1
t + 1− δ

)
∣∣∣∣∣

It

]

or equivalently without E [·]

(
exp(zt)kα

t−1 + (1− δ)kt−1 − kt

)−γ
=

β (exp(zt+1)k
α
t + (1− δ)kt − kt+1)

−γ

×
(

α exp (zt+1) kα−1
t + 1− δ

)

+eE,t+1
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Neoclassical growth model and state space representation

Linearized model:

kt+1 = a1kt + a2kt−1 + a3zt+1 + a4zt + eE,t+1

zt+1 = ρzt + ez,t+1

k0 is given

• kt is end-of-period t capital

• =⇒ kt is chosen in t
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Neoclassical growth model and state space representation




1 0 -a3

0 1 0
0 0 1








kt+1

kt

zt+1



+




-a1 -a2 -a4

-1 0 0
0 0 -ρ








kt

kt−1

zt



 =




eE,t+1

0
ez,t+1




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Dynamics of the state-space system

Ayt+1 + Byt = εt+1

yt+1 = −A−1Byt +A−1εt+1

= Dyt +A−1εt+1

Thus

yt+1 = Dty1 +
t

∑
l=1

Dt−lA−1εl+1
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Jordan matrix decomposition

D = PΛP−1

• Λ is a diagonal matrix with the eigen values of D

• without loss of generality assume that |λ1| ≥ |λ2| ≥ · · · |λn|

Let

P−1 =






p̃1
...

p̃n






where p̃i is a (1× n) vector
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Dynamics of the state-space system

yt+1 = Dty1 +
t

∑
l=1

Dt−lA−1εl+1

= PΛtP−1y1 +
t

∑
l=1

PΛt−lP−1A−1εl+1
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Dynamics of the state-space system

multiplying dynamic state-space system with P−1 gives

P−1yt+1 = ΛtP−1y1 +
t

∑
l=1

Λt−lP−1A−1εl+1

or

p̃iyt+1 = λt
i p̃iy1 +

t

∑
l=1

λt−l
i p̃iA

−1εl+1

recall that yt is n× 1 and p̃i is 1× n. Thus, p̃iyt is a scalar
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Model

1 p̃iyt+1 = λt
i p̃iy1 +∑

t
l=1 λt−l

i p̃iA
−1εl+1

2 E [εt+1|It] = 0

3 m elements of y1 are not determined

4 yt cannot explode
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Reasons for multiplicity

1 There are free elements in y1

2 The only constraint on eE,t+1 is that it is a prediction error.

• This leaves lots of freedom

31 / 54



Multiplicity Getting started General Derivation Examples Time iteration and linear solutions

Eigen values and multiplicity

• Suppose that |λ1| > 1

• To avoid explosive behavior it must be the case that

1 p̃1y1 = 0 and

2 p̃1A−1εl = 0 ∀l
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How to think about #1?

p̃1y1 = 0

• Simply an additional equation to pin down some of the free
elements

• Much better: This is the policy rule in the first period
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How to think about #1?

p̃1y1 = 0

Neoclassical growth model:

• y1 = [k1, k0, z1]
T

• |λ1| > 1, |λ2| < 1, λ3 = ρ < 1

• p̃1y1 pins down k1 as a function of k0 and z1

• this is the policy function in the first period
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How to think about #2?

p̃1A−1εl = 0 ∀l

• This pins down eE,t as a function of εz,t

• That is, the prediction error must be a function of the
structural shock, εz,t, and cannot be a function of other shocks,

• i.e., there are no sunspots
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How to think about #2?

p̃1A−1εl = 0 ∀l

Neoclassical growth model:

• p̃1A−1εt says that the prediction error eE,t of period t is a fixed
function of the innovation in period t of the exogenous process,
ez,t
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How to think about #1 combined with #2?

p̃1yt = 0 ∀t

• Without sunspots

• i.e. with p̃1A−1εt = 0 ∀t

• kt is pinned down by kt−1 and zt in every period.
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Blanchard-Kahn conditions

• Uniqueness: For every free element in y1, you need one λi > 1

• Multiplicity: Not enough eigenvalues larger than one

• No stable solution: Too many eigenvalues larger than one
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How come this is so simple?
• In practice, it is easy to get

Ayt+1 + Byt = εt+1

• How about the next step?

yt+1 = −A−1Byt +A−1εt+1

• Bad news: A is often not invertible

• Good news: Same set of results can be derived

• Schur decomposition (See Klein 2000 and Soderlind 1999)
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How to check in Dynare

Use the following command after the model & initial conditions part

check;
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Example - x predetermined - 1st order

xt−1 = φxt +Et [zt+1]

zt = 0.9zt−1 + εt

• |φ| > 1 : Unique stable fixed point

• |φ| < 1 : No stable solutions; too many eigenvalues > 1
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Example - x predetermined - 1st order

Corresponding state space system:

[
φ 1
0 1

] [
xt

zt+1

]
+

[
−1 0
0 0.9

] [
xt−1

zt

]
=

[
0

εt+1

]

Λ =

[
1/φ 0

0 0.9

]

• No sunspots, since Et [zt+1] is the only expectation.

• No multiplicity because of free initial conditions either one
starting value for x given.

• So we just need stability =⇒ |φ| > 1
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Example - x predetermined - 2nd order

φ2xt−1 = Et [φ1xt + xt+1 + zt+1]

zt = 0.9zt−1 + εt

• φ1 = −2.25, φ2 = −0.5 : Unique stable fixed point

(1+ φ1L− φ2L2)xt = (1− 2L)(1− 1
4L)xt

• φ1 = −3.5, φ2 = −3 : No stable solution; too many
eigenvalues > 1
(1+ φ1L− φ2L2)xt = (1− 2L)(1− 1.5L)xt

• φ1 = −1, φ2 = −0.25 : Multiple stable solutions; too few
eigenvalues > 1
(1+ φ1L− φ2L2)xt = (1− 0.5L)(1− 0.5L)xt
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Example - x predetermined - 2nd order

Corresponding state space system:




1 φ1 1
0 1 0
0 0 1








xt+1

xt

zt+1



+




0 −φ2 0
−1 0 0
0 0 −0.9








xt

xt−1

zt



 =




eE,t+

0
εt

Λ =




2 0 0
0 0.9 0
0 0 0.25





• The Λ matrix is for the first numerical example (φ1 = −2.25,
φ2 = −0.5)
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Example - x not predetermined - 1st order

xt = Et [φxt+1 + zt+1]

zt = 0.9zt−1 + εt

• |φ| < 1 : Unique stable fixed point

• |φ| > 1 : Multiple stable solutions; too few eigenvalues > 1
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Example - x not predetermined - 1st order

Corresponding state space system:

[
φ 1
0 1

] [
xt+1

zt+1

]
+

[
−1 0
0 0.9

] [
xt

zt

]
=

[
eE,t+1

εt+1

]

Λ =

[
φ 0
0 0.9

]

• No sunspots, since Et [zt+1] is the only expectation.

• No multiplicity because of free initial conditions either one
starting value for x given.

• So we just need stability =⇒ |φ| > 1
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Solutions to linear systems

1 The analysis outlined above
(requires A to be invertible)

2 Generalized version of analysis above
(see Klein 2000)

3 Apply time iteration to linearized system
(I learned this from Pontus Rendahl)
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Solutions to linear systems

Model:
Γ2kt+1 + Γ1kt + Γ0kt−1 = 0

or [
Γ2 0
0 1

] [
kt+1

kt

]
+

[
Γ1 Γ0

−1 0

] [
kt

kt−1

]
= 0
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Standard approaches

1 The method outlined above
=⇒ a unique solution of the form

kt = akt−1

if BK conditions are satisfied

2 Impose that the solution is of the form

kt = akt−1

and solve for a from

Γ2a2kt−1 + Γ1akt−1 + Γ0kt−1 = 0 ∀kt−1
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Time iteration

• Impose that the solution is of the form

kt = akt−1

• Use time iteration scheme, starting with a[1]

• Recall that time iteration means using the guess for tomorrows
behavior and then solve for todays behavior

(This simple procedure was pointed out to me by Pontus Rendahl)
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Time iteration

• Follow the following iteration scheme, starting with a[1]

• Use a[i] to describe next period’s behavior. That is,

Γ2a[i]kt + Γ1kt + Γ0kt−1 = 0

(note the difference with last approach on previous slide)

• Obtain a[i+1] from

(Γ2a[i] + Γ1)kt + Γ0kt−1 = 0

kt = −
(

Γ2a[i] + Γ1

)−1
Γ0kt−1

a[i+1] = −
(

Γ2a[i] + Γ1

)−1
Γ0
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Advantages of time iteration

• It is simple even if the "A matrix" is not invertible.
(the inversion required by time iteration seems less problematic
in practice)

• Since time iteration is linked to value function iteration, it has
nice convergence properties
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Example

kt+1 − 2kt + 0.75kt−1 = 0

• The two solutions are

kt = 0.5kt−1 & kt = 1.5kt−1

• Time iteration on kt = a[i]kt−1 converges to stable solution for
all initial values of a[i] except 1.5.
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Overview

• Two PEA algorithms

• Explaining stochastic simulations PEA

• Advantages and disadvantages

• Improvements of Maliar, Maliar & Judd

• Extensions

• learning
• combining with perturbation
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Model

c−ν
t = Et

[
βc−ν

t+1

(
αzt+1kα−1

t+1 + 1− δ
)]

ct + kt+1 = ztk
α
t + (1− δ) kt

ln(zt+1) = ρ ln (zt) + εt+1

εt+1 ∼ N(0, σ2)

k1, z1 given

kt is beginning-of-period t capital stock
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Two types of PEA

1 Standard projections algorithm:

1 parameterize Et [·] with Pn(kt, zt; ηn)
2 solve ct from

ct = (Pn(kt, zt; ηn))
−1/ν

and kt+1 from budget constraint

2 Stochastic (simulations) PEA
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Stochastic PEA based on simulations

1 Simulate {zt}
T
t=1

2 Let η1
n be initial guess for ηn
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Stochastic PEA

3 Iterate until ηi
n converges using following scheme

1 Generate {ct, kt+1}
T
t=1 using

c−ν
t = Pn(kt, zt; ηi

n)

kt+1 = ztk
α
t + (1− δ) kt − ct

2 Generate {yt+1}
T−1
t=1 using

yt+1 = βc−ν
t+1

(
αzt+1kα−1

t+1 + 1− δ
)

3 Let

η̂i
n = arg min

η

T

∑
t=Tbegin

(yt+1 − Pn(kt, zt; η))2

T

4 Update using

ηi+1
n = ωη̂i

n + (1−ω) ηi
n with 0 < ω ≤ 1
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Stochastic PEA

• Tbegin >> 1 (say 500 or 1,000)

• ensures possible bad period 1 values don’t matter

• ω < 1 improves stability

• ω is called "dampening" parameter
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Stochastic PEA
• Idea of regression:

yt+1 ≈ Pn(kt, zt; η) + ut+1,

• ut+1 is a prediction error =⇒ ut+1 is orthogonal to regressors

• Suppose

Pn(kt, zt; η) = exp (a0 + a1 ln kt + a2 ln zt) .

• You are not allowed to run the linear regression

ln yt+1 = a0 + a1 ln kt + a2 ln zt + ũt+1

Why not?
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PEA & RE

• Suppose η∗n is the fixed point we are looking for

• So with η∗n we get best predictor of yt+1

• Does this mean that solution is a rational expectations
equilibrium?



What is it? Pros and Cons Improvements Extensions

Disadvantages of stoch. sim. PEA

• The inverse of X′X may be hard to calculate for higher-order
approximations

• Regression points are clustered =⇒ low precission

• recall that even equidistant nodes is not enough for uniform
convergence
"nodes" are even less spread out with stochastic PEA)
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Disadvantages of stochastic PEA

• Projection step has sampling error

• this disappears at slow rate (especially with serial correlation)
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Advantages of stoch. sim. PEA

• Regression points are clustered

=⇒ better fit where it matters IF functional form is poor

(with good functional form it is better to spread out points)
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Advantages of stoch. sim. PEA

• Grid: you may include impossible points

Simulation: model iself tells you which nodes to include

• (approximation also important and away from fixed point you
may still get in weird places of the state space)
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Odd shapes ergodic set in matching model
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Improvements proposed by Maliar, Maliar

& Judd

1 Use flexibility given to you

2 Use Ê [yt+1] instead of yt+1 as regressand

• Ê [yt+1] is numerical approximation of E[yt+1]

• even with poor approximation the results improve !!!

3 Improve regression step



What is it? Pros and Cons Improvements Extensions

Use flexibility
Many E[]’s to approximate.

1 Standard approach:

c−ν
t = Et

[
βc−v

t+1αβc−ν
t+1

(
αzt+1kα−1

t+1 + 1− δ
)]

2 Alternative:

kt+1 = Et

[
kt+1βαβ

(
ct+1

ct

)−ν (
αzt+1kα−1

t+1 + 1− δ
)]

• Such transformations can make computations easier, but can
also affect stability of algorithm (for better or worse)
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E[y] instead of y as regressor

• E[yt+1] = E[f (εt+1)] with εt+1 ∼ N(0, σ2)

=⇒ Hermite Gaussian quadrature can be used

(MMJ: using Ê [yt+1] calculated using one node is better than
using yt+1)

• Key thing to remember: sampling uncertainty is hard to get rid
off
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E[y] instead of y as regressor

• Suppose:

yt+1 = exp (ao + a1 ln kt + a2 ln zt) + ut+1

ut+1 = prediction error

• Then you cannot estimate coefficients using LS based on

ln (yt+1) = ao + a1 ln kt + a2 ln zt + u∗t+1

• You have to use non-linear least squares
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E[y] instead of y as regressor

• Suppose:

E [yt+1] = exp (ao + a1 ln kt + a2 ln zt) + ūt+1

ūt+1 = numerical error

• Then you can estimate coefficients using LS based on

lnE [yt+1] = ao + a1 ln kt + a2 ln zt + ū∗t+1

• Big practical advantage
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Simple ways to improve regression

1 Hermite polynomials and scaling

2 LS-Singular Value Decomposition

3 Principal components



What is it? Pros and Cons Improvements Extensions

Simple ways to improve regression

• The main underlying problem is that X′X is ill conditioned
which makes it difficult to calculate X′X

• This problem is reduced by

1 Scaling so that each variable has zero mean and unit variance

2 Hermite polynomials
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Hermite polynomials; Definition

Pn(x) =
n

∑
j=0

ajHj(x)

where the basis functions, Hj(x), satisfy

E
[
Hi(x)Hj (x)

]
= 0 for i 6= j

if x ∼ N(0, 1)
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Hermite polynomials; Construction

H0(x) = 1

H1(x) = x

Hm+1(x) = xHm(x)−mHm−1(x) for j > 1

This gives

H0(x) = 1

H1(x) = x

H2(x) = x2 − 1

H3(x) = x3 − 3x

H4(x) = x4 − 6x2 + 3

H5(x) = x5 − 10x3 + 15x
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One tricky aspect about scaling

Suppose one of the explanatory variables is

xt =
kt −MT

ST

MT =
T

∑
t=1

kt/T & ST =

(
T

∑
t=1

(kt −M(kt)
2 /T

)1/2
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One tricky aspect about scaling

• =⇒ each iteration the explanatory variables change (since M
and S change)

• =⇒ taking a weighted average of old and new coefficient is odd

• I found that convergence properties can be quite bad

• In principle you can avoid problem by rewriting polynomial,
but that is tedious for higher-order

• So better to keep MT and ST fixed across iterations
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Two graphs say it all; regular polynomials
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What is it? Pros and Cons Improvements Extensions

Two graphs say it all; Hermite polynomials

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-20

-15

-10

-5

0

5

10

15

20



What is it? Pros and Cons Improvements Extensions

LS-Singular Values Decomposition

β̂ =
(
X′X

)−1
X′Y = VS−1U′Y

• Goal: avoid calculating X′X explicitly

• SVD of the (T× n) matrix X :

X = USV′

U : (T× n) orthogonal matrix

S : (n× n) diagonal matrix with singular values s1 ≥ s2 ≥ · ·

V : (n× n) orthogonal matrix

• si is the sqrt of ith eigen value
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LS-Singular Values Decomposition

In Matlab
[U,S,V]=svd(X,0);
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Principal components

• With many explanatory variables use principle components

• SVD: X = USV′ where X is demeaned
• Principle components: Z = XV
• Properties Zi : mean zero and variance s2

i

• Idea: exclude principle components corresponding to lower
eigenvalues

• But check with how much R2 drops
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PEA and learning

• Traditional algorithm:

• simulate an economy using belief ηi
n

• formulate new belief ηi+1
n

• simulate same economy using belief ηi+1
n
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PEA and learning

• Alternative algorithm to find fixed point

• simulate T observations using belief ηT−1
n

• formulate new belief ηT
n

• generate 1 more observation
• use T+ 1 observations to formulate new belief ηT+1

• continue

• Convergence properties can be problematic
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PEA and learning

• Modification of alternative algorithm is economically interesting

• simulate T observations using belief ηT−1
n

• use τ observations to formulate new belief ηT
n

• generate 1 more observation
• use last τ observations to formulate new belief ηT+1

• continue

• Beliefs are based on limited past =⇒ time-varying beliefs
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PEA and learning

• Suppose the model has different regimes

• e.g. high productivity and low productivity regime
• agents do not observe regime=⇒ it makes sense to use limited
number of past observations

• With the above algorithm agents gradually learn new law of
motion
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PEA and perturbation

• True in many macroeconomic models:

• perturbation generates accurate solution of "real side" of the
economy

• perturbation does not generates accurate solution of asset
prices

• real side does not at all or not much depend on asset prices

• Then solve for real economy using perturbation and for asset
prices using PEA

• one-step algorithm (no iteration needed)
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Overview

1 How to do value function iteration (VFI)

2 VFI versus Euler equation methods

1 convergence
2 speed
3 complex problems
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Bellman equation

V(x) = max
x+1∈Γ(x)

U(x, x+1) + Et [βV(x+1)]
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Essence of VFI

• Vi(x) : flexible functional form

• piecewise linear (or higher-order spline)
• discrete valued function (if Γ (x) has χ < ∞ elements)
• quadratic (or higher-order polynomial)

• Vi+1(x) is obtained from

Vi+1(x) = max
x+1∈Γ(x)

U(x, x+1) + Et

[
βVi(x+1)

]
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Essence of VFI

• This works in general

• However, on a computer the functional form of Vi(x) must stay
the same
(so computer can store coefficients characterizing function)
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Possible ways to implement VFI

1. Linear-Quadratic

• U (·) is quadratic and constraints are linear
=⇒ Vi (·) would remain quadratic

• !!! To get a true first-order approximation to policy function
you cannot take linear approximation of constraints
=⇒ either get rid of constraint by substitution or use the
"correct" LQ approximation (see perturbation slides)

2. Discrete grid =⇒ Γ (x) and V(x) have finite # of elements
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Possible ways to implement VFI

3. Piecewise linear

• choices are no longer constrained to be on grid
• Vi (·) is characterized by function values on grid
• Simply do maximization on grid

4. Regular polynomial

• choices are no longer constrained to be on grid
• calculate values V on grid
• obtain Vi+1 by fitting polynomial through calculated point
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Convergence

• There are several convergence results for VFI

• Some such results for Euler equation methods

• but you have to do it right (e.g. use time & not fixed-point
iteration)

• But especially for more complex problems, VFI is more likely to
converge
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Speed; algorithm choice

• VFI: because of the max operator you typically can only iterate

• slow if discount factor is close to 1

• Euler equation method have more options

• calculating fixed point directly with equation solver typically
faster
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Speed; impact choices on V & Euler

VFI tends to be slow in many typical economic applications

• Reason: value function is flat =⇒ hard to find max

• important to be aware of this

• Krusell and Smith (1996) show that utility loss of keeping
capital stock constant is minor in neoclassical growth model

• But shouldn’t a flat utility function be problematic for Euler
eq. methods as well?
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Speed; impact choices on V & Euler

Example to show Euler eq. methods less affected by flatness

max
x1,x2

x1−ν
1

+ x1−ν
2

s.t. x1 + x2 ≤ 2

x1, x2 ≥ 0
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Speed; impact choices on V & Euler

Consider a huge move away from optimum

ν u(1, 1) u(2, 0) consumption equivalent loss
0.01 2 1.9862 0.7%
0.001 2 1.9986 0.07%
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Speed; impact choices on V & Euler

First-order condition:

(
x1

x2

)−ν

= 1 or x1 = 1−1/ν
× x2

Marginal rates of substitution:

ν x1 = x2 = 1 x1 = 2, x2 = 0

0.01 1 ∞

0.001 1 ∞
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Dealing with complex problems

• Both VFI and Euler-equation methods can deal with inequality
constraints

• Euler equations require first-order conditions to be sufficient

• this requires concavity (utility function) and convex
opportunity set

• this is not always satisfied
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Non-convex problem - example

Environment:

• Two technologies:

• yt = kα
t

• yt = Akα
t with A > 1

• Higher-productivity technology can be used after paying a
one-time cost ψ
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Non-convex problem - example

W(k) = max

{
maxk+1

kα − k+1 + βW (k+1) ,

maxk+1
kα − k+1 − ψ+ βV (k+1)

}

V(k) = max
k+1

Akα
− k+1 + βV (k+1)
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RHS Bellman equation for low capital stock

(k=0.1)
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Ultimate value function
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How to check for accuracy

1 Informal accuracy tests

2 Formal accuracy tests
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Informal accuracy tests

These are possibly more important than formal ones

1 "Play" with your model/algorithm

1 Understand properties of the model
2 Change parameter values and understand how model
properties change

3 Open up the black box
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Informal accuracy tests

2 Solve your model in a different way

1 Linear instead of log-linear

2 Use model equations to substitute out variables

3 Approximate something else

• ct instead of kt+1

• c−γ instead of ct
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Formal accuracy tests

1 Euler-equation errors

• require numerical integration
(but this is not that difficult to do)

2 Dynamic Euler-equation errors

• also requires numerical integration

3 Welfare measures (be careful)

4 DenHaan-Marcet (DHM) accuracy test

• simple, but hard to interpret
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Idea behind most accuracy tests

Model:

E [f (xt−1, xt, yt, yt+1)|It] = 0

where E[f (·)|It] is the Euler-equation errror

Accuracy tests:

• Euler-equation error: E[f (·)|It] should be zero at many points
in state space
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Euler-eq. error & standard growth model

ft = −c
−γ
t + βc

−γ
t+1(α exp(zt+1)k

α−1
t + 1− δ)

with

zt+1 = ρzt + σet+1
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Euler-equation errors

• True solution satisfies

E [f (xt−1, xt, yt, yt+1)|It] = 0

for all points in the state space

• This can be checked for any numerical solution (including
perturbation solutions) at many points in the state space
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How to deal with integration?

• Easy if shocks have discrete support

• Numerical integration
(this must be done accurately)
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Growth model with discrete innovations

max
{ct,kt}∞

t=1

E1

∞

∑
t=1

βt−1 c
1−γ
t − 1

1− γ

s.t. ct + kt = exp(zt)k
α
t−1 + (1− δ)kt (1)

zt = ρzt−1 + σet, (2)

et =

{
+1 with probability 1/2
-1 with probability 1/2
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Basic idea

1 Construct fine grid with values for k−1 and z

2 Euler-equation error at (k−1, z) equals

−c(k−1, z)−γ

+0.5 ∗ βc(k, ρz+ σ)−γ(α exp(ρz+ σ)kα−1 + 1− δ)

+0.5 ∗ βc(k, ρz− σ)−γ(α exp(ρz− σ)kα−1 + 1− δ)

with k = k(k−1, z)



Intro Euler-equation errors Dynamic Euler Welfare DHM Matching model

When is a solution accurate

• When Euler eq. errors are small at many points

• Problem: magnitude of errors is hard to interpret
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Interpretable Euler-equation errors

• At each grid point calculate two consumption values
1 c(k−1, z) using the numerical approximation
2 implied value, cimp(k−1, z), using

cimp(k−1, z) = g−1/γ

with

g =
+0.5 ∗ βc(k, z,+σ)−γ(α exp(ρz+ σ)kα−1 + 1− δ)

+0.5 ∗ βc(k, z,−σ)−γ(α exp(ρz− σ)kα−1 + 1− δ)

that is, value implied by accurately calculated RHS of Euler
equation
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Interpretable Euler-equation errors

• Euler-equation error is equal to

∣∣∣∣∣
c(k−1, z)− cimp(k−1, z)

cimp(k−1, z)

∣∣∣∣∣
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What to do with the errors?

• Calculate maximum and average of the errors
• Investigate

• Pattern (e.g., are errors always of the same sign)
• Are nodes with largest errors very likely?
• What happens at nodes with largest errors?
For example, if consumption is very small at those nodes, then
small basically irrelevant errors may show up as large
percentage errors
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Growth model with continuous support

max
{ct,kt}∞

t=1

E1

∞

∑
t=1

βt−1 c
1−γ
t − 1

1− γ

s.t. ct + kt = exp(zt)k
α
t−1 + (1− δ)kt

zt = ρzt−1 + σet,

et ∼ N(0, 1)
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Calculate conditional expectation

• Given are k−1, z, and policy function g(k−1, z)

• δ = 1 to simplify notation
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Calculate conditional expectation

Use k = g(k−1, z) to get

E

[
β exp(z+1)αkα−1

ct+1

]

= E

[
β exp(z+1)αkα−1

exp(z+1)kα − k+1

]

= E

[
β exp(z+1)αkα−1

exp(z+1)kα − g(k, z+1)

]

= E

[
β exp(ρz+ σε+1)αkα−1

exp(ρz+ σε+1)kα − g(k, ρz+ σε+1)

]
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Conditional expectation

E

[
β exp(ρz+ σε+1)αkα−1

exp(ρz+ σε+1)kα − g(k, ρz+ σε+1)

]

=
∫ ∞

−∞

β exp(ρz+ σε+1)αkα−1

exp(ρz+ σε+1)kα − g(k, ρz+ σε+1)

exp(−0.5ε2
+1)√

2π
dε+1

=
∫ ∞

−∞

β exp(ρz+ σ
√

2ε̃+1)αkα−1

exp(ρz+ σ
√

2ε̃+1)kα − g(k, ρz+ σ
√

2ε̃+1)

exp(−ε̃2
+1)√

π
dε̃+1

where ε+1 = ε̃+1

√
2 and the Jacobian,

√
2, is used when

implementing the change in variables
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Hermite Gaussian Quadrature

x ∼ N(µ, σ2)

E [H (x)] ≈
J

∑
j=1




H
(

µ+
√

2σζj

)
ωj

√
π




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Hermite Gaussian Quadrature

∫ ∞

−∞

β exp(ρz+ σ
√

2ε̃+1)αkα−1

exp(ρz+ σ
√

2ε̃+1)kα − g(k, ρz+ σ
√

2ε̃+1)

exp(−ε̃2
+1)√

π
dε̃+1

≈

J

∑
j=1

β exp(ρz+ σ
√

2ζj)αkα−1

exp(ρz+ σ
√

2ζj)k
α − g(k, ρz+ σ

√
2ζj)

1√
π

ωj
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Euler-equation errors - Pros & Cons

1 Pro: if checked at fine grid then close to definition solution

2 Con: only tests for one-period ahead forecast errors; ignores
possibility of accumulation of small errors

• Dynamic Euler-equation error could pick those up
• DHM statistic could pick those up
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Dynamic Euler-equation errors

• Generate time series for zt and choose k0

• Generate two time paths for endogenous variables ct and kt

1 generate time series for ct & kt with numerical approximation
2 generate alternative series doing the following in each period

• use numerical approx. to calculate cond. expect. accurately
• use this conditional expectation to calculate implied
consumption value

• get capital from this implied consumption value & budget
constraint

• (numerical approximation only used to calculate cond. expect.)
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Details of step 2

1 Generate time series for zt and set kimp,0 = k0

2 Given values of zt and kt: calculate conditional expectation
(= gt) exactly as with regular Euler-eq. errors.
(Thus use your numerical solution to evaluate choices inside the
integral)

3 Calculate cimp,t = g−1/γ

4 Calculate kimp,t = ztk
α
imp,t−1 + (1− δ)kimp,t−1 − cimp,t
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Welfare-based accuracy tests

• Be careful

• Welfare loss of using kt = kss ∀t, instead of the optimal policy
function is relatively small
=⇒ different approximations can be similar in terms of welfare
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DHM Accuracy test

E [f (xt−1, xt, yt, yt+1)|It] = 0

=⇒
E [f (xt−1, xt, yt, yt+1)h(st)|It] = 0

=⇒
E
[
f (xt−1, xt, yt, yt+1)h(st)

′] = 0

for any st ∈ It and any measurable function h (·)

Use simulated data to test

∑
T
t=1 f (xt−1, xt, yt, yt+1)h(st)′

T
≈ 0
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Simple DHM Accuracy test

1 Calculate ū, the average of

ut = c
−γ
t − βc

−γ
t+1(α exp(zt+1)k

α−1
t + 1− δ)

2 Calculate how much this error would change steady state
consumption

c−γ = ū+ c
−γ
ss

c =
(

ū+ c
−γ
ss

)−1/γ

3 Express error as fraction of steady state value

c− css

css
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Formal DHM Accuracy test

1. Simulate sample of T obs. (Say T = 3, 500 & discard 500)
2. Calculate

JT = TM′
TW−1

T MT

MT =
∑

T
t=1 h(st)f (xt−1, xt, yt, yt+1)

T

WT =
∑

T
t=1 f (xt−1, xt, yt, yt+1)h(st)′h(st)f (xt−1, xt, yt, yt+1)

T
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Formal DHM Accuracy test

• JT has a χ2 distribution with nh degrees of freedom

• If h(st) is a scalar, then

JT =

(
MT√
WT/T

)2
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Implementation of DHM statistic

1 Do the DHM statistic N times

2 Check the fraction of times the statistic is in the lower and
upper 5% range; inaccurate solutions are typically blown away
(because of having too many realizations in the upper critical
region)

3 Personally, I prefer to do the test multiple times for scalar h(st)
because this provides more information. In fact, using h(st) = 1
can already be quite informative
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Limits of DHM statistic

1 Even accurate solutions are rejected more often than 5% for
high enough T; thus the higher the value of T for which you get
good results the better

2 Results are random so inaccurate solutions could get through
by sheer chance

3 The opposite of #2 turns out to be a bigger problem in
practice: DHM is often difficult to pass in the sense that
solutions that in many aspects are close to the true or an
extremely accurate solution can fail the DHM statistic miserably
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Example - Matching model

Household side

max
{Ct,Kt}∞

t=1

E1

∞

∑
t=1

βt−1 C
1−γ
t − 1

1− γ

s.t. Ct + Kt = WtNt−1 + RtKt−1 + (1− δ)Kt−1 + Pt (3)

Nt = (1− ρx)Nt−1 +Mt (4)

Household takes the number of "matches", Mt, the wage rate, Wt,
the rental rate Rt, and profits, Pt, as given.
FOC

C
−γ
t = Et

[
βC

−γ
t+1(Rt+1 + 1− δ)

]
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Matching model example
Problem for firm matched with worker

max
kt

ztk
α
t −Wt − Rtkt

FOC:
Rt = αztk

α−1
t

Firm-level profits are (at optimal k) equal to

pt = (1− α)ztk
α
t −Wt

Wages are given by the following rule

Wt = (1−ω0)× [ω1 ∗ pt + (1−ω1)p̄]

where p̄ are steady state level profits. Wages are completely sticky if
ω1 is equal to 0.
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Matching model example

Free entry

posting cost = prob of success × value if success

ψ =
Mt

Vt
gt

gt = Et

[

β
C
−γ
t+1

C
−γ
t

pt+1 + (1− ρx)gt+1

]
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Matching model example

Matching technology

Mt =
UtVt

(
U

ξ
t +V

ξ
t

)1/ξ

with
Ut = 1−Nt−1



Intro Euler-equation errors Dynamic Euler Welfare DHM Matching model

Matching model example

Equilibrium

Equilibrium in the rental market

Kt−1 = Nt−1kt

profits transferred to households

Pt = Nt−1pt − ψVt
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Equations: Household

C
−γ
t = Et

[
βC

−γ
t+1(Rt+1 + 1− δ)

]

exp(-nu*c)=dfactor*exp(-nu*c(+1))*(exp(r(+1))+1-delta)

Ct + Kt + ψVt = ztK
α
t−1N1−α

t−1 + (1− δ)Kt−1 or

Ct + It + ψVt = Yt, Yt = ztK
α
t−1N1−α

t−1 , It = Kt − (1− δ)Kt−1

exp(c)+exp(i)+pcost*exp(v)=exp(y)

exp(k)=(1-delta)*exp(k(-1))+exp(i)

y=varz+alpha*k(-1)+(1-alpha)*n(-1)



Intro Euler-equation errors Dynamic Euler Welfare DHM Matching model

Equations: Matching

Nt = (1− ρx)Nt−1 +
UtVt

(
U

ξ
t +V

ξ
t

)1/ξ

exp(n)

=(1-rox)*exp(n(-1))+exp(u+v)

/((exp(u*etam)+exp(v*etam))^(1/etam))

Ut = 1−Nt−1

exp(u)=1-exp(n(-1))
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Equations: rental rate & productivity

Rt = αztk
α−1
t

r=log(alpha)+varz+(alpha-1)*(k(-1)-n(-1))

ln(zt) = ρ ln(zt−1) + εt

varz=rho*varz(-1)+e
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Equations: free entry

ψ =
Mt

Vt
gt

pcost=

exp(eta)*exp(u)/((exp(u*etam)+exp(v*etam))^(1/etam))

gt = Et

[

β
C
−γ
t+1

C
−γ
t

pt+1 + (1− ρx)gt+1

]

exp(eta)=

dfactor*(exp(c(+1))/exp(c))^(-nu)

*(exp(prof(+1))+(1-rox)*exp(eta(+1)))
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pt = (1− α)ztk
α
t −Wt

prof

=

log(

(1-omega1*omega0)*(1-alpha)*exp(varz+alpha*(k(-1)-n(-1))

-(1-omega1)*omega0*profitss

)
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System

11 equations in 11 unknowns:

• Nt, gt, Vt, Ct, Kt, Rt, Ut, pt, ln(zt), Yt, It

• n, eta, v, c, k, r, u, prof, y, varz, i
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Accuracy errors

2-nd order 5-th order
perturbation projections

Capital Euler equation
average 0.034% 0.026%
max 0.34% 0.33%

Employment Euler equation
average 0.89% 0.004%
max 2.31% 0.086%
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Log employment level
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