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Goal

Obtain an approximation for

f (x)

when

• f (x) is unknown, but we have some information, or

• f (x) is known, but too complex to work with
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Information available

• Either finite set of derivatives

• usually at one point

• or finite set of function values

• f1, · · · , fm at m nodes, x1, · · · , xm
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Classes of approximating functions

1 polynomials

• this still gives lots of flexibility
• examples of second-order polynomials

• a0 + a1x+ a2x2

• a0 + a1 ln(x) + a2 (ln (x))
2

• exp
(

a0 + a1 ln(x) + a2 (ln (x))
2
)

2 splines, e.g., linear interpolation
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Classes of approximating functions

• Polynomials and splines can be expressed as

f (x) ≈
n

∑
i=0

αiTi(x)

• Ti(x): the basis functions that define the class of functions
used, e.g., for regular polynomials:

Ti(x) = xi.

• αi : the coefficients that pin down the particular approximation
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Reducing the dimensionality

unknown f (x) : infinite dimensional object

∑
n
i=0 αiTi(x): n+ 1 elements
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General procedure

• Fix the order of the approximation n

• Find the coefficients α0, · · · , αn

• Evaluate the approximation

• If necessary, increase n to get a better approximation
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Weierstrass (sloppy definition but true)

Let f : [a, b] −→ R be any real-valued function. For large enough n,
it is approximated arbitrarily well with the polynomial

n

∑
i=0

αix
i.

Thus, we can get an accurate approximation if

• f is not a polynomial

• f is discontinuous

How can this be true?
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How to find the coefficients of the

approximating polynomial?

• With derivatives:

• use the Taylor expansion

• With a set of points (nodes), x0, · · · , xm, and function values,
f0, · · · , fm?

• use projection
• Lagrange way of writing the polynomial (see last part of slides)
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Function fitting as a projection

Let

Y =






f0
...

fm




 , X =






T0(x0) T1(x0) · · · Tn(x0)
T0(x1) T1(x1) · · · Tn(x1)
...

...
. . .

...
T0(xm) T1(xm) · · · Tn(xm)






then
Y ≈ Xα

• We need m ≥ n+ 1. Is m = n+ 1 as bad as it is in empirical
work?

• What problem do you run into if n increases?
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Orthogonal polynomials

• Construct basis functions so that they are orthogonal to each
other, i.e.,

∫ b

a
Ti(x)Tj(x)w(x)dx = 0 ∀i, j � i 6= j

• This requires a particular weighting function (density), w(x),
and range on which variables are defined, [a, b]
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Chebyshev orthogonal polynomials

•

[a, b] = [−1, 1] and w(x) =
1

(1− x2)1/2

• What if function of interest is not defined on [−1, 1]?
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Constructing Chebyshev polynomials

• The basis functions of the Chebyshev polynomials are given by

Tc
0(x) = 1

Tc
1(x) = x

Tc
i+1(x) = 2xTc

i (x)− Tc
i−1(x) i > 1



Overview Polynomial approximations Splines Extra

Chebyshev versus regular polynomials

• Chebyshev polynomials, i.e.,

f (x) ≈
n

∑
j=0

ajT
c
j (x),

can be rewritten as regular polynomials, i.e.,

f (x) ≈
n

∑
j=0

bjx
j,
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Chebyshev nodes

• The nth−order Chebyshev basis function has n solutions to

Tc
n(x) = 0

• These are the n Chebyshev nodes
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Discrete orthogonality property

• Evaluated at the Chebyshev nodes, the Chebyshev polynomials
satisfy:

n

∑
i=1

Tc
j (xi)T

c
k(xi) = 0 for j 6= k

• Thus, if

X =






T0(x0) T1(x0) · · · Tn(x0)
T0(x1) T1(x1) · · · Tn(x1)
...

...
. . .

...
T0(xm) T1(xm) · · · Tn(xm)






then X′X is a diagonal matrix
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Uniform convergence

• Weierstrass =⇒ there is a good polynomial approximation

• Weierstrass ; f (x) = limn→∞ pn(x) for every sequence pn(x)

• If polynomials are fitted on Chebyshev nodes=⇒ even uniform
convergence is guaranteed
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Splines

Inputs:

1 n+ 1 nodes, x0, · · · , xn

2 n+ 1 function values, f (x0) · · · , f (xn)

• nodes are fixed =⇒ the n+ 1 function values are the
coefficients of the spline
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Piece-wise linear

• For x ∈ [xi, xi+1]

f (x) ≈

(
1−

x− xi

xi+1 − xi

)
fi +

(
x− xi

xi+1 − xi

)
fi+1.

• That is, a separate linear function is fitted on the n intervals

• Still it is easier/better to think of the coefficients of the
approximating function as the n+ 1 function values
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Piece-wise linear versus polynomial

• Advantage: Shape preserving

• in particular monotonicity & concavity (strict?)

• Disadvantage: not differentiable
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Extra material

1 Lagrange interpolation

2 Higher dimensional polynomials

3 Higher-order splines
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Lagrange interpolation

Let

Li(x) =
(x− x0) · · · (x− xi−1)(x− xi+1) · · · (x− xn)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
and

f (x) ≈ f0L0(x) + · · ·+ fnLn(x).

• Right-hand side is an nth-order polynomial

• By construction perfect fit at the n+ 1 nodes?

• =⇒ the RHS is the nth-order approximation
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Higher-dimensional functions

• second-order complete polynomial in x and y:

∑
0≤i+j≤2

ai,jx
iyj

• second-order tensor product polynomial in x and y:

2

∑
i=0

2

∑
j=0

ai,jx
iyj
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Complete versus tensor product

• tensor product can make programming easier

• simple double loop instead of condition on sum

• nth tensor has higher order term than (n+ 1)th complete

• 2nd-order tensor has fourth-order power
• at least locally, lower-order powers are more important
=⇒ complete polynomial may be more efficient
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Higher-order spline

Cubic (for example)

• !!! Same inputs as with linear spline, i.e. n+ 1 function values
at n+ 1 nodes which can still be thought of as the n+ 1
coefficients that determine approximating function

• Now fit 3rd-order polynomials on each of the n intervals

f (x) ≈ ai + bix+ cix
2 + dix

3 for x ∈ [xi−1, xi].

What conditions can we use to pin down these coefficients?
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Cubic spline conditions: levels

• We have 2+ 2(n− 1) conditions to ensure that the function
values correspond to the given function values at the nodes.

• For the intermediate nodes we need that the cubic
approximations of both adjacent segments give the correct
answer. For example, we need that

f1 = a1 + b1x1 + c1x2
1 + d1x3

1 and

f1 = a2 + b2x1 + c2x2
1 + d2x3

1

• For the two endpoints, x0 and xn+1, we only have one cubic
that has to fit it correctly.
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Cubic spline conditions: 1st-order derivatives

• To ensure differentiability at the intermediate nodes we need

bi+ 2cixi+ 3dix
2
i = bi+1+ 2ci+1xi+ 3di+1x2

i for xi ∈ {x1, · · · , xn−

which gives us n− 1 conditions.
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Cubic spline conditions: 2nd-order derivatives

• To ensure that second derivatives are equal we need

2ci + 6dixi = 2ci+1 + 6di+1xi for xi ∈ {x1, · · · , xn−1}.

• We now have 2+ 4(n− 1) = 4n− 2 conditions to find 4n
unknowns.

• We need two additional conditions; e.g. that 2nd-order
derivatives at end points are zero.



Overview Polynomial approximations Splines Extra

Splines - additional issues

• (standard) higher-order splines do not preserve shape

• higher-order difficult for multi-dimensional problems

• first-order trivial for multi-dimensional problems

• if interval is small then nondifferentiability often doesn’t matter
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Quadrature techniques

I =
∫ b

a
f (x)dx ≈

n

∑
i=1

wif (xi) =
n

∑
i=1

wifi

• Nodes: xi

• Weights: wi
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Quadrature techniques

I =
∫ b

a
f (x)dx ≈

n

∑
i=1

wif (xi)

Two versions:

• Newton Cotes:
• equidistant nodes & "best" choice for the weights wi

• Gaussian Quadrature:
• "best" choice for both nodes and weights
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Monte Carlo techniques

• pseudo:
• implemetable version of true Monte Carlo

• quasi:
• looks like Monte Carlo, but is something different

• name should have been chosen better
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Power

• Newton-Cotes: With n nodes you get

• exact answer if f is (n− 1)th-order polynomial

• accurate answer f is close to an (n− 1)th-order polynomial

• Gaussian: With n nodes you get

• exact answer if f is (2n− 1)th-order polynomial

• accurate answer f is close to a (2n− 1)th-order polynomial
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Power

• (Pseudo) Monte Carlo: accuracy requires lots of draws

• Quasi Monte Carlo: definitely better than (pseudo) Monte
Carlo and dominates quadrature methods for
higher-dimensional problems
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Idea behind Newton-Cotes

• function values at n nodes =⇒ you can fit a (n− 1)th-order
polynomial & integrate the approximating polynomial

∫ b

a
f (x)dx ≈

∫ b

a
P2(x)dx

• It turns out that this can be standardized
• (derivation at the end of these slides)
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Simpson with 3 nodes

∫ b

a
f (x)dx ≈

(
1

3
f0 +

4

3
f1 +

1

3
f2

)
h
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Simpson with n+1 nodes

Implement this idea over many (small) intervals we get:

∫ b

a
f (x)dx ≈

(
1

3
f0 +

4

3
f1 +

1

3
f2

)
h

+

(
1

3
f2 +

4

3
f3 +

1

3
f4

)
h

+ · · ·
+

(
1

3
fn−2 +

4

3
fn−1 +

1

3
fn

)
h

=

(
1

3
f0 +

4

3
f1 +

2

3
f2 +

4

3
f3 +

2

3
f4 + · · ·

2

3
fn−2 +

4

3
fn−1 +

1

3
fn

)
h
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Simpson in Matlab

• Integration routine in Matlab

quad(@myfun,A,B)

• This is an adaptive procedure that adjusts the length of the
interval (by looking at changes in derivatives)
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Gaussian quadrature

• Could we do better? That is, get better accuracy with same
amount of nodes?

• Answer: Yes, if you are smart about choosing the nodes
• This is Gaussian quadrature
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Gauss-Legendre quadrature

• Let [a, b] be [−1, 1]

• can always be accomplished by scaling

• Quadrature ∫ 1

−1
f (x)dx ≈

n

∑
i=1

ωif (ζi).

• Goal: Get exact answer if f (x) is a polynomial of order 2n− 1

• That is with 5 nodes you get exact answer even if f (x) is a
9th-order polynomial
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Implementing Gauss-Legendre quadrature

• Get n nodes and n weights from a computer program

• ζ i, i = 1, · · · , n, ωi, i = 1, · · · , n

• Calculate the function values at the n nodes, fi i = 1, · · · , n

• Answer is equal to
n

∑
i=1

ωifi

• Anybody could do this
• How does the computer get the nodes and weights?
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2n equations for nodes and weights

• To get right answer for f (x) = 1

∫ 1

−1
1dx =

n

∑
i=1

ωi1

• To get right answer for f (x) = x

∫ 1

−1
xdx =

n

∑
i=1

ωiζi

• To get right answer for f (x) = x2

∫ 1

−1
x2dx =

n

∑
i=1

ωiζ
2
i

• etc
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2n equations for nodes and weights

• To get right answer for f (x) = xj for j = 0, · · · , 2n− 1

∫ 1

−1
xjdx =

n

∑
i=1

ωiζ
j
i j = 0, 1, · · · , 2n− 1

• This is a system of 2n equations in 2n unknowns.
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What has been accomplished so far?

• By construction we get right answer for

f (x) = 1, f (x) = x, · · · , f (x) = x2n−1

• But this is enough to get right answer for any polynomial of
order 2n− 1

f (x) =
2n−1

∑
i=0

aix
i

• Why?
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Gauss-Hermite Quadrature

• Suppose we want to approximate

∫ ∞

−∞
f (x)e−x2

dx with
n

∑
i=1

ωif (ζi)

• The function e−x2
is the weighting function, it is not used in

the approximation but is captured by the ωi coefficients
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Gauss-Hermite Quadrature

• We can use the same procedure to find the weights and the
nodes, that is we solve them from the system:

∫ ∞

−∞
xje−x2

dx =
n

∑
i=1

ωiζ
j
i for j = 0, 1, · · · , 2n− 1

• Note that e−ζ2
i is not on the right-hand side
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Implementing Gauss-Hermite Quadrature

• Get n nodes, ζi, i = 1, · · · , n, and n weights, ωi, i = 1, · · · , n,
from a computer program

• Calculate the function values at the n nodes, fi i = 1, · · · , n

• Answer is equal to
n

∑
i=1

ωifi
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Expectation of Normally distributed variable

• How to calculate

E [h(y)] with y ∼ N(µ, σ2)

• That is, we have to calculate
∫ ∞

−∞

1

σ
√

2π
h(y) exp

(
− (y− µ)2

2σ2

)
dy

• Unfortunately, this does not exactly fit the Hermite weighting
function, but a change in variable will do the trick
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Change of variables

• If y = φ(x) then

∫ b

a
g(y)dy =

∫ φ−1(b)

φ−1(a)
g(φ(x))φ′(x)dx

• Note the Jacobian is added
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Change of variables

The transformation we use here is

x =
y− µ

σ
√

2
or y = σ

√
2x+ µ
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Change of variables

E [h(y)] =
∫ ∞

−∞

1

σ
√

2π
h(y) exp

(
− (y− µ)2

2σ2

)
dy

=
∫ ∞

−∞

1

σ
√

2π
h(
√

2σx+ µ) exp
(
−x2

)
σ
√

2dx

=
∫ ∞

−∞

1√
π

h(
√

2σx+ µ) exp
(
−x2

)
dx
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What to do in practice?

• Obtains n Gauss-Hermite quadrature weights and nodes using a
numerical algorithm.

• Calculate the approximation using

E [h(y)] ≈
n

∑
i=1

1√
π

ωGH
i h

(√
2σζGH

i + µ
)

• Do not forget to divide by
√

π!

• Is this amazingly simple or what?
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Extra material

• Derivation Simpson formula
• Monte Carlo integration
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Lagrange interpolation

Let

Li(x) =
(x− x0) · · · (x− xi−1)(x− xi+1) · · · (x− xn)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)

f (x) ≈ f0L0(x) + · · ·+ fnLn(x).

• What is the right-hand side?
• Do I have a perfect fit at the n+ 1 nodes?
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Simpson: 2nd-order Newton-Cotes

• x0 = a, x1 = (a+ b)/2, x2 = b, or

• x1 = x0 + h, x2 = x0 + 2h

Using the Lagrange way of writing the 2nd-order polynomial, we get

∫ b

a
f (x)dx ≈

∫ b

a
f0L0(x) + f1L1(x) + f2L2(x)

= f0

∫ b

a
L0(x)dx+ f1

∫ b

a
L1(x)dx+ f2

∫ b

a
L2(x)dx
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Amazing algebra

∫ b

a
L0(x)dx =

1

3
h

∫ b

a
L1(x)dx =

4

3
h

∫ b

a
L2(x)dx =

1

3
h

• Why amazing?
• formula only depends on h, not on values xi and fi

• Combining gives
∫ b

a
f (x)dx ≈

∫ b

a
P2(x)dx =

(
1

3
f0 +

4

3
f1 +

1

3
f2

)
h.
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True and pseudo Monte Carlo

To calculate an expectation

• Let x be a random variable with CDF F(x)

• Monte Carlo integration:
∫ b

a
h(x)dF(x) ≈ ∑

T
t=1 h(xt)

T
,

• Use random number generator to implement this in practice



Overview Newton-Cotes Gaussian quadrature Extra

True and pseudo Monte Carlo

What if integral is not an expectation

∫ b

a
h(x)dx = (b− a)

∫ b

a
h(x)fab(x)dx,

where fab is the density of a random variable with a uniform
distribution over [a, b], that is, fab = (b− a)−1.
Thus, one could approximate the integral with

∫ b

a
h(x)dx ≈ (b− a)

∑
T
t=1 h(xt)

T
,

where xt is generated using a random number generator for a
variable that is uniform on [a, b].
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Quasi Monte Carlo

• Monte Carlo integration has very slow convergence properties
• In higher dimensional problems, however, it does better than
quadrature (it seems to avoid the curse of dimensionality)

• But why? Pseudo MC is simply a deterministic way to go
through the state space

• Quasi MC takes that idea and improves upon it
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Quasi Monte Carlo

• Idea: Fill the space in an efficient way
• Equidistributed series: A scalar sequence {xt}T

t=1 is
equidistributed over [a, b] iff

lim
T−→∞

b− a

T

T

∑
t=1

f (xt) =
∫ b

a
f (x)dx

for all Rieman-integrable f (x).

• Equidistributed takes the place of uniform
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Quasi Monte Carlo

.

• Examples

• ξ, 2ξ, 3ξ, 4ξ, · · · is equidistributed modulo 1 for any irrational
number ξ.1

• The sequence of prime numbers multiplied by an irrational
number (2ξ, 3ξ, 5ξ, 7ξ, · · · )

1Frac(x) (or x Modulo 1) means that we subtract the largest integer that is
less than x. For example, frac(3.564) = 0.564.
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Multidimensional

For a d-dimensional problem, an equidistributed sequence
{xt}T

t=1 ⊂ D ⊂ Rd satisfies

lim
T−→∞

µ(D)

T

T

∑
t=1

f (xt) =
∫

D
f (x)dx,

where µ(D) is the Lebesque measure of D.
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Multidimensional equidistributed vectors

Examples for the d-dimensional unit hypercube:

Weyl:

xt = (t
√

p1, t
√

p2, · · · , t
√

pd) modulo 1,

where pi is the ith positive prime number.

Neiderreiter:

xt = (t2
1/(d+1), t22/(d+1), · · · , t2d/(d+1)) modulo 1
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Basic Idea Iteration procedures Endogenous grid points Versus perturbation?

Model

c−ν
t = Et

[
βc−ν

t+1αzt+1kα−1
t+1

]

ct + kt+1 = ztk
α
t

ln(zt+1) = ρ ln (zt) + εt+1

εt+1 ∼ N(0, σ2)

k1, z1 given
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Projection Methods

True rational expectations solution:

ct = c(kt, zt)

kt+1 = k(kt, zt)

• Why a difficult problem to find these?
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Define error terms

e (kt, zt) = −c−ν
t + Et

[
βc−ν

t+1αzt+1kα−1
t+1

]

At the true solutions, c(kt, zt) and k (kt, zt):

e (kt, zt) = 0 ∀kt, zt
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• Structural parameters (α, β, ρ, σ) have fixed numerical values
(thus not included as arguments in policy function)

ct = c(kt, zt) ≈ Pn(kt, zt; ηn)

• Pn(·): from class of approximating functions
• such as polynomials or splines
• n is fixed =⇒ solve for ηn, a finite-dimensional object
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Which equations to use?

• goal: solve for Pn(kt, zt; ηn) ≈ c(kt, zt),

• i.e., Nn elements of ηn
• k(kt, zt) implicitly defined by budget constraint

• One first-order equation left, namely Euler equation
• this is a different equation at each point in the state space
• =⇒ plenty of equations
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Which equations to use?

• At M grid points {ki, zi} with M ≥ Nn we would like the
following to equal zero:

e(ki, zi; ηn) = −Pn(ki, zi; ηn)
−ν+

E




αβ×

Pn(
{

k
′} , {z

′} ; ηn)
−ν×

{z′}×
({

k
′})α−1



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Which equations to use?

• Goal: ∀ grid point get an expression with ηn as only unknown

e(ki, zi; ηn) = −Pn(ki, zi; ηn)
−ν+

E




αβ×

Pn(k
′, z

′; ηn)
−ν×

z′×
(
k
′)α−1




• Note that ki and zi are known
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Which equations to use?

e(ki, zi; ηn) = −Pn(ki, zi; ηn)
−ν+

E




αβ×

Pn(zik
α
i − Pn(ki, zi; ηn), exp{ρ ln(zi) + ε′}; ηn)

−ν×

exp{ρ ln(zi) + ε′}×
(
zik

α
i − Pn(ki, zi; ηn)

)α−1



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How to deal with expectations operator?

Let {ωj, ζj}J
j=1 be the Hermite Gaussian quadrature nodes

e(ki, zi; ηn) = −Pn(ki, zi; ηn)
−ν+

J

∑
j=1




αβ×

Pn(zik
α
i − Pn(ki, zi; ηn), exp{ρ ln(zi) +

√
2σζj}; ηn)

−ν×

exp{ρ ln(zi) +
√

2σζj}×
(
zik

α
i − Pn(ki, zi; ηn)

)α−1

ωj/
√

π



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Define error terms

e(ki, zi; ηn) = −Pn(ki, zi; ηn)
−ν+

J

∑
j=1




αβ×

Pn(zik
α
i − Pn(ki, zi; ηn), exp{ρ ln(zi) +

√
2σζj}; ηn)

−ν×

exp{ρ ln(zi) +
√

2σζj}×
(
zik

α
i − Pn(ki, zi; ηn)

)α−1

ωj/
√

π






Basic Idea Iteration procedures Endogenous grid points Versus perturbation?

How to find coefficients of approximation?

• True rational expect. solution gives zero error term ∀(ki, zi)

• Thus, choose ηn such that error terms are as small as possible.

• Collacation (M = Nn): Use equation solver to get errors
exactly equal to zero on grid

• Galerkin (M > Nn): Use minimization routine (and possibly
smart weighting of error terms)
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Different types of approximating functions

• Pn(ki, zi; ηn) could be polynomial or spline

• dimension ηn usually higher for splines

• may make eq. solver/minimization less appropriate
• use iteration scheme instead
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How to find coefficients of approximation?

1 Equation solver or minimization routine

2 Iteration procedures

1 fixed-point iteration
2 time iteration
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Iterating versus eq. solver/minimization

• Advantage:
• less of a black box
• can deal with many coefficients

• e.g. when spline is used
• some iteration schemes are guaranteed to converge

• under some regularity conditions

• Disadvantage:
• does not use information on how best to update
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Iteration procedure: Construct Grid
• Construct a grid with nodes for k and z

• At the nodes construct the basis functions of Pn(k, z; ηn).

• For example, if

Pn(k, z; ηn) = η0,n + ηk,nk+ ηz,nz+ ηkkk2 + ηkzkz+ ηzzz2

then construct the matrix (where subscripts denote grid
numbers)

X =




1 k1 z1 k2
1 k1z1 z2

1
1 k2 z2 k2

2 k2z2 z2
2

...
...

...
...

...
...

1 kM zM k2
M kMzM z2

M




and calculate (X′X)−1
X′
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Iteration procedure: Construct Grid

• Chebyshev nodes: Using Chebyshev nodes is important. This
ensures uniform convergence. With equidistant nodes it is
possible that the oscillations between grid point explode as the
order of the polynomial increases.

• Chebyshev polynomials: If you have (i) no problems finding
initial conditions and (ii) only low-order appoximations so that
calculating the inverse of X′X can be done accurately, then you
can use regular polynomials. Orthogonal Chebyshev polynomials
can overcome these problems. They ensure that X′X is
diagonal (and trivial to invert). This does require scaling of the
state variables so they are between −1 and 1.
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Fixed-point Iteration

The value of ηn used in the qth iteration is referred to as η
q
n. Follow

the following iteration scheme until convergence

• At each grid point:
• Calculate the RHS of the Euler equation using the latest value
for ηn, i.e., η

q−1
n

• Use RHS to calculate ci, value for c at ith grid point

• Use values for ci to obtain an estimate for ηn, η̂
q
n

• Polynomial: run a regression to get η̂
q
n

• Spline: the values of c at the nodes are the new values of ηn

• Let η
q
n = λη̂

q
n + (1− λ)η

q−1
n
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Fixed-point Iteration

• Step 1: Calculate current consumption values implied by
η

j−1
n at each grid point

• Use η
q−1
n to calculate k′ = zik

α
i − Pn(ki, zi; η

q−1
n )

• Use η
q−1
n to calculate c′ = Pn(k′, z′; η

q−1
n )

• Then, get ci from
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(ci)
−ν =

J

∑
j=1




αβ×

Pn(zik
α
i − Pn(ki, zi; η

q−1
n ), exp{ρ ln(zi) +

√
2σζj}; η

q−1
n )−ν×

exp{ρ ln(zi) +
√

2σζj}×
(

zik
α
i − Pn(ki, zi; η

q−1
n )

)α−1

ωj/
√

π



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Fixed-point iteration

Step 2: Get new estimate for ηn by running a projection step

• Let Y = [c1, c2, · · · , cM]
′

• If

Pn(k, z; ηn) = η0,n + ηk,nk+ ηz,nz+ ηkkk2 + ηkzkz+ ηzzz2

then
η̂

q
n =

(
X′X

)−1
X′Y
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Fixed-point iteration

Step 2: Get new estimate for ηn by running a projection step

• If

Pn(k, z; ηn) = exp
(

η0,n + ηk,nk+ ηz,nz+ ηkkk2 + ηkzkz+ ηzzz2
)

then
η̂q

n =
(
X′X

)−1
X′ ln(Y)

• no stochastic error term =⇒ ok to take ln of LHS & RHS
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Fixed-point iteration

Step 3: Update ηn

η
q
n = λη̂q

n + (1− λ)η
q−1
n for 0 < λ ≤ 1

• Fixed-point iteration does not always converge
• Choosing a lower value of λ:

• convergence more likely
• slows down algorithm if lower value not needed for convergence

• Alternative is time iteration
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Time Iteration

• At each grid point use η
q−1
n only for next period’s choices

• Again solve for ci at each grid point

• this is now a bit trickier (non-linear problem)

• Get n
q
n as with fixed-point iteration

• guaranteed to converge without dampening
(under regularity conditions)
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Time Iteration - solving for c

Solve ci from following non-linear equation

(ci)
−ν =

J

∑
j=1




αβ×

Pn(zik
α
i − ci, exp{ρ ln(zi) +

√
2σζj}; η

q−1
n )−ν×

exp{ρ ln(zi) +
√

2σζj}×
(
zik

α
i − ci)

)α−1

ωj/
√

π



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Time Iteration

• Natural interpretation for η
q−1
n and η

q
n, namely

• η
q−1
n is tomorrow’s policy function and

• η
q
n is today’s policy function

• Time iteration is reliable and convergent
• (the proof is related to the convergence of value function
iteration, which uses the same idea)



Basic Idea Iteration procedures Endogenous grid points Versus perturbation?

Fixed-point versus time iteration

• Fixed-point iteration uses η
q−1
n for all terms on the RHS, i.e.,

both next period’s consumption choice and today’s capital
choice

• Time iteration uses η
q−1
n only to evaluate next period’s

consumption

• The structure of time iteration mimics the choice of value
function iteration:

• next period’s behavior described by previous solution for value
function

• Bellman equation used to solve for choice of c and k
simultaneously
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Endogenous grid points

• Simple idea: construct grid for k′ instead of a grid for k

• Instead of solving for the choice k′ given k, we now solve for the
value of k that would have led to the choice k′

• In both cases you end up at each grid point with a set of values
for k and a set of corresponding values for k′.

• Terminology is a bit confusing: the grid itself is exogenous and
fixed but it is for an endogenous variable

• You can use endogenous grid points both with fixed-point and
with time iteration

• The added value with time iteration lies in getting rid of the
non-linear problem of solving for today’s choices
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Endogenous grid points and time iteration

• Time iteration =⇒
• use η

q−1
n for tomorrow’s choices and

• use η
q
n only for today’s choices (which show up on both sides

of the policy function

• Then, get ci from
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Endogenous grid points and time iteration

(ci)
−ν =

J

∑
j=1




αβ×

Pn(k′i, exp{ρ ln(zi) +
√

2σζj}; η
q−1
n )−ν×

exp{ρ ln(zi) +
√

2σζj}×
(
k′i
)α−1

ωj/
√

π




and ki from
k′i + ci = zik

α
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Perturbation versus projection

• Nondifferentiabilities
• impossible for perturbation

• Large number of state variables
• difficult for projection

• Constructing the grid can be difficult
• apriori hard to know what sensible points are
• some calculations may not be well defined everywhere
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Perturbation versus projection

• Global versus local
• Projection designed to be global method
• Perturbation designed to be local method

• but could give accurate global approximation
• question is whether (lower-order) derivatives at perturbation
point capture global behavior
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When can’t you use projection methods?

• Not all solutions to optimization problems can be characterized
by first-order conditions

• e.g. when objective function is not concave or budget set not
convex

• then you have no choice but to use Value Function Iteration
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When can’t you use projection methods?

• Constructing a grid where all calculations are well defined may
be tough

• e.g., not get negative consumption/unemployment
• this can be tough even at the true solution
• calculations should be possible also on path towards solution

• Solutions
• Simply exclude problematic grid points (works for Galerkin)
• Endogenize grid using simulations (Parameterized
expectations)

• but simulated points cluster so you are likely to get worse
convergence properties
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References

• Heer, B., and A. Maussner, 2009, Dynamic General Equilibrium
Modeling.

• Judd, K. L., 1998, Numerical Methods in Economics.
• Rendahl, P., 2006, Inequality constraints in recursive economies.

• shows that time-iteration converges even in the presence of
inequality constraints


	Overview
	Polynomial approximations
	Splines
	Extra
	Overview
	Newton-Cotes
	Gaussian quadrature
	Extra
	Basic Idea
	Iteration procedures
	Endogenous grid points
	Versus perturbation?

