
Centre for International
Macroeconomic Studies

School of Economics

Financial Frictions in DSGE Models

Szabolcs Deak
University of Exeter

s.deak@surrey.ac.uk

Paul Levine
University of Surrey

p.levine@surrey.ac.uk

Afrasiab Mirza
University of Birminghm

a.mirza@bham.ac.uk

Joseph Pearlman
City University, London

Joseph.Pearlman.1@city.ac.uk

September 11, 2020





C O N T E N T S

1 introduction 1

2 the core nk model without a banking sector 3

2.1 Households . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Sticky Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Price Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.3 Price Dynamics in a Non-Zero-Growth Steady State . . . 8

2.3 Sticky Wages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Dynare Price and Wage Dynamics . . . . . . . . . . . . . . 10

2.4 Capacity Utilization and Fixed Costs of Production . . . . . . . . 11

2.5 Price and Wage Dispersion . . . . . . . . . . . . . . . . . . . . . . 11

2.6 A Balanced-Non-Zero-Growth Steady State . . . . . . . . . . . . 12

2.7 Summary of Supply Side and Expected Spread . . . . . . . . . . . 14

2.7.1 Expected Spread . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 The Monetary Rule, Output Equilibrium and Shocks . . . . . . . 16

2.9 Full NK Model Listing: . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.9.1 Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.9.2 Balanced Growth Steady State . . . . . . . . . . . . . . . . 19

2.10 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.11 Dynare Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 the gertler-kiyotaki model (gk) 23

3.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Solution of the Banker’s Problem . . . . . . . . . . . . . . . . . . . 25

3.3 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Summary of the Aggregate GK Banking Model . . . . . . . . . . 27

3.5 Deterministic Steady State of the GK Model . . . . . . . . . . . . 27

3.6 Capital Quality Shocks . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7 The GK Model with Outside Equity . . . . . . . . . . . . . . . . . 29

3.7.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7.2 Solution of the Banker’s Problem . . . . . . . . . . . . . . . 31

3.7.3 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iii



iv Contents

3.7.4 Summary of the Aggregate GK Model with Outside Equity 33

3.7.5 Deterministic Steady State . . . . . . . . . . . . . . . . . . . 34

3.7.6 Calibration and Functional Form . . . . . . . . . . . . . . . 35

3.8 Dynare Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 the bgg financial accelerator model 37

4.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Summary of BGG Equilibrium . . . . . . . . . . . . . . . . . . . . 40

4.3 Deterministic Steady State . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Choice of Density Function . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.6 Dynare Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 overview of calibration of banking models 45

5.1 GK Model with Equity . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 BGG Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 bayesian estimation of models 47

6.1 Bayesian Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2.1 Markov Chain Monte Carlo (MCMC) . . . . . . . . . . . . 50

6.2.2 Testing for Convergence of MCMC . . . . . . . . . . . . . . 51

6.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Identification Issues and Diagnostics in DSGE Models . . . . . . 53

6.4 Estimation of the NK and Banking Models . . . . . . . . . . . . . 60

6.4.1 Results for the NK Model . . . . . . . . . . . . . . . . . . . 62

6.4.2 Results for the GK Model . . . . . . . . . . . . . . . . . . . 64

6.4.3 Results for the BGG Model . . . . . . . . . . . . . . . . . . 66

6.5 Bayesian Model Comparisons . . . . . . . . . . . . . . . . . . . . . 68

6.6 Second Moment Comparisons with Data . . . . . . . . . . . . . . 70

6.7 Impulse Response Functions . . . . . . . . . . . . . . . . . . . . . . 72

6.8 Variance and Historical Decompositions . . . . . . . . . . . . . . . 72

7 optimal policy 77

7.1 The General Optimal Policy Problem . . . . . . . . . . . . . . . . . 77

7.1.1 The Ramsey Problem . . . . . . . . . . . . . . . . . . . . . . 77

7.1.2 Time-Consistent (Discretionary) Policy . . . . . . . . . . . 80



Contents v

7.1.3 Optimized Simple Rules . . . . . . . . . . . . . . . . . . . 81

7.2 JR Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3 Macro-Prudential Regulation . . . . . . . . . . . . . . . . . . . . . 83

7.4 Dynare Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8 brief literature review 87

8.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9 conclusions 91

bibliography 93

appendices 101

1 The Household Problem . . . . . . . . . . . . . . . . . . . . . . . . 101

1.1 Capital Producers . . . . . . . . . . . . . . . . . . . . . . . 103

1.2 Solution of the Household Problem with JR Preferences . 103

2 Inflation and Price Dispersion Dynamics . . . . . . . . . . . . . . 105

2.1 A Useful Lemma . . . . . . . . . . . . . . . . . . . . . . . . 106

2.2 Price Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 106

2.3 Dynamics of Price Dispersion . . . . . . . . . . . . . . . . . 107

3 Original GK Solution of the GK Model . . . . . . . . . . . . . . . 109

3.1 GK with Internal Equity Only . . . . . . . . . . . . . . . . . 109

3.2 GK with Outside Equity . . . . . . . . . . . . . . . . . . . . 110





1 I N T R O D U C T I O N

This course studies the incorporation of financial frictions DSGE models and
their use for the design of monetary policy and financial regulation. We extend
the benchmark NK model by adding a financial friction either between a bank
and the firm or entrepreneur or between the household and the bank. The
seminal paper in the macroeconomics literature is Bernanke et al. (1999), hence-
forth BGG. This has been developed by Gertler and Kiyotaki (2010) (henceforth,
GK) in a number of respects. Both these contributions embed the friction into
a RBC model, but as in Gertler and Karadi (2011) we incorporate the friction
into our NK model.In the following sections we work through the details of
these two models. We start with the NK model.

Our two banking models all have five types of private agents: households,
wholesale and retail firms, capital producers and financial intermediaries. This
disaggregation facilitates the introduction of risk transfer for instance from
risk averse households to possibly risk neutral firms or ‘entrepreneurs’. In
addition the models have a policymaker (government) that conducts monetary
and fiscal policy. Our focus is on monetary policy of both a conventional and
unconventional form. Fiscal policy takes the form of exogenous government
spending financed by lump-sum, non-distortionary taxes. The government is
able to borrow at the riskless rate and the form of its budget constraint is
irrelevant. In all models, including NK, the separation of retail firms enables
us to introduce sticky prices in a straightforward manner.

A later section illustrates the structure of the two NK models with financial
sectors. The differences between the models are in the location of the financial
frictions, their nature, the role of net worth and the distribution of risk-taking.
For the BGG model the friction is between the bank and the firm-entrepreneur.
For the GK model it enters in the loan-deposit relationship with the households.
GK and BGG impose an incentive compatibility constraint which, in the latter
case, allows for the possibility of default. In GK households and bankers are
consolidated; in BGG wholesale firms are owned by risk-neutral entrepreneurs.
The role of net worth plays a central role in BGG and GK; in the former it is
accumulated by the firm-entrepreneurs, in the latter by the banks.
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2 T H E C O R E N K M O D E L W I T H O U T A
B A N K I N G S E C TO R

We now develop an NK model with the stationarized RBC model at its core.
Now we add sticky prices and nominal wages. The household sector and its
supply of homogeneous is as in the RBC core. We therefore focus on the supply
side and the modelling of price and wage stickiness.

2.1 households
We choose preferences compatible with balanced growth (see King et al. (1988)).
With external habit in consumption, household j has a single-period utility

U j
t =

(Cj
t − χCt−1/(1 + gt))1−σc exp

(
(σc−1)(H j

t)
1+σl

1+σl

)
− 1

1− σc
; χ ∈ [0, 1) σl > 0

→ log(Cj
t − χCt−1/(1 + gt))−

(H j
t)

1+σl

1 + σl
as σc → 1

where Ct−1 is aggregate per capita consumption whereas with internal habit
we have

U j
t =

(Cj
t − χCj

t−1/(1 + gt))1−σc exp
(

(σc−1)(H j
t)

1+σl

1+σl

)
− 1

1− σc
; χ ∈ [0, 1) σl > 0

→ log(Cj
t − χCj

t−1/(1 + gt))−
(H j

t)
1+σl

1 + σl
as σc → 1

Defining an instantaneous marginal utility by

UC,t = (Ct − χCt−1/(1 + gt))
−σc exp

(
(σc − 1)H1+σl

t
1 + σl

)
Then in a symmetric equilibrium he household first-order conditions for exter-
nal habit and internal habit respectively are

1 = Et [Rt+1Λt,t+1]

3



4 the core nk model without a banking sector

Λt,t+1 = βg,t+1
λt+1

λt

βg,t = β (1 + gt)
−σc

UH,t = −Hσl
t (Ct − χCt−1/(1 + gt))

1−σc exp

(
(σc − 1)H1+σl

t
1 + σl

)
UH,t

λt
= −Wt

where for external habit and internal habit respectively we have

λt = UC,t

λt = UC,t − βχEt[UC,t+1]

Parameter σl is referred to by Smets and Wouters (2007a) as the labour sup-
ply elasticity. For the log-utility case σl is the Frisch parameter. SW assume a
prior mean of 2 for σl.

2.2 sticky prices
First we introduce a retail sector producing differentiated goods under monop-
olistic competition. This sector converts homogeneous output from a compet-
itive wholesale sector. The aggregate prices in the two sectors are given by Pt
and PW

t respectively and Pt > PW
t from the mark-up possible under monopo-

listic competition. The real marginal cost of producing each differentiated good

MCt ≡ PW
t
Pt

. In the RBC model Pt = PW
t so MCt = 1 and the marginal cost is

constant. In the NK model retailers are locked into price-contracts and cannot
their prices every period. Their marginal costs therefore vary. In periods of
high demand they simply increase output until they are able to change prices.

The retail sectors then uses a homogeneous wholesale good to produce a
basket of differentiated goods for consumption

Ct =

(∫ 1

0
Ct(m)(ζ−1)/ζdm

)ζ/(ζ−1)

(2.1)

where ζ > 1 is the elasticity of substitution. For each m, the consumer chooses
Ct(m) at a price Pt(m) to maximize (2.1) given total expenditure

∫ 1
0 Pt(m)Ct(m)dm.
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This results in a set of consumption demand equations for each differentiated
good m with price Pt(m) of the form

Ct(m) =

(
Pt(m)

Pt

)−ζ

Ct (2.2)

where Pt =
[∫ 1

0 Pt(m)1−ζdm
] 1

1−ζ . Pt is the aggregate price index. Note that Ct

and Pt are Dixit-Stiglitz aggregators – see Dixit and Stiglitz (1977). Demand for
investment and government services takes the same form (see Appendix 2) so
in aggregate

Yt(m) =

(
Pt(m)

Pt

)−ζ

Yt (2.3)

Following Calvo (1983), we now assume that there is a probability of 1− ξp
at each period that the price of each retail good m is set optimally to P0

t (m). If
the price is not re-optimized, then it is held fixed.1 For each retail producer

m, given its real marginal cost MCt =
PW

t
Pt

, the objective is at time t to choose
{P0

t (m)} to maximize discounted real profits

Et

∞

∑
k=0

ξk
p

Λt,t+k

Pt+k
Yt+k(m)

[
P0

t (m)− Pt+k MCt+k

]
(2.4)

subject to

Yt+k(m) =

(
PO

t (m)

Pt+k

)−ζ

Yt+k (2.5)

where Λt,t+k ≡ βk UC,t+k
UC,t

is the (non-stationarized) stochastic discount factor2

over the interval [t, t + k]. The solution to this optimization problem is

Et

∞

∑
k=0

ξk
p

Λt,t+k

Pt+k
Yt+k(m)

[
P0

t (m)− 1
(1− 1/ζ)

Pt+k MCt+k

]
= 0 (2.6)

Using (2.5) and rearranging this leads to

PO
t =

1
(1− 1/ζ)

Et ∑∞
k=0 ξk

p
Λt,t+k
Pt+k

(Pt+k)
ζ Yt+k MCt+k

Et ∑∞
k=0 ξk

p
Λt,t+k
Pt+k

(Pt+k)
ζ Yt+k

(2.7)

1 Thus we can interpret 1
1−ξp

as the average duration for which prices are left unchanged.
2 We stationarize the model later.



6 the core nk model without a banking sector

where the m index is dropped as all firms face the same marginal cost so the
right-hand side of the equation is independent of firm size or price history.

By the law of large numbers the evolution of the price index is given by

P1−ζ
t = ξpP1−ζ

t−1 + (1− ξp)(P0
t )

1−ζ (2.8)

Now define k periods ahead inflation as

Πt,t+k ≡
Pt+k
Pt

To ease the notation in what follows we denote Πt = Πt−1,t and Πt+1 = Πt,t+1.
We can now write the fraction (2.7)

PO
t

Pt
=

1
(1− 1/ζ)

Et ∑∞
k=0 ξk

pΛt,t+k (Πt,t+k)
ζ Yt+k MCt+k

Et ∑∞
k=0 ξk

pΛt,t+k (Πt,t+k)
ζ−1 Yt+k

(2.9)

and (2.8) as

1 = ξp (Πt)
ζ−1 + (1− ξp)

(
PO

t
Pt

)1−ζ

(2.10)

2.2.1 Price Dynamics

In order to set up the model in non-linear form as a set of difference equations,
required for software packages such a Dynare, we need to represent the price
dynamics as difference equations. Both numerator and denominator the first-
order condition for pricing, (2.9), are of the form considered in Appendix 2.

First we assume a zero-growth steady state so that we do not yet need to sta-
tionarize any variables. Then using the Lemma in that section , price dynamics
are given by

P0
t

Pt
=

Jp
t

J Jp
t

(2.11)

J Jp
t − ξpEt[Λt,t+1Πζ−1

t+1 J Jp
t+1] = Yt (2.12)

Jp
t − ξpEt[Λt,t+1Πζ

t+1 Jp
t+1] =

(
1

1− 1
ζ

)
YtMCtMCSt (2.13)

1 = ξpΠζ−1
t + (1− ξp)

(
Jp
t

J Jp
t

)1−ζ

(2.14)
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MCt =
PW

t
Pt

=
Wt

FH,t
(2.15)

where (2.15) allows for Pt 6= PW
t . We have also introduced a mark-up shock

MCSt to MCt. Notice that the real marginal cost, MCt, is no longer fixed as it
was in the RBC model.

2.2.2 Indexing

Prices are now are indexed to last period’s aggregate inflation, with a price
indexation parameter γp. Then the price trajectory with no re-optimization is

given by PO
t (j), PO

t (j)
(

Pt
Pt−1

)γp
, PO

t (j)
(

Pt+1
Pt−1

)γp
, · · ·. where Yt+k(m) is given by

(2.5) with indexing so that

Yt+k(m) =

(
PO

t (m)

Pt+k

(
Pt+k−1

Pt−1

)γp
)−ζ

Yt+k (2.16)

With indexing by an amount γp ∈ [0, 1] and an exogenous mark-up shock
MSt as before, the optimal price-setting first-order condition for a firm j setting
a new optimized price P0

t (j) is now given by

P0
t =

ζ
ζ−1Et

[
∑∞

k=0 ξk
p

Λt,t+k
Pt+k

MCt+k MSp,t+kYt+k

]
Et

[
∑∞

k=0 ξk
p

Λt,t+k
Pt+k

Yt+k(j)
(

Pt+k−1
Pt−1

)γ] . (2.17)

Price dynamics are now given by

P0
t

Pt
=

Jp
t

J Jp
t

J Jp
t − ξpEt[Λt,t+1Π̃ζ−1

t+1 J Jp
t+1] = Yt

Jp
t − ξpEt[Λt,t+1Π̃ζ

t+1 Jp
t+1] =

ζ

ζ − 1
MCtMSp,tYt

Π̃t ≡
Πt

Π
γp
t−1

1 = ξpΠ̃ζ−1
t + (1− ξp)

(
Jp
t

J Jp
t

)1−ζ
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An alternative model of indexing assumes that prices are indexed to a weighted
average of last period and trend (steady state) inflation. If we denote the two
weights by γp and γ̄p then the previous dynamics replaces Π̃t above with

Π̃t ≡
Πt

Π
γp
t−1Π1−γ̄p

(2.18)

In Smets and Wouters (2007a) it is assumed that γ̄p = γp so that Π̃ = 1 in the
steady state which eliminates the effect of state-state inflation in the equilib-
rium. In the coding of our model we allow for options γ̄p = γp and γ̄p = 0.

2.2.3 Price Dynamics in a Non-Zero-Growth Steady State

Stationarizing Jp
t and J Jp

t as in the RBC model, price dynamics with indexing
become

P0
t

Pt
=

Jp
t

J Jp
t

J Jp
t − ξpEt[(1 + gt+1)Λt,t+1Π̃ζ−1

t+1 J Jp
t+1] = Yt

Jp
t − ξpEt[(1 + gt+1)Λt,t+1Π̃ζ

t+1 Jp
t+1] =

ζ

ζ − 1
MCtMSp,tYt

Π̃t ≡
Πt

Π
γp
t−1

1 = ξpΠ̃ζ−1
t + (1− ξp)

(
Jp
t

J Jp
t

)1−ζ

2.3 sticky wages
To introduce wage stickiness we now assume that each household supplies
homogeneous labour at a nominal wage rate Wh,t to a monopolistic trade-
union who differentiates the labour and sells type Ht(j) at a nominal wage
Wn,t(j) > Wh,t to a labour packer in a sequence of Calvo staggered nominal
wage contracts. The real wage is then defined as Wt ≡ Wn,t

Pt
. We now have to

distinguish between price inflation which now uses the notation Πp
t ≡

Pt
Pt−1

and

wage inflation, Πw
t ≡

Wn,t
Wn,t−1

=
WtΠ

p
t

Wt−1
.



2.3 sticky wages 9

As with price contracts we employ Dixit-Stiglitz quantity and price aggre-
gators. Calvo probabilities are now ξp and ξw for price and wage contracts
respectively. The competitive labour packer forms a composite labour service

according to Ht =
(∫ 1

0 Ht(j)(µ−1)/µdj
)µ/(µ−1)

and sells onto the intermediate
firm. where µ > 1 is the elasticity of substitution. For each j, the labour
packer chooses Ht(j) at a wage Wn,t(j) to maximize Ht given total expenditure∫ 1

0 Wn,t(j)Ht(j)dj. This results in a set of labour demand equations for each
differentiated labour type j with wage Wn,t(j) of the form

Ht(j) =
(

Wn,t(j)
Wn,t

)−µ

Ht (2.19)

where Wn,t =
[∫ 1

0 Wn,t(j)1−µdj
] 1

1−µ is the aggregate nominal wage index. Ht

and Wn,t are Dixit-Stigliz aggregators for the labour market.
Wage setting by the trade-union again follows the standard Calvo framework

supplemented with indexation. At each period there is a probability 1− ξw
that the wage is set optimally. The optimal wage derives from maximizing
discounted profits. For those trade-unions unable to reset, wages are indexed
to last period’s aggregate inflation, with wage indexation parameter γw. Then
as for price contracts the wage rate trajectory with no re-optimization is given

by WO
n,t(j), WO

n,t(j)
(

Pt
Pt−1

)γw
, WO

n,t(j)
(

Pt+1
Pt−1

)γw
, · · ·. The trade union then buys

homogeneous labour at a nominal price Wh,t and converts it into a differenti-
ated labour service of type j. The trade union time t then chooses WO

n,t(j) to
maximize real profits

Et

∞

∑
k=0

ξk
w

Λt,t+k

Pt+k
Ht+k(j)

[
WO

n,t(j)
(

Pt+k−1

Pt−1

)γw

−Wh,t+k

]
(2.20)

where using (2.19) with indexing Ht+k(j) is given by

Ht+k(j) =

(
WO

n,t(j)
Wn,t+k

(
Pt+k−1

Pt−1

)γw
)−µ

Ht+k (2.21)

and µ is the elasticity of substitution across labour varieties.
By analogy with (2.6) this leads to the following first-order condition

Et

∞

∑
k=0

ξk
w

Λt,t+k

Pt+k
Ht+k(j)

[
W0

t (j)
(

Pt+k−1

Pt−1

)γw

− µ

µ− 1
Wh,t+k

]
= 0
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(2.22)

and hence by analogy with (2.17) this leads to the optimal real wage

WO
n,t

Pt
=

µ

µ− 1

Et ∑∞
k=0 ξk

wΛt,t+k

(
Πw

t,t+k

)ζ
Ht+k

Wh,t+k
Pt+k

Et ∑∞
k=0 ξk

wΛt,t+k

(
Πw

t,t+k

)ζ (
Πp

t,t+k

)−1
Ht+k

=
Jw
t

J Jw
t

(2.23)

Then by the law of large numbers the evolution of the wage index is given by

W1−µ
n,t = ξw

(
Wn,t−1

(
Pt

Pt−1

)γw)1−µ

+ (1− ξw)(W0
n,t(j))1−µ (2.24)

Finally to facilitate the introduction of banks that allow entry and exit into
this sector by households we introduce capital producers following Section 1.1
in the Appendix.

2.3.1 Dynare Price and Wage Dynamics

We now apply the analysis of 2.2.1-2.2.3 to wage dynamics and bring the two
forms together. The model is now stationarized.

Πp
t ≡

Pt

Pt−1

Π̃p
t (γ) ≡

Πp
t

Πγ
p,t−1

J Jp
t − ξpEt[(1 + gt+1)Λt,t+1Π̃p

t+1(γp)
ζ−1 J Jp

t+1] = Yt

Jp
t − ξpEt[(1 + gt+1)Λt,t+1Π̃p

t+1(γp)
ζ Jp

t+1] =
ζ

ζ − 1
YtMCtMSp,t

1 = ξpΠ̃p
t (γp)

ζ−1 + (1− ξp)

(
Jp
t

J Jp
t

)1−ζ

PO
t

Pt
=

Jp
t

J Jp
t

Πw
t ≡ Wn,t

Wn,t−1
= (1 + gt)

ΠtWt

Wt−1
(2.25)

Π̃w
t ≡ Πw

t

(Πp
t−1)

γw
(2.26)
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MRSt = −UH,t

UC,t
=

Wh,t

Pt
(2.27)

J Jw
t − ξwEt

[
Λt,t+1

(Π̃w
t,t+1)

µ

Π̃p
t,t+1(γw)

J Jw
t+1

]
= Hd,t (2.28)

Jw
t − ξwEt

[
(1 + gt+1)Λt,t+1Π̃µ

w,t+1 Jw
t+1

]
= − µ

µ− 1
MRStMSw,tHd,t(2.29)

(Wn,t)
1−µ = ξw

(
(Wn,t−1)

1
Π̃p

t (γw)

)1−µ

+ (1− ξw)
(

WO
n,t

)1−µ
⇒

1 = ξw

(
Πw

t Π̃p,t(γw)

Πp
t

)µ−1

+ (1− ξw)

(
WO

n,t(j)
Wn,t

)1−µ

(2.30)

WO
t ≡

WO
n,t

Wn,t
=

WO
n,t/Pt

Wn,t/Pt
=

Jw
t

Wt J Jw
t

(2.31)

Πw
t = (1 + gt)

ΠtWt

Wt−1
(2.32)

2.4 capacity utilization and fixed costs of pro-
duction

We now add two remaining features to the model. As in Christiano et al. (2005)
and Smets and Wouters (2007a) we assume that using the stock of capital with
intensity ut produces a cost of a(ut)Kt units of the composite final good. The
functional form is chosen consistent with the literature:

a(ut) = γ1(ut − 1) +
γ2

2
(ut − 1)2 (2.33)

and satisfies a(1) = 0 and a′(1), a′′(1) > 0. Then we must add a term (rK
t −

a(ut)Kt to the household budget constraint on the income side where rK
t is the

rental rate leading to the following first-order condition determines capacity
utilization:

rK
t = a′(ut) (2.34)

Capital now enters the production function as utKt−1.
The final change is to add fixed costs F, necessary to transform homogeneous

wholesale goods into differentiated retail goods. To pin down F we make the
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assumption that entry occurs until retail profits are eliminated in the steady
state , i.e., PWYW = PY. It follows that

PW

P
= MC =

Y
YW =

(
1− F

YW

)
∆p

(2.35)

It follow that
F

YW = 1− ∆pMC (2.36)

For the zero inflation, MC = 1− 1
ζ and ∆p = ∆w = 1 and therefore F

YW = 1
ζ .

Smets and Wouters (2007a) has one more feature: Kimball preferences as in
Kimball (1995) and Klenow and Willis (2016) generalize the Dixit-Stigliz aggre-
gator.

2.5 price and wage dispersion
The output and labour market clearing conditions must take into account rel-
ative price dispersion across varieties and wage dispersion across firms. In-
tegrating across all firms, taking into account that the capital-labour ratio is
common across firms and that the wholesale sector is separated from the retail
sector we obtain aggregate demand for intermediate (wholesale) goods neces-
sary to produce final retail goods as

YW
t − F =

∫ 1

0

(
Pt(m)

Pt

)−ζ

dm(Ct + It + Gt) = ∆p
t Yt (2.37)

where labour market clearing gives total demand for labour, Hd
t , as

Ht =
∫ 1

0
Ht(j)dj =

∫ 1

0

(
Wn,t(j)

Wn,t

)−µ

dj Hd
t = ∆w

t Hd
t (2.38)

where the price dispersion is given by ∆p
t =

∫ 1
0

(
Pt( f )

Pt

)−ζ
d f and wage disper-

sion is given by ∆w
t =

∫ 1
0

(
Wn,t(j)

Wn,t

)−µ
dj. From Section 2.3 in the Appendix for

price dispersion and by analogy for wage dispersion we have:

∆p
t = ξp + Π̃ζ

t ∆p
t−1 + (1− ξp)

(
PO

t
Pt

)−ζ

(2.39)

∆w
t = ξwΠ̃µ

w,t∆
w
t−1 + (1− ξw)

(
WO

n,t

Wn,t

)−µ

(2.40)
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2.6 a balanced-non-zero-growth steady state

We can easily set up the model with a balanced-exogenous-growth steady state.
Now the process for At is replaced with

At = Āt Ac
t

Āt = (1 + gt)Āt−1

log(1 + gt) = log(1 + g) + εA,t

log Ac
t − log Ac = ρA(log Ac

t−1 − log Ac) + εA,t

At is a labour-augmenting technical progress parameter which is now decom-
posed into a cyclical component, Ac

t , modelled as a temporary AR1 process,
a stochastic trend, a random walk with drift, Āt. Thus the balanced growth
deterministic steady state path (bgp) is driven by labour-augmenting technical
change growing at a net rate g. If we put g = εtrend,t = 0 and Āt = 1, we arrive
at our previous formulation with Ac

t = At.

Uc
t =

((Cc
t − χCc

t−1/(1 + gt))(1−$)(1− Ht)$)1−σc − 1
1− σc

Uc
C,t ≡

UC,t

Ā(1−$)(1−σc)−1
t

= (1− $)(Cc
t − χCc

t−1/(1 + gt))
(1−$)(1−σc)−1(1− Ht)

$(1−σc)

Λt,t+1 = β
UC,t+1

UC,t
= β(1 + gt+1)

(1−$)(1−σc)−1 Uc
C,t+1

Uc
C,t
≡ βg,t+1

Uc
C,t+1

Uc
C,t

where the growth-adjusted discount rate is defined as

βg,t ≡ β(1 + gt)
(1−$)(1−σc)−1,

the Euler equation is still
Et [Λt,t+1Rt+1]

Now stationarize remaining variables by defining cyclical components:

Yc
t ≡

Yt

Āt
=

(AtHd
t )

α
(

Kt−1
Āt

)1−α
− F

∆p
t

=
(AtHd

t )
α
(

Kc
t−1

(1+gt)

)1−α
− F

∆p
t

Kc
t ≡

Kt

Āt
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Kc
t = (1− δ)

Kc
t−1

1 + gt
+ (1− S(Xc

t ))Ic
t

Xc
t = (1 + gt)

Ic
t

Ic
t−1

S(Xc
t ) = φX(Xc

t − 1− gt)
2

S′(Xc
t ) = 2φX(Xc

t − 1− gt)

Cc
t ≡

Ct

Āt

Ic
t ≡

It

Āt

Wc
t ≡

Wt

Āt

With non-zero steady state growth, the steady state for the rest of the system
is the same as the zero-growth one except for the following relationships:

R =
(1 + g)1+(σc−1)(1−$)

β
≡ 1

βg

Rn = ΠR

Λ =
1
R

Ic =
(δ + g)Kc

1 + g
Xc = 1 + g

(Jp)c

(J Jp)c =

(
1− ξp(Πp)ζ−1

1− ξp

) 1
1−ζ

MC =

(
1− 1

ζ

)
Jp(1− βg(1 + g)ξpΠζ)

J Jp(1− βg(1 + g)ξ(Πp)ζ−1)

Wh
P
W
P

=

(
1− 1

µ

) Jw

J Jw

W
P

(1− βgξwΠ̃p(γw)µ

(1− βgξwΠ̃p(γw)µ−1)

= Inverse of wage mark-up

where R and Rn are the real and nominal steady state interest rates and Π is
inflation.
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2.7 summary of supply side and expected spread

Wholesale, Retail and capital producer firm behaviour is given by

Wholesale Production : YW
t = (AtHd

t )
αK1−α

t−1 (2.41)

Retail Aggregate Production : Yt =
YW

t − F
∆p

t
(2.42)

Aggregate Employed Labour : Hd
t =

Ht

∆w
t

(2.43)

Labour Demand : Wt =
PW

t
Pt

FH,t =
PW

t
Pt

αYW
t

Hd
t

(2.44)

Capital Demand : rK
t =

PW
t
Pt

FK,t =
PW

t
Pt

(1− α)YW
t

Kt−1
(2.45)

where Kt is end-of-period [t, t + 1] capital, Wt is the wage rate of the composite
differentiated labour orovided by the labour packer (trade-union) and ∆p

t and
∆w

t are price dispersion and wage dispersion (defined below), rK
t is the rental

net rate for capital and we have imposed labour demand equal to labour supply
in a labour market equilibrium. Production is assumed to be Cobb-Douglas.

Capital accumulation with investment adjustment costs carried out by Capi-
tal Producers is given by

Kt = (1− δ)Kt−1 + (1− S(Xt))It ISt (2.46)

Xt ≡
It

It−1
(2.47)

S(Xt) = φX(Xt − 1− g)2 (2.48)
S′(Xt) = 2φX(Xt − 1) (2.49)

Qt ISt(1− S(Xt)− XtS′(Xt)) + Et

[
Λt,t+1Qt+1 ISt+1S′(Xt+1)X2

t+1

]
= 1

(2.50)

where It, and Qt are investment and the real price of capital respectively. ISt is
a capital specific shock process. S(Xt) are investment adjustment costs equal
to zero in a balance growth steady state with output, consumption, capital,
investment and the real wage growing at a rate g.

Then this completes the supply side with price and wage dynamics and
dispersion as given in sections 2.3.1 and 2.5.
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2.7.1 Expected Spread

The gross return on capital by

RK
t =

[
rK

t + (1− δ)Qt

Qt−1

]
(2.51)

Then in the absence of financial frictions including the risk-premium shock RPSt
we have arbitrage between discounted returns on capital and bonds given by

Et[Λt,t+1RK
t+1] = Et[Λt,t+1Rt+1] = 1 (2.52)

With the risk premium shock, Et[Λt,t+1Rt+1RPSt] = 1 and the expected dis-
counted spread between returns on capital and bonds becomes Et[Λt,t+1(RK

t+1−
Rt+1)] 6= 0 with a steady state given by RK − R = 1

Λ (1− 1
RPS ) =

1
βg
(1− 1

RPS ).
A postive steady state of the premium shock can then be chosen to be a value
RPS > 1 to fit data on the mean spread, spread by putting

RPS =
1

1− βgspread
(2.53)

2.8 the monetary rule, output equilibrium and
shocks

The nominal interest rate is given by one of the following Taylor-type rules

log
(

Rn,t

Rn

)
= ρr log

(
Rn,t−1

Rn

)
+ (1− ρr)

[
θπ log

(
Πt

Π

)
+ θy log

(
Yt

Y

)
+ θdy log

(
Yt

Yt−1

) ]
+ εMPS,t (2.54)

log
(

Rn,t

Rn

)
= ρr log

(
Rn,t−1

Rn

)
+ (1− ρr)

[
θπ log

(
Πt

Π

)
+ θy log

(
Yt

YF
t

)
+ θdy log

(
Yt/YF

t
Yt−1/YF

t−1

) ]
+ εMPS,t (2.55)

where YF
t is the flexi-price level of output and εM,t is a monetary policy shock

process. (2.54) is an ‘implementable’ form of the Taylor rule which stabilizes
output about its steady state. Then θπ and θy are the long-run elasticities of the
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inflation and output respectively with respect to the interest rate. The “Taylor
principle” requires θπ > 1. The conventional Taylor rule, (2.55), stabilizes
output about its flexi-price level which is that found by solving the RBC core
of this model or simply allowing the contract parameter ξp to tend to zero.
Unlike the implementable form, this requires observations of the output gap
Yt
YF

t
to implement and monitor.3 The output equilibrium is given by

Yt = Ct + Gt + It (2.56)

Finally the model is closed with seven exogenous AR1 shock processes to
technology, government spending, the real marginal cost (the latter being inter-
preted as a mark-up shock), the marginal rate of substitution, an investment
shock, a risk premium shock and a shock to monetary policy

log At − log A = ρA(log At−1 − log A) + εA,t

log Gt − log G = ρG(log Gt−1 − log G) + εG,t

log MSt − log MS = ρMS(log MSt−1 − log MS) + εMS,t

log MRSSt − log MRSS = ρMRSS(log MRSSt−1 − log MRSS) + εMRSS,t

log ISt − log IS = ρIS(log ISt−1 − log IS) + εIS,t

log RPSt − log RPS = ρRPS(log RPSt−1 − log RPS) + εRPS,t

log MPSt − log MPS = ρMPS(log MPSt−1 − log MPS) + εMPS,t

2.9 full nk model listing:
The full model in stationarized form is given by:

2.9.1 Dynamic Model

log (1 + gt) = log (1 + g) + εAtrend,t

βg,t = β (1 + gt)
−σc

Ut =
(Ct − χCt−1/(1 + gt))1−σc exp

(
(σc−1)(Ht)

1+σl

1+σl

)
− 1

1− σc

3 Technically this should pose no problems in a perfect information rational expectations equi-
librium, but the rationale for ‘simple rules’ is to have policies that are easy to observe without
relying on the perfect information solution.
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CEt =
(1.01(Ct − χCt−1/(1 + gt)))1−σc exp

(
(σc−1)(Ht)

1+σl

1+σl

)
− 1

1− σc
−Ut

+ Et[(1 + gt+1) βg,t+1 CEt+1]

Ωt = Ut + β Et[(1 + g)1−σc exp ((1− σc) εAtrend,t+1) Ωt+1]

UCt = (Ct − χCt−1/(1 + gt))
−σc exp

(
(σc − 1)H1+σl

t
1 + σl

)

UHt = −Hσl
t (Ct − χCt−1/(1 + gt))

−σc exp

(
(σc − 1)H1+σl

t
1 + σl

)
λt = Et[βg,t+1 Rt+1] RPSt λt+1

λt = UC,t − χ Et[βg,t+1UC,t+1]

−UHt

λt
= Wh,t

Rt =
Rn,t−1

Πt

Yt =
YW

t − F
∆p

t

Hd,t =
Ht

∆w
t

YW
t = (Hd,t At)

α
(

Kt−1

1 + gt

)1−α

RK
t =

(
YW

t (1−α) MCt
Kt−1
1+gt

+ (1− δ) Qt

)
Qt−1

Λt−1,t =
βg,t λt

λt−1

1 = Qt
(
1− St − Xt S′t

)
+ Et[Λt,t+1 Qt+1 S′t+1 (Xt+1)

2]

α MCt YW
t

Ht
= Wt

MCt =
PW

t
Pt

Kt =

(
(1− St) It +

Kt−1 (1− δ)

1 + gt

)
Xt =

(1 + gt) It

It−1
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St = φX (Xt − 1− g)2

S′t = 2 φX (Xt − 1− g)
1 = Λt,t+1 RK

t+1 = 1
Yt = Ct + It + Gt

Yt = J Jp
t −Et[(1 + gt+1) Λt,t+1 Π̃ζ−1

t+1 J Jp
t+1]

ζ

ζ − 1
Yt MCt MCSt = Jp

t −Et

[
(1 + gt+1) Λt,t+1 Π̃ζ

t+1 Jp
t+1

]
Λt,t+1 =

βg,t+1UC,t+1

UC,t

Π̃t =
Πt

Π
γp
t−1

PO
t =

Jp
t

J Jp
t

1 = Π̃ζ−1
t +

(
1− ξp

)
(PO

t )1−ζ

∆p
t = ξp Π̃ζ

t ∆p
t−1 +

(
1− ξp

)
(PO

t )(−ζ)

Πw
t = Πt

Wt(1 + gt)

Wt−1

Π̃w
t =

Πt

Πγw
t−1

Ht = J Jw
t −Et

[
Λt,t+1 ξw (Π̃w

t+1)
µw

Π̃t+1(γw)
J Jw

t+1

]
µw

µw − 1
Wh,t Ht MRSSt = Jw

t −Et[(1 + gt+1)Λt,t+1 ξw (Π̃w
t+1)

µw Jw
t+1]

WO
t =

Jw
t

Wt J Jw
t

1 = ξw

(
Πw

t Π̃t(γw)

Πt

)µw−1

+ (1− ξw) (WO
t )1−µw

∆w
t = ξw (Π̃w

t )
µw ∆w

t−1 + (1− ξw) (WO
t )−µw

Invmarkupt =
Wh,t

Wt

log
(

Rn,t

R̄n

)
= ρr log

(
Rn,t−1

R̄n

)
+ (1− ρr)

(
θπ log

(
Πt

Π̄

)
+ θy log

(
Yt

Ȳ

)
+ θdy log

(
Yt

Yt−1

))
+ log(MPSt)
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with AR(1) processes for At, Gt, MCt, MRSSt, ISt, MPSt and RPSt.

2.9.2 Balanced Growth Steady State

With non-zero steady state growth, the steady state for the rest of the system is
the same as the zero-growth RBC model except for the following relationships:
for particular steady state inflation rate Πp = Πw > 1 the NK features of the
blanced growth steady state become:

Rn = ΠR
Π̃p(γ) ≡ Π1−γ

PO

P
=

Jp

J Jp =

(
1− ξpΠ̃p(γp)ζ−1

1− ξp

) 1
1−ζ

MC =
PW

P
=

(
1− 1

ζ

)
Jp(1− β(1 + g)ξpΠ̃p(γp)ζ)

Hp(1− β(1 + g)ξpΠ̃p(γp)ζ−1)

= Inverse of price mark-up

∆p =
1− ξp

1− ξpΠ̃p(γp)ζ

(
Jp

J Jp

)−ζ

and for wage dynamics

WO

W
=

Jw

J Jw

W
P

=

(
1− ξwΠ̃p(γw)µ−1

1− ξw

) 1
1−µ

Jw

J Jw = MSw
Wh
P

(1− βξw(1 + g)Π̃p(γw)µ−1

(1− βξwΠ̃p(γw)µ)

i.e.,
Wh
P
W
P

=

(
1− 1

µ

) Jw

J Jw

W
P

(1− βξwΠ̃p(γw)µ

(1− βξw(1 + g)Π̃p(γw)µ−1)

= Inverse of wage mark-up

∆w =
1− ξw

1− ξwΠ̃p(γw)µ

( Jw

J Jw

W
P

)−µ
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2.10 calibration

In a quarterly model we set steady state values of inflation, hours and growth
as Π̄ = 1.01, H̄ = 0.33 and ḡ = 0.005. Standard values for the labour share,
price elasticity, the discount and depreciation rates and the the inverse of the
intertemporal elasticity of substitution are α = 0.7, ζ = 7, µ = 3, β = 0.99,
δ = 0.025 and σc = 2. Government spending as a proportion of GDP is set
at gy = 0.2. Calvo parameters, indexing, habit and investment adjustment
parameters drive the dynamics and should be estimated, but here we choose
the following fairly arbitrary values, ξp = ξw = 0.75, γp = γw = 0.5, χ = 0.7
and φX = 2.

Some remaining parameters to be set the persistence parameters in the AR(1)
shock processes and the standard deviations of the shocks. Again these are
later estimated by Bayesian methods, but for moment persistence parameters
are set at 0.75 and shocks have a standard deviation of 1%.

Estimations of the elasticity of labour supply found using microeconomic
data depend on factors such as gender, age, marital status and dependants.
Pencavel (1986) and Keane (2011) offer surveys of labour supply; restricting the
samples to men, the former finds estimates of the elasticity range from 0 to 0.5,
with a median 0.2, and the latter finding a larger range of between 0 to 0.7 with
an average of 0.31. The elasticities vary significantly due to the listed factors;
Reichling and Whalen (2017) give a thorough review of the estimates found
in the literature based on microeconomic data, finding that estimates typically
range from 0 to over 1. The higher estimates corresponding to married women
with children, whereas the labour supply of men is far lower. Combining the
results, Reichling and Whalen (2017) propose a range of between 0.27 and 0.53,
with a central point estimate of 0.4.

In the real business cycle literature, the response of hours to productivity
shocks is a key propagation mechanism and, in the standard model, consid-
ered to be adjusted on the intensive margin. The elasticity of labour supply
is usually chosen to target the second moment of hours in model simulations
and typically calibrated within a range between 2 and 4 (see e.g. Cho and
Cooley (1994), King and Rebelo (1999), Chetty et al. (2012)), corresponding to
a range in δ of between 0.25 and 0.5. The New Keynesian DSGE literature
estimate the elasticity within a range that is higher than the microeconomic es-
timations, although closer to the than the RBC calibrations; for example, Smets
and Wouters (2007b) estimate the elasticity to 1.9 (δ = 0.53).
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There have been several attempts to explain these differences. Peterman
(2016) argues that macroeconomic estimations implicitly include adjustments
on both the extensive and intensive margins for the whole population, whereas
microeconomic studies are usually focused on the intensive margin, and includ-
ing these factors can increase the Frisch elasticity to between 2.9 and 3.1. Roger-
son and Wallenius (2009) further argue that human capital formation is implic-
itly included in macroeconomic estimations and can also help reconcile the
differences (see also Chetty et al. 2012). Hall (2009) proposes a macroeconomic
model with labour supply adjustments on the intensive margin and extensive
margin via search and match frictions, that reproduces simulations consistent
with empirical time series, with a Frisch elasticity of only 0.7 (δ = 1.43).

2.11 dynare code
• NK_SW.mod with steady state files NK_SW_steadystate.mod which calls

function ss_fun_NK_SW. Very similar to Smets and Wouters (2007a)

• There are no flexi-price, flexi-wage blocs in these codes and therefore
they are only set up for an implementable rule.

• But see policy section with a flexi bloc that can have a conventional Tay-
lor rule

• graphs_irfs_compare_NK Graph plotter for irfs

2.12 exercises
1. Use the options in the code NK_SW.mod to explore the effect of intro-

ducing wage stickiness into the NK model. Compare impulse responses,
volatility, co-movement and the contribution of shocks to the output vari-
ance for models with and without wage flexibility.

2. Do the same for external and internal habit.

3. Do the same for models with and without indexation.
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( G K )

The financial market friction in this model is driven by the costs of enforcing
contracts (as opposed to private information in the BGG model to come). Fi-
nancial frictions affect real activity via the impact of funds available to bank
but there is no friction in transferring funds between banks and nonfinancial
firms. Given a certain deposit level a bank can lend frictionlessly to nonfinan-
cial firms against their future profits. In this regard, firms offer to banks a
perfect state-contingent security.

3.1 the model

Our modelling strategy is to replace the arbitrage condition in the benchmark
NK model (2.52), with a banking sector that introduces a wedge between the
expected ex ante cost of loans from households, Rt and the return on capital
RK

t . The model closely follows Gertler and Kiyotaki (2010) - henceforth GK -
but embeds in our previous NK model with sticky prices in a similar fashion
to Gertler and Karadi (2011). Apart from the arbitrage condition, the details of
the model are unchanged, so we concentrate on the banking model.

The activity of the bank can be summarized in two phases. In the first one
banks raises deposits and equity from the households. In the second phase
banks uses the deposits to make loans to firms.

In particular, we have the following sequence of events:

1. Banks raise deposits, dt from households at a real deposit net rate Rt+1
over the interval [t, t + 1], the ‘time period t’.

2. Banks make loans st at a price Qt to firms.

3. The asset against which the loans are obtained is end-of-period capital Kt.
Capital depreciates at a rate δ in each period.

23



24 the gertler-kiyotaki model (gk)

The level of the loans depends on the level of the deposits and the net worth
of the intermediary. This implies a banking sector’s balance sheet of the form:

Qtst = nt + dt (3.1)

Therefore Qtst are the assets of the bank. The liabilities of the bank are house-
hold deposits dt and net worth nt, the bank capital of its owners, the house-
holds.

Net worth of the bank accumulates in stationarized form according to:

(1 + gt)nt = RK
t Qt−1st−1 − Rtdt−1 (3.2)

where (as in the NK model) real returns on bank assets are given by

RK
t =

[rK
t + (1− δ)Qt]

Qt−1

rK
t is the gross return (marginal product) of capital and where rK

t + (1− δ)Qt
represents the net return after depreciation and the capital quality shock is left
out for now.

Banks exit with probability 1− σB per period and therefore survive for i− 1
periods and exit in the ith period with probability (1 − σB)σ

i−1
B . Given the

fact that bank pays dividends only when it exists, the banker’s objective is to
maximize expected discounted terminal wealth

Vt = Et

∞

∑
i=1

(1− σB)σ
i−1
B Λt,t+int+i (3.3)

where Λt,t+i = βi ΛC,t+i
ΛC,t

is the stochastic discount factor, subject to an incentive
constraint for lenders (households) to be willing to supply funds to the banker.

To understand this dynamic problem better we can substitute for dt from
(3.1) and rewrite (3.2) as

(1 + gt)nt = Rtnt−1 + (RK
t − Rt)Qt−1st−1 (3.4)

which says that net worth at the end of period t equals the gross return at the
real riskless rate plus the excess return over the latter on the assets. With these
returns and Qt exogenous to the bank, given nt−1 at the beginning of period t,
net worth in period t is determined by the bank’s choice of {st+i}, subject to a
borrowing constraint.

To motivate an endogenous constraint on the bank’s ability to obtain funds,
we introduce the following simple agency problem. We assume that after a
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bank obtains funds, the bank’s manager may transfer a fraction of assets to her
family. In recognition of this possibility, households limit the funds they lend
to banks.

Divertable assets consists of total gross assets Qtst. If a bank diverts assets
for its personal gain, it defaults on its debt and shuts down. The creditors may
re-claim the remaining fraction 1−Θ of funds. Because its creditors recognize
the bank’s incentive to divert funds, they will restrict the amount they lend. In
this way a borrowing constraint may arise. In order to ensure that bankers do
not divert funds the following incentive constraint must therefore hold:

Vt ≥ ΘQtst (3.5)

The incentive constraint states that for households to be willing to supply
funds to a bank, the bank’s franchise value Vt must be at least as large as its
gain from diverting funds.

The optimization problem for the bank is to choose a path for loans, {st+i}
to maximize Vt subject to (3.1) and (3.2) (or equivalently (3.4)) and (3.5).

3.2 solution of the banker’s problem
The original version of the solution to this appears in GK, but we relegate this
to Appendix 3, as the solution presented here is more straightforward and
requires less notation. The solution is assumed to take the form

Vt = Et[Λt,t+1Ωt+1nt+1] (3.6)

where Ωt is shadow value of a unit of net worth. We write the Bellman equa-
tion corresponding to (3.3) as

Vt−1 = max
st

Et−1Λt−1,t [(1− σB)nt + σBVt] (3.7)

= max
st

Et−1Λt−1,t

[
(1− σB)nt + σBEtΛt,t+1Ωt+1(Rt+1nt + (RK

t+1 − Rt+1)Qtst)
]

This is subject to the condition that Vt ≥ ΘQtst, which implies the constraint

EtΛt,t+1Ωt+1[Rt+1nt + (RK
t+1 − Rt+1)Qtst] ≥ ΘQtst (3.8)

If ΩtEtΛt,t+1[RK
t+1− Rt+1] ≥ Θ, then the constraint does not bind and leverage

Qtst/nt is indeterminate. If ΩtEtΛt,t+1[RK
t+1 − Rt+1] < Θ, then maximization

takes place if and only if the constraint binds, so that the solution is

Qtst =
Et[Λt,t+1Ωt+1Rt+1]

Θ−ΩtEt[Λt,t+1(RK
t+1 − Rt+1)]

nt (3.9)
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It follows that

µt = 1− σB +
σBΘEt[Λt,t+1Ωt+1Rt+1]

Θ−ΩtEtΛt,t+1[RK
t+1 − Rt+1]

(3.10)

Equivalently, defining φt = Qtst/nt, we can rewrite this last equation as

Ωt = 1− σB + σBΘφt (3.11)

as in Appendix 3.
Thus we determine φt in terms of the interest rate wedge RK

t − Rt. Note
that in the absence of a binding IC constraint, Ωt = 1, and EtΛt,t+1Rt+1 =
EtΛt,t+1RK

t+1 = 1, which is the arbitrage condition for our NK model, so lever-
age is indeterminate.

3.3 aggregation
At the aggregate level the banking sector balance sheet is:

QtSt = Nt + Dt

At the aggregate level net worth is the sum of existing (old) bankers and new
bankers:

Nt = No,t + Nn,t

Net worth of existing bankers equals earnings on assets held in the previous
period net cost of deposit finance, multiplied by a fraction σB, the probability
that they survive until the current period:

(1 + gt)No,t = σB{(rK
t + (1− δ)Qt)St−1 − RtDt−1}

Since new bankers cannot operate without any net worth, we assume that
the family transfers to each one the fraction ξB/(1− σB) of the total value assets
of exiting bankers. This implies:

(1 + gt)Nn,t = ξB[rK
t + (1− δ)Qt]St−1 (3.12)

and in aggregate leverage is given by

φt =
QtSt

Nt
(3.13)
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3.4 summary of the aggregate gk banking model
The complete model is the NK model plus the banking sector It is derived
above with the NK arbitrage demand for capital relationship replaced with the
following equations that represent the banking sector.1 Here we focus on the
case where the borrowing constraint always binds. Then in stationarized form
we have

QtSt = φtNt

φt =
Et[Λt,t+1Ωt+1Rt+1]

Θ−Ωt+1EtΛt,t+1[RK
t+1 − Rt+1]

Ωt = 1− σB + σBΘφt

Nt(1 + gt) = RK
t (σB + ξB)Qt−1St−1 − σBRtDt−1

Dt = QtSt − Nt

The link with the NK model is provided by

St = Kt

RK
t =

rK
t + (1− δ)Qt

Qt−1

rK
t ≡ (1− α)PW

t YW
t (1 + gt)

Kt−1

The complete model is the NK model plus the banking sector is illustrated in
Figure 3.1.2

3.5 deterministic steady state of the gk model
The main difference with respect to the basic NK code is that in this model
we use a Matlab solver, fsolve, to solve the capital stock. The balanced-growth
steady state of the banking sector with the constraint binding is:

S = K
Q = 1

1 Note that the foc defining the constraint λt is superfluous in the system of equations.
2 There is a slight notation clash with S(Xt) denoting investment adjustment costs and St bank

assets. In the code we refer to the latter as Sasset.
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Figure 3.1: A Model with a Banking Sector

R =
Rn

Π
=

1
βg

Λ =
1
R

QS = φN

φ =
Ω

Θ−Ω(RK/R− 1)

N =
RK(σB + ξB)QS− σBR

1 + g− σBR
D = QS− N
Ω = 1− σB + ΘσBφ

rK =
(1− α)PWYW(1 + g)

K

RK =
rK + (1− δ)Q

Q
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It is very easy to rewrite these equations in recursive form given K
YW . The

external steady state function then uses fsolve in Matlab to solve for K
YW and to

calibrate three parameters: $, Θ and ξB.

3.6 capital quality shocks
Following the macro-finance literature, in all our banking and NK models we
add a capital quality shock, say KQt+1, that wipes out or enhances capital
available in period t going into period t + 1. St = [(1− δ)Kt−1 + (1− S(Xt))It]
is now ‘capital in process’ which is transformed by the production process into
capital for next period’s production according to Kt = KQt+1St. Thus capital
in process evolves according to

St = (1− δ)KQtSt−1 + (1− S(Xt))It (3.14)

Capital quality shock also affects the balance sheet of the banks. Now net
returns are given by

RK
t = KQt

rK
t + (1− δ)Qt

Qt−1

It follows from (3.14) and Kt = KQt+1St that

Kt = KQt+1((1− δ)Kt−1 + (1− S(Xt))It)

3.7 the gk model with outside equity
The model, which closely follows Gertler et al. (2012) - henceforth GKQ - adds
an extra ingredient, the option to raise funds by issuing “ outside equity" as
well as household deposits.

3.7.1 The Model

Banks raise deposits and equity from the households. In the second phase
banks uses the deposits to make loans to firms.

In particular, we have the following sequence of events: The activity of the
bank can again be summarized in two phases. In the first one
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1. Banks raise deposits, dt, and outside equity, et, from households at a
real deposit net rate Rt+1 and equity net rate RE

t+1 respectively over the
interval [t, t + 1], the ‘time period t’.

2. Banks make loans to firms.

3. Loans are st at a price Qt. The asset against which the loans are obtained
is end-of-period capital Kt. Capital depreciates at a rate δ in each pe-
riod. The price of outside equity is qt > Qt in our model with financial
constraints.

The level of the loans depends on the level of the deposits, value of equity
and the net worth of the intermediary. This implies a banking sector’s balance
sheet of the form:3

Qtst = nt + qtet + dt (3.15)

where st are claims on non-financial firms to finance capital acquired at the
end of period t for use in period t + 1 and Qt is the price of a unit of capital
so that the assets of the bank. Therefore Qtst are the assets of the bank. The
liabilities of the bank are household deposits dt and net worth nt.

Net worth of the bank accumulates according to:

nt = RK
t Qt−1st−1 − Rtdt−1 − RE

t qt−1et−1 (3.16)

where real returns on bank assets and equity are given by

RK
t =

[rK
t + (1− δ)Qt]

Qt−1

RE
t =

[rK
t + (1− δ)qt]

qt−1

rK
t is the gross return (marginal product) of capital and where rK

t + (1− δ)Qt
represents the net return after depreciation. Again capital quality shocks are
omitted at this stage.

As before the banker’s objective is to maximize expected discounted terminal
wealth

Vt = Et

∞

∑
i=1

(1− σB)σ
i−1
B Λt,t+int+i (3.17)

3 In a slight departure from notation elsewhere, lower case denotes the representative bank.
Upper case variables later denote aggregates
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subject to an incentive constraint for lenders (households) to be willing to sup-
ply funds to the banker.

The borrowing constraint is now

Vt ≥ Θ(xt)Qtst (3.18)

where xt ≡ qtet
Qtst

is the fraction of bank assets financed by outside equity, Θ′t >
, Θ′′t > 0 captures the idea that it is easier to divert assets funded by outside
equity than by households.4 As before, the incentive constraint states that for
households to be willing to supply funds to a bank, the bank’s franchise value
Vt must be at least as large as its gain from diverting funds.

3.7.2 Solution of the Banker’s Problem

As before, write the Bellman equation as

Vt−1 = max
st,et

Et−1Λt−1,t[(1− σB)nt + σBVt]

= max
st,et

Et−1Λt−1,t[(1− σB)nt + σBEt(Λt,t+1Ωt+1nt+1)] (3.19)

where

Et(Λt,t+1Ωt+1nt+1) = Et[Λt,t+1Ωt+1(Rt+1nt + (RK
t+1 − Rt+1)Qtst + (Rt+1 − RE

t+1)qtet)]

= Et[Λt,t+1Ωt+1(Rt+1nt + (RK
t+1 − Rt+1 + (Rt+1 − RE

t+1)xt)Qtst)]

This is subject to the condition that Vt ≥ Θ(xt)Qtst, which implies the con-
straint

ΩtEt[Λt,t+1Ωt+1(Rt+1nt + (RK
t+1 − Rt+1 + (Rt+1 − RE

t+1)xt)Qtst)] ≥ Θ(xt)Qtst
(3.20)

If the constraint always binds, then the solution from the constraint is

Qtst =
Et[Λt,t+1Ωt+1Rt+1]

Θ(xt)−ΩtEt[Λt,t+1Ωt+1(RK
t+1 − Rt+1 + (Rt+1 − RE

t+1)xt)]
nt ≡ φtnt

(3.21)

4 As GKQ explain: “ we assume that the fraction of funds the bank may divert depends on the
composition of its liabilities. In particular, we assume that at the margin it is more difficult to
divert assets funded by short term deposits than by outside equity. Short term deposits require
the bank to continuously meet a non-contingent payment. Dividend payments, in contrast, are
tied to the performance of the bank’s assets, which is difficult for outsiders to monitor. By
giving banks less discretion over payouts, short term deposits offer more discipline over bank
managers than does outside equity."
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subject to the first order conditions from differentiating with respect to st, xt
respectively, and using the Lagrange multiplier λt for the constraint:

(1 + λt)Et(Λt,t+1Ωt+1(RK
t+1 − Rt+1 + (Rt+1 − RE

t+1)xt)) = λtΘ(xt)(3.22)

(1 + λt)EtΛt,t+1Ωt+1(Rt+1 − RE
t+1) = λtΘ′(xt)(3.23)

By eliminating the Lagrange multiplier, this reduces to:

Et(Λt,t+1Ωt+1(RK
t+1−Rt+1 +(Rt+1−RE

t+1)xt)) = EtΛt,t+1Ωt+1(Rt+1−RE
t+1)

Θ(xt)

Θ′(xt)
(3.24)

Given the definition of φt in (3.21), we obtain, similarly to the internal equity
case:

Ωt = 1− σB + σBΘ(xt)φt (3.25)

with Ωt corresponding to the GKQ solution in Appendix 3.

3.7.3 Aggregation

At the aggregate level the banking sector balance sheet is:

QtSt = Nt + qt + Dt

At the aggregate level net worth is the sum of existing (old) bankers and new
bankers:

Nt = No,t + Nn,t

Net worth of existing bankers equals earnings on assets held in the previous
period net cost of deposit finance, multiplied by a fraction σB, the probability
that they survive until the current period:

(1 + gt)No,t = σB{(rK
t + (1− δ)Qt)St−1 − (rK

t + (1− δ)qt)Et−1 − RtDt−1}

Since new bankers cannot operate without any net worth, we assume that
the family transfers to each one the fraction ξB/(1− σB) of the total value assets
of exiting bankers. This implies:

(1 + gt)Nn,t = ξB[rK
t + (1− δ)Qt]St−1 (3.26)

In aggregate leverage (in terms of net worth) is given by

φt =
QtSt

Nt
(3.27)
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Finally in the absence of credit policy by the authorities the model is closed
by household arbitrage conditions

Et[Λt,t+1Rt+1] = Et[Λt,t+1RE
t+1] = 1 (3.28)

where

RE
t =

rK
t + (1− δ)qt

qt−1
(3.29)

3.7.4 Summary of the Aggregate GK Model with Outside Equity

We again focus on the case where the borrowing constraint always binds. Then
in stationarized form we have

St = Kt

xt =
qtE

QtSt

Θ(xt)

Θ′(xt)
=

Et(Λt,t+1Ωt+1(RK
t+1 − Rt+1 + (Rt+1 − RE

t+1)xt))

EtΛt,t+1Ωt+1(Rt+1 − RE
t+1)

QtSt = φtNt

φt =
Et[Λt,t+1Ωt+1Rt+1]

Θ(xt)−Et[Λt,t+1Ωt+1(RK
t+1 − Rt+1 + (Rt+1 − RE

t+1)xt)]

(1 + gt)Nt = [rK
t + (1− δ)Qt](σB + ξB)St−1 − σB(rK

t + (1− δ)qt)Et−1 − σBRtDt−1

Dt = QtSt − Nt − qtE
Ωt = 1− σB + σBΘtφt

Et[Λt,t+1Rt+1] = Et[Λt,t+1RE
t+1] = 1

RK
t =

rK
t + (1− δ)Qt

Qt−1

RE
t =

rK
t + (1− δ)qt

qt−1

rK
t =

(1− α)PW
t YW

t
Kt−1/(1 + gt)

Et[Λt,t+1Rt+1] = Et[Λt,t+1RE
t+1] = 1
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3.7.5 Deterministic Steady State

The non-zero-growth, non-zero-net-inflation deterministic steady state of the
banking sector is:

RE = R =
Rn

Π
=

1
βg

µe = 0
S = K
Q = 1

x =
qE
QS

Λ = β

Θ′(x)
Θ(x)

=
1− RE/R

RK/R− 1 + (1− RE/R)x
QS = φN

φ =
Ω

Θ(x)−Ω(RK/R− 1 + (1− RE/R)x)
N(1 + g) = [rK + (1− δ)Q](σB + ξB)S− σB(rK + (1− δ)q)E− σBRD

D = QS− N − qE
Ω = 1− σB + ΘtσBφ

ΛR = ΛRe = 1

RK =
rK + (1− δ)Q

Q

Re =
rK + (1− δ)q

q

rK =
(1− α)PWYW(1 + g)

K

Again given K it is easy to order these equations recursively.
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3.7.6 Calibration and Functional Form

Non-financial parameters and steady state values of Π, g and H are calibrated
as in the benchmark NK model. The parameters of the banking sector are
calibrated in the following way. Following GK, choose the value of σB so that
the bankers survive 8 years (32 quarters) on average. Then with our quarterly
model, 1

1−σB
= 32. The values of Θ and ξB are computed to hit an economy

wide leverage ratio of four and to have an average credit spread of 100 basis
points per year. Then in our quarterly model σB = 0.9688, φ = 4 and RK − R =
0.0025.

For the function Θ(xt) we choose

Θt ≡ Θ(xt) = θFF(1 + εxt + κFFx2
t /2) (3.30)

Since in the steady state R = RE, µe = Θ′ = 0. We then obtain

x = − ε

κFF
(3.31)

We set ε = −2 (as in GK). Then by choosing a target for x we can pin down the
remaining parameter κ. Note that only ε

κFF
is pinned down in the deterministic

steady state, so ε remains undetermined using this calibration strategy.5

Parameters θFF, κFF and ξB are calibrated to hit a total leverage target QS
N+qE =

4, a spread RK − R = 0.01/4. We choose a targets for the outside equity ratio,
0.15 giving calibrated values for θ, ξB and κFF shown in Table 3.1.

Parameter Calibrated Value
θFF 0.4274
κFF 13.333

ξB 0.0023
ε -2

Table 3.1: GK-equity Model with Internal Habit. Calibrated Parameters.

5 However if we had two scenarios, say a ‘low risk’ and ‘high risk’ (as in Gertler et al. (2012))
then using the stochastic steady state one can in principle pin down this remaining parameter.
Alternatively these authors use the risky steady state which can be solved analytically.
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3.8 dynare code
• The GK banking models for SW preferences, GK_SW.mod, is in folder

GK

• External steady state matlab file GK_SW_steadystate.m then calls func-
tion and ss_fun_GK_SW.m respectively. fsolve then solves for the steady
state K and performs the calibration.

• A matlab file graphs_irfs_compare_NK_GK_BGG.m to compare the irfs
of the NK and banking models is also included in the folder.

3.9 exercises
1. Add and capital quality shock KQt to the GK model with equity. Use the

graph plotter to compare KQt and ISt shocks

2. Take Home Exercise:

• Modify the banking sector of the GK model with SW preferences so
that it takes the simpler form explained in Appendix 4 of the Notes.

• You will need to modify all three files GK.mod, GK_steadystate.m
and ss_fun_GK.m.

• Confirm that this alternative leads to the same equilibrium



4 T H E B G G F I N A N C I A L
A C C E L E R ATO R M O D E L

In a ‘costly state verification model’ due originally to Townsend (1979), the
modelling strategy is once again to replace Et[Λt,t+1Rt+1] = Et[Λt,t+1RK

t+1]
with a wedge that arises from the friction between a the risk neutral entrepreneur
and a financial intermediary. The former borrow from the latter to purchase
capital from capital producers at a price Qt and combine it with labour through
a production technology to produce wholesale output. In order to ensure they
cannot grow out of the financial constraint, entrepreneurs exit with probability
σE. As we shall see this setup introduces a wedge between the expected ex
post (non-riskless) rate, Et[Rt+1] and the expected return on capital Et[RK

t+1].
1

4.1 the model

The entrepreneur seeks loans lt to bridge the gap between its net worth nE,t
and the expenditure on new capital Qtkt, all end-of-period. Thus

lt = Qtkt − nE,t (4.1)

where the entrepreneur’s real net worth accumulates2 according to

nE,t = RK
t Qt−1kt−1 −

Rl,t−1

Πt
lt−1

where RK
t is the real return on capital as in the NK model and Rl,t is the nominal

loan rate to be decided in the contract. Note that all variables other than the
loan rate are expressed in real terms.

In each period an idiosyncratic capital quality shock, ψt results in a return
RK

t ψt which is the entrepreneur’s private information. Default in period t + 1

1 The model setup draws upon Faia and Monacelli (2007) as well as Bernanke et al. (1999). We
are grateful to Jonathan Swarbrick for helping with this section.

2 We stationarize later in Section 4.2.

37
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occurs when net worth becomes negative, i.e., when nE,t+1 < 0 and shock falls
below a threshold ψ̄t+1 given by

ψ̄t+1 =
Rl,tlt

Πt+1RK
t+1Qtkt

(4.2)

With the idiosyncratic shock, ψt drawn from a density f (ψt) with a lower
bound ψmin, the probability of default is then given by

p(ψ̄) =
∫ ψ̄t+1

ψmin

f (ψ)dψ

In the event of default the bank receives the assets of the firm and pays a
proportion µ of monitoring costs to observe the realized return. Otherwise the
bank receives the full payment on its loans, Rl,tlt/Πt+1 where Rl,t is the agreed
loan rate at time t.

At the heart of the model is the bank’s incentive compatibility (IC) constraint
given by

Et

[
(1− µ)RK

t+1Qtkt

∫ ψ̄t+1

ψmin

ψ f (ψ)dψ + (1− p(ψ̄t+1))
Rl,t

Πt+1
lt ≥ Rt+1lt

]
(4.3)

The LHS of (4.3) is the expected return to the bank from the contract averaged
over all realizations of the shock, the RHS is the return from a riskless bond. To
be incentive compatible, the expected return from the contract must be equal
or greater than the intermediary’s opportunity cost, which is the rate Rt+1.

Eliminating the real loan rate from (4.2), the IC constraint becomes

Et

[
RK

t+1Qtkt

(
(1− µ)

∫ ψ̄t+1

ψmin

ψ f (ψ)dψ + ψ̄t+1(1− p(ψ̄t+1))

)
≥ Rt+1lt

]
(4.4)

Now define Γ(ψ̄t+1) to be the expected fraction of net capital received by the
lender (the bank) and µG(ψ̄t+1) to be expected monitoring costs where

Γ(ψ̄t+1) ≡
∫ ψ̄t+1

ψmin

ψ f (ψ)dψ + ψ̄t+1(1− p(ψ̄t+1)) (4.5)

G(ψ̄t+1) ≡
∫ ψ̄t+1

ψmin

ψ f (ψ)dψ (4.6)

Then the optimal contract for the risk neutral entrepreneur solves

max
ψ̄t+1,kt

Et

[
(1− Γ(ψ̄t+1)) RK

t+1Qtkt

]
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given initial net worth nE,t, subject to the IC constraint (4.4) which, using (4.1),
(4.5) and (4.6), can be rewritten as

Et

[
RK

t+1Qtkt [Γ(ψ̄t+1)− µG(ψ̄t+1)] ≥ Rt+1(Qtkt − nE,t)
]

Let λt be the Lagrange multiplier associated with the IC constraint. Then the
first order conditions are

kt : Et

[
(1− Γ(ψ̄t+1)RK

t+1 + λt

[
(Γ(ψ̄t+1)− µG(ψ̄t+1))RK

t+1 − Rt+1

]]
= 0

ψ̄t+1 : Et
[
−Γ′(ψ̄t+1) + λt(Γ′(ψ̄t+1)− µG′(ψ̄t+1))

]
= 0

plus the binding IC condition if λt > 0 with λt = 0 if it does not bind. Com-
bining these two conditions, we arrive at

Et[RK
t+1] = Et[ρ(ψ̄t+1)Rt+1] (4.7)

where the premium on external finance, ρ(ψ̄t+1) is given by3

ρ(ψ̄t+1) =
Γ′(ψ̄t+1)

[(Γ(ψ̄t+1)− µG(ψ̄t+1))Γ′(ψ̄t+1) + (1− Γ(ψ̄t+1))(Γ′(ψ̄t+1)− µG′(ψ̄t+1))]

The equation (4.7) which replaces the no arbitrage condition in the NK model
is the crucial result coming out of the BGG model. Notice that in the limiting
case as ψ̄t+1 and the probability of default tend to zero, and as monitoring
costs µ disappear, Γ → 0 and the risk premium ρ(ψ̄t+1) → 1 returning us to
the arbitrage condition in the NK model with a risk-neutral wholesale firm.

So far we have set out the optimizing decision of the representative en-
trepreneur. We now aggregate assuming that entrepreneurs exit with fixed
probability 1 − σE. To allow new entrants start up we assume exiting en-
trepreneurs transfer a proportion ξE of their wealth to new entrants4 Aggregate
net worth then accumulates according to

NE,t = (σE + ξE)(1− Γ(ψ̄t))RK
t Qt−1Kt−1

and on exiting the entrepreneur consumes

CE,t = (1− σE)(1− ξE)(1− Γ(ψ̄t))RK
t Qt−1Kt−1

3 Note that ρ(ψ̄t+1) ≥ 1 iff µ ≥ 0.
4 This is a comparable mechanism to the GK model that follows. BGG assume a different

mechanism in which entrepreneurs supplement their income by working in the general labour
market.
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The resource constraint becomes

Yt = Ct + CE,t + Gt + It + µG(ψ̄t))RK
t Qt−1Kt−1

The equilibrium is completed with the aggregate IC constraint

Et

[
RK

t+1QtKt [Γ(ψ̄t+1)− µG(ψ̄t+1)]
]
= Et [Rt+1(QtKt − NE,t)]

which pins down the contract rate Rl,t. Other post-recursive macroeconomic
outcomes of interest are loans and the threshold shock value given by

Lt = QtKt − NE,t

ψ̄t =
Rl,t−1Lt−1

RK
t Qt−1kt−1

1
Πt

RK
t =

rK
t + (1− δ)Qt

Qt−1

rK
t =

(1− α)PW
t YW

t
Kt−1

which completes the financial side of the model.

4.2 summary of bgg equilibrium
We now have arrived at the BGG ‘financial accelerator’ equilibrium which, now
in stationarized, form can be summarized as follows.

Et[RK
t+1] = Et[ρ(ψ̄t+1)Rt+1]

(1 + gt)NE,t = (σE + ξE)(1− Γ(ψ̄t))RK
t Qt−1Kt−1

Et

[
RK

t+1QtKt [Γ(ψ̄t+1)− µG(ψ̄t+1)]
]
= Et [Rt+1(QtKt − NE,t)] or

φtEt

[
RK

t+1 [Γ(ψ̄t+1)− µG(ψ̄t+1)]
]
= (φt − 1)Et [Rt+1]

where φt ≡ QtKt
NE,t

is the leverage ratio and

ρ(ψ̄t+1) =
Γ′(ψ̄t+1)

[(Γ(ψ̄t+1)− µG(ψ̄t+1))Γ′(ψ̄t+1) + (1− Γ(ψ̄t+1))(Γ′(ψ̄t+1)− µG′(ψ̄t+1))]

with a resource constraint:

Yt = Ct + CE,t + Gt + It + µG(ψ̄t))RK
t Qt−1Kt−1/(1 + gt)
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(1 + gt)CE,t = (1− σE)(1− ξE)(1− Γ(ψ̄t))RK
t Qt−1Kt−1

and post-recursive equations

Lt = QtKt − NE,t

ψ̄t =
Rl,t−1Lt−1

RK
t Qt−1Kt−1

1
Πt

RK
t =

rK
t + (1− δ)Qt

Qt−1

rK
t =

(1− α)PW
t YW

t
Kt−1/(1 + gt)

4.3 deterministic steady state
The balanced growth deterministic steady state is given by

RK = ρ(ψ̄)R
NE = (σE + ξE)(1− Γ(ψ̄))RKQK/(1 + g)

RKQK [Γ(ψ̄)− µG(ψ̄)] = R(QK− NE) or
RK[Γ(ψ̄)− µG(ψ̄)] = R(φ− 1)

where φ ≡ QK
NE

and

ρ(ψ̄) =
Γ′(ψ̄)

[(Γ(ψ̄)− µG(ψ̄))Γ′(ψ̄) + (1− Γ(ψ̄))(Γ′(ψ̄)− µG′(ψ̄))]

with a resource constraint

Y = C + CE + G + I + µG(ψ̄)RKQK/(1 + g)
CE = (1− σE)(1− ξE)(1− Γ(ψ̄))RKQK/(1 + g)

and post-recursive equations

L = QK− NE

Rl =
ψ̄RKQK/(1 + g)

Lt
Π

Q = 1

RK =
rK + (1− δ)Q

Q

rK =
(1− α)PWYW(1 + g)

K
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4.4 choice of density function

We choose a log-normal distribution for ψ, log (ψ) ∼ N
(
−σ2

ψ

2 , σ2
ψ

)
. With the

mean set to −σ2
ψ

2 , put E [ψ] = 1. This which has the benefit of being mean
preserving if extending to consider volatility in σψ. We then have

p(ψ̄t) =
∫ ψ̄t

0
f

(
ψ;−

σ2
ψ

2
, σ2

ψ

)
dψ

G(ψ̄t) ≡
∫ ψ̄t

0
ψ f

(
ψ;−

σ2
ψ

2
, σ2

ψ

)
dψ

Γ(ψ̄t+1) ≡ G(ψ̄t) + ψ̄t(1− p(ψ̄t))

Then it can be shown that

G′(ψ̄t) =
1

σψ

√
2π

exp

−
(

log(ψ̄t) +
1
2 σ2

ψ

)2

2σ2
ψ


Γ′(ψ̄t+1) = 1− p(ψ̄t)

Using the first order conditions from the contract solution we then have

λt =
Et [1− p(ψ̄t)]

Et [1− p(ψ̄t)− µG′(ψ̄t+1)]

An alternative choice a uniform distribution on support ψ ∈ [1− Aψ, 1 + Aψ];
i.e.,

f (ψ) =

{
1

2Aψ
if ψ ∈ [1− Aψ, 1 + Aψ]

0 otherwise

Then
∫ ∞
−∞ f (ψ)dψ = 1 and

p(ψ) =
1

2Aψ

(
ψ− 1 + Aψ

)
Γ(ψ) =

1
4Aψ

(
ψ2 − (1− Aψ)

2
)
+ ψ(1− p(ψ))

G(ψ) =
1

4Aψ

(
ψ2 − (1− Aψ)

2
)
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Γ′(ψ) =
1

2Aψ
(1− ψ) +

1
2

G′(ψ) =
ψ

2Aψ

4.5 calibration

The parameter values used in the NK model with SW preferences are as before.
Additional financial parameters to calibrate are σψ, σE, ξE and µ. These four
parameters are calibrated to hit four targets: a default probability p(ψ̄) = 0.02
(as in Faia and Monacelli (2007)), ρ(ψ̄) = 1.0025 corresponding to a credit
spread of 100 basis points as in GK, an entrepreneur leverage QK

NE
= 2 as in

Bernanke et al. (1999) (rather lower than the bank leverage of 4 as in GK) and
entrepreneurial consumption CE

Y = 0.075. In the external steady state m.file we
solve for parameters σψ, σE, ξE, µ. In addition we solve for two endogenous
steady-state variables K, H and ψ̄ making eight variables to solve in fsolve.
Then the calibrated parameters are given in Table 5.2.5

Parameter Calibrated Value
σψ 0.3135

σE 0.9764

ξE 0.0067

µ 0.0284

Table 4.1: BGG Model with SW Preferences. Calibrated Parameters

Compared with those in Faia and Monacelli (2007) who set µ = 0.25, we
find small monitoring costs, but this calibration is necessary to hit a leverage
substantially above unity.

5 In the code we avoid a notational clash with µ already defined as a labour supply elasticity by
denoting the monitoring cost parameter above as µFF.
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4.6 dynare code
The mod file code for the BGG model is BGG_normal_SW.mod set up with
an external steady state that solves for the calibrated parameters above and for
K and ψ̄ using fsolve and an external steady state function.

4.7 exercises
1. Compare irfs for the NK, GK and BGG models with SW preferences.

2. In the BGG model now choose a uniform distribution for ψ and compare
with the normal distribution.



5 O V E R V I E W O F C A L I B R AT I O N O F
B A N K I N G M O D E L S

We calibrate a number of parameters across the models and estimate the re-
maining ones. The following tables contain discussions for the different cali-
brations.

5.1 gk model with equity
For the function Θ(xt) we choose the following parametric form

Θt ≡ Θ(xt) = θ(1 + εxt + κx2
t /2) (5.1)

Since in the steady state R = Re, µe = Θ′ = 0. We then obtain

x = − ε

κ
(5.2)

We set ε = −2 (as in GK). Then by choosing a target for x we can pin down the
remaining parameter κ. Note that only ε

κ is pinned down in the deterministic
steady state, so ε remains undetermined using this calibration strategy.1

We use data on US Banks from 1976-2008 via call reports to calibrate a num-
ber of the banking parameters. In particular, we set σB = 0.978 as banks survive
on average 77 quarters in our sample. This dataset contains key information
regarding all US commercial banks on a quarterly frequency including total
assets, commercial and industrial loans, and regulatory capital (outside equity)
that we use in the calibration process. We choose a target for the outside eq-
uity ratio of 0.1 based on the average capital holdings of banks in the call report
data. Moreover, we choose a total leverage target QS

N+qE = 5 which corresponds
roughly to the total leverage observed in our data. We also set target for the
spread RK− R = 0.0069 which corresponds to the difference between seasoned
BAA bonds and the federal funds rate.

Using these calibration targets, the parameters θ, κ and ξB can be pinned
down giving calibrated values for θ, ξB and κ shown below.

1 However if we had two scenarios, say a ‘low risk’ and ‘high risk’ (as in Gertler et al. (2012))
then using the stochastic steady state one can in principle pin down this remaining parameter.
Alternatively these authors use the risky steady state which can be solved analytically.
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Parameter Calibrated Value
σB 0.978

$ 0.8629

ξB 0.0017
θ 0.4269
ε -2
κ 13.333

Table 5.1: GK-equity Model. Parameters to Calibrate

5.2 bgg model
The parameter values used in the NK model are as before.2 Additional finan-
cial parameters to calibrate are Aψ, σE, ξE and µ. These four parameters are
calibrated to hit four targets: a default probability p(ψ̄) = 0.02 (as in Faia and
Monacelli (2007)), ρ(ψ̄) = 1.0025 corresponding to a credit spread of 100 basis
points as in GK, an entrepreneur leverage QK

NE
= 2 as in Bernanke et al. (1999)

(rather lower than the bank leverage of 4 as in GK) and entrepreneurial con-
sumption CE

Y = 0.1. In the external steady state m.file we solve for parameters
$, Aψ, σE, ξE, µ and endogenous variables K/YW and ψ. Then the calibrated
parameters are given in Table 5.2.

Parameter Calibrated Value
Aψ 0.5218
σE 0.9632
ξE 0.0172
µ 0.010

Table 5.2: BGG Model. Calibrated Parameters

2 Note that, given the change in the resource constraint of the economy with respect to the NK
case the steady state external file now solves for the steady state value of hours given the
calibrated value of $.



6 B AY E S I A N E S T I M AT I O N O F
M O D E L S

6.1 bayesian methodology
Bayesian analysis requires:

• Initial information⇒ Prior distribution

• Data⇒ Likelihood density or the probability of observing the data given
the model and parameters

• Prior and Likelihood⇒ Bayes theorem⇒ Posterior distribution

• Posterior distribution used for confidence intervals for parameters and
impulse responses.

• The posterior distribution also provides information regarding identifi-
cation of parameters - how much information does the data provide on
parameters?

Bayesian estimation is a full information systems estimation method (much
like ML). It can be thought of as ‘hybrid’ approach between informal calibra-
tion and ML. In the absence of prior information it converges to ML and if we
are sure the priors are correct we are back to calibration. It uses prior informa-
tion to identify key structure parameters enabling the utilization of additional
sources of information. A major problem with likelihood approaches is that
the likelihood surface can be flat (or almost flat) in some directions. Priors
then add ‘curvature’ to the likelihood. The Bayesian approach allows straight-
forward facilities for the construction of confidence intervals for parameter
estimates and impulse responses, forecasting and model comparison.

In practice, the Bayesian approach uses the log-linear approximation of the
original model’s non-linear optimality conditions around a non-stochastic steady
state, obtaining a linear rational expectations system, which is then solved for
the state-space form in its predetermined variables. Subsequently, standard
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Kalman recursions are applied to compute the likelihood function1 which, com-
bined with the prior assumptions about model parameters to be estimated,
allows us to evaluate their posterior probability.

Bayesian analysis is based on a few simples rules of probability. First some
notation: Suppose A, B are random variables (or events), then

probability of event A ≡ p(A)

probability of A and B ≡ p(A, B) or p(A ∩ B)
probability of A given B ≡ p(A|B) = P(A) if A, B are independent

Then, by definition of conditional probability

p(A|B) ≡ p(A, B)
p(B)

Reversing the roles of events A and B , we also have

p(B|A) ≡ p(A, B)
p(A)

Equating these expressions and rearranging, we arrive at the famous Bayes’
rule:

p(B|A) =
p(A|B)p(B)

p(A)

In Bayesian econometrics, we want to use data (say T data points y ≡
(y1, y2, · · ·yT)) to learn about the model’s parameters (say n variables, θ =
(θ1, θ2, · · ·θn)) A Bayesian approach does just that: replacing B by θ and A by y

p(θ|y) = p(y|θ)p(θ)
p(y)

Our focus is on p(θ|y): given the data, what can we tell about θ? Whereas
classical (frequentist) econometrics treats θ as some unknown fixed value(s),
Bayesian econometrics assumes that, if θ is unknown, then it should be ex-
pressed using rules of probability (i.e., θ is effectively a random object).

Noting that we’re interested in θ, we can drop p(y), so

p(θ|y) ∝ p(y|θ)p(θ)

1 The likelihood function is computed under the assumption of normally distributed distur-
bances.
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Whereas ML maximizes p(y|θ) wrt θ; Bayesian estimation maximizes p(θ|y).
Note that the prior p(θ) gives the surface more curvature,

The posterior density p(θ|y) which summarizes what we know about θ af-
ter (hence posterior) seeing the data. p(y|θ) is the likelihood density given
the model parameters - also denoted as L(θ; y). p(θ) is the prior density
p(θ|y) ∝ p(y|θ)p(θ) is like an updating rule: the data allow us to update
our priors about θ, resulting in the posterior, which combines data and non-
data information. The likelihood density is computed using the Kalman Filter
which is a recursive forecasting procedure for the unobserved states given the
observables in the linear state space form (see Miao, chapters 10 and 15).

6.2 computation
Our focus is on the posterior distribution of p(θ|y) that summarize what we
know about θ, such as (posterior) means, medians, modes, etc (and respective
standard deviations). Knowing this allows Bayesian inference expressed as
E[g(θ)|y], where g(θ) is a function of interest:

E[g(θ)|y] =
∫

g(θ)p(θ|y)dθ

Bar a few exceptions, it is often impossible to to evaluate the integral analyti-
cally⇒ simulation methods (Monte Carlo), drawing from the posterior density
p(θ|y). As the number of draws (N) increases, then we can invoke the Law of
Large Numbers and the Central Limit Theorem

Dynare proceeds through the following steps to arrive at the estimated pos-
terior distribution:

1. Solves the model for a particular parameter vector θ. Currently this is a
first-order (linear) solution

2. Evaluates the likelihood density p(y | θ) using the linear Kalman filter
and assuming Gaussian shocks

3. Maximizes p(y | θ)p(θ) numerically to arrive at the mode of θ (repeating
1 and 2 each time)

4. Computes an estimate of covariance matrix of the parameters, Σ̂θ using
the result

Σ̂θ =

(
−∂2 log(p(y | θ)

∂θ∂θ′

)−1

(6.1)
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evaluated at the mode (see De Jong and Dave, chapter 15, page 403). The
term in the brackets is the Hessian.

5. Output is reported at this stage (the prior mean, the estimated mode, its
standard deviation and a t-test). The user can stop here.

6. Proceeds to the computation of the posterior distribution using MCMC

6.2.1 Markov Chain Monte Carlo (MCMC)

The MCMC methods sample from θ wandering over the posterior, taking most
draws from high probability areas. The “Markov Chain" bit is as follows: a
given draw θ(s) usually depends on θ(s−1). It is not easy to draw directly
from p(θ|y) - we need methods that work well for any case ⇒ MH MCMC,
drawing from a candidate ("transition") distribution. From a starting value, θ0,
and thus p(θ0)p(y|θ0) can be evaluated to generate draws from the posterior
distribution. The idea here is to specify a transition density for a MC such that,
starting from some initial value and iterating a number of times, we produce
a limiting distribution which is the target distribution from which we need to
sample. The intuition here is that we want to sample from the region with the
highest posterior probability, but we also want to visit the whole parameter
space as much as possible. Given that there is a discrepancy between the
candidate and target densities, the MCMC will not take the correct draws. The
Metropolis-Hasting (MH) algorithm corrects this by calculating an acceptance
probability and eventually discarding some draws.

Because it is difficult to find a good candidate density, we usually employ a
Random Walk Chain MH algorithm:

θ∗ = θ(s−1) + z

The sampler wanders in random directions, thus visiting most of the parameter
space. z has a distribution α(θ∗|θs−1) that is usually multivariate Normal and
here the key choice is its covariance matrix. For each draw i, θ̂i = θi−1 with
probability 1− r and θ̂i = θ∗i with probability r. The acceptance probability of
each new draw is then defined by:

r = min
[

p(θ∗i )p(y|θ∗i )
p(θi−1)p(y|θi−1)

, 1
]

(6.2)

The acceptance rate is dependent on the choice of α. One chooses α to obtain
‘reasonable’ acceptance rate (by adjusting σ2

ν ).
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• where α(θ∗i |θi−1) ∼ N(θi−1, σ2
ν ) and σ2

ν = c ∗ σ2 ⇒ choose the scaling
parameter c

• Ideally 20-40% ⇒ each move goes a reasonable distance in parameter
space, but not so low as to reject too frequently

6.2.2 Testing for Convergence of MCMC

Testing for convergence of the posterior distribution is notoriously difficult,
and Dynare utilizes some indicative statistics, summarized by diagrams, as
recommended by Brooks and Gelman (1998). These diagrams are made up of

• 3 multivariate figures, representing convergence indicators for all param-
eters considered together

• 3 figures for each parameter, representing univariate convergence indica-
tors

The diagnostics in figure 6.1 are generated by the estimation command if
mh_replic is larger than 2000, mh_nblocks=2 and if option nodiagnostic is not
used.

As an example, consider the diagnostics for NK model estimated later. The
multivariate diagnostics shown below indicate that the chains converge to sim-
ilar means and distributions - Interval refers to the interval measure, and m2,
m3 refer to second and third order multivariate moment measures. However, if
one examines the individual parameters, the picture is somewhat mixed. Only
for a subset of the parameters is there clear evidence of convergence in mean
and distribution. As a minimum requirement, the multivariate diagnostics
should be seen to converge to the same values. To ensure convergence of in-
dividual parameters is not straightforward as there are no analytic results that
ensure convergence; the only analytic result is that if convergence is achieved
under MCMC then it is to the correct posterior distribution. Recommended
actions to achieve convergence are to increase the number of draws or else to
increase the value of the scale parameter in the estimation command. The latter
ensures that more of the parameter region is searched more regularly, but at
the expense of reducing the acceptance ratio. The bottom line is that one often
one has to accept that some of the convergence indicators will not always be
satisfied.
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Figure 6.1: NK model estimation for US, 100,000 draws

6.2.3 Summary

Finally, below is a summary of estimation/evaluation algorithm:

1. Compute the steady state (when dealing with the non-linear solutions of
the DSGE model, i.e. FOCs, other equilibrium conditions)

2. Construct a linear representation of the model and transform it into a
state space framework

3. Specify prior distribution (for Bayesian method): typically the mean of
prior is centred around calibrated value. Std. error reflect subjective or
objective (to cover the range of existing estimated)

4. Transform the actual data to fit properties of the model (e.g. first-differencing
or detrending)

5. Compute likelihood numerically via Kalman filter

6. Compute marginal likelihood for competitors. Bayes factors computed
via laplace approximation in large scale system

7. Draw posterior sequences using MH: compute posterior kernel, choose a
transition and use a rejection rule.
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8. Check for Convergence of MCMC.

9. Construct statistics of interest from the draws (after burned in period):
point estimates, credible sets, impulse responses, variance decomposition,
forecast, etc.

10. Examine sensitivity of the results to choice of prior.

6.3 identification issues and diagnostics in
dsge models

One should address the question of parameter identifiability in DSGE models
even before taking them to the data, as identification is a prerequisite for their
usefulness. Identification failures could come from ’marginalisation’ (from the
model structure: i.e. mapping the deep parameters to the reduced form coef-
ficients of the solution and mapping the solution to the population objective
function) or lack of information (from the data: i.e. mapping the population
to the sample objective function) and these notes provide an overview that dis-
cusses about the former. See Rothenberg (1971), Sargent (1987), Pesaran (1989)
and more recently Beyer and Farmer (2004), Iskrev (2008) and Iskrev (2010),
Canova and Sala (2009), and Komunjer and Ng (2011).

Detecting and tackling identification issues is difficult because it is often
the case in DSGE models that the mapping from structural parameters into
the model reduced form solution is highly nonlinear and the problem is com-
pounded in large-scale models. The current approaches in the literature can
mainly be summarised by three branches: 1. classical rank condition ap-
proaches that check rank deficiency of gradient matrices based on model-implied
moments (e.g. Iskrev (2010)); 2. objective function approaches focusing on pop-
ulation moments of the data (e.g. Canova and Sala (2009) and Iskrev (2008))
and 3. observational equivalence approaches focusing on (non-linear) system
matrices in the solution model (e.g. Komunjer and Ng (2011)).

The standard remedy suggested by most empirical DSGE literature is to
fix some (potentially non-identifiable) parameters and re-maximise with the
parameters that are well-identified. However, this can be problematic if param-
eters are not fixed at a consistent estimate. Canova and Sala (2009) argue that
flat objective functions lead to serious biases in estimates and that fixing some
of the troublesome parameters at arbitrary values may induce distortions in
the distribution of parameter estimates.
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However, even adding a weakly informative prior can increase the curvature
of the likelihood surface. Potential under-identification can remain hidden due
to the improper use of priors. The posterior distribution can be well defined
as long as the joint prior distribution is proper and the only symptom of poor
identification is a posterior distribution looking like the prior. As a result, it
can often be unclear to what extent the reported estimates reflect information
in the data instead of subjective beliefs indicated by the prior distribution. An-
other possible solution is to work with higher order approximations instead of
linearized models, see McManus (1992).

Iskrev (2010) performs formal identification checks on the reduced form pa-
rameters and structure or deep parameters, providing a computational toolbox
for local and global identification tests, as well as for testing the strength of
identification that is useful for detecting parameters that are weakly identified.
The procedures put forward in Iskrev (2010) and Ratto and Iskrev (2011) are
the focus of these notes.

DSGE models consist of a system of non-linear equations involving a vec-
tor zt of endogenous variables, a ut vector of random structural shocks and
a θ ⊂ Θ k-dimensional vector of deep parameters. As we have seen, most
applications use a linear approximation of the original model, i.e. expressing
the model in terms of stationary variables linearized around their steady-states.
The unique solution (if it exists), can be expressed as

zt = A(θ)zt−1 + B(θ)ut (6.3)

where A and B are functions of θ. For later use, and using Iskrev (2010) no-
tation, denote τ as the vector collecting all the reduced-form coefficients from
the DGSE model, i.e. the elements in A, Ω = BB′ and the steady-state of zt
that depend on θ, respectively τ = [τ′z, τ′A, τ′Ω].

A condition for identification is that distinct values of θ imply distinct values
of the probability density function of the data, as the latter contains all avail-
able sample information about the value of the parameter vector of interest θ.
Usually, the distribution of the data X is unknown or assumed to be Gaussian
and estimation of θ is based on the first two moments of the data. If X is not
normally distributed, higher-order moments may provide additional informa-
tion about θ, not contained in the first two moments. Define mT := [µ′, σ′T] as
the vector collecting the first and second order moments of the observable vari-
ables. Identification based on the mean and the variance of X is only sufficient
but not necessary for identification with the complete distribution, so that the
mapping from the population moments of the sample, mT, to θ is unique.
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Global identification cannot, in general, be established for unique solutions
of systems of non-linear equations, but local identification can be verified by
means of a rank condition of the Jacobian matrix JT = δmT

δθ′ . Indeed, θ0 is said to
be locally identified if JT has full column rank when evaluated at θ0 (although
this does not guarantee that the model is locally identified everywhere in the
parameter space). However, studying the rank of JT is helpful, as local identifia-
bility ensures consistent estimation of the parameters of interest and, moreover,
it will help to pinpoint the parameters that cause identification problems. For
example, the column of JT corresponding to an unidentified parameter θj will
be a vector of zeros and the rank condition will fail. Another possibility may
occur when the columns of JT are not linearly independent, due to parame-
ters entering the solution in a way that makes them indistinguishable (partial
identification).

While numerical differentiation could be used to obtain JT, this is unreliable
when the model is highly non-linear. Instead, Iskrev (2010) proposes using ana-
lytical derivatives, employing implicit derivation, breaking down the mapping
from θ to mT in two steps: i) a transformation of θ to τ, ii) a transformation
from τ to mT. The Jacobian can then be expressed as

JT =
δmT

δτ′
δτ′

δθ′
(6.4)

The first term J1 = δmT
δτ′ may be obtained by direct differentiation. Regarding

the second term, Iskrev (2010) establishes a necessary condition for identifica-
tion: the point θ0 is locally identifiable only if the rank of HT = δτ′

δθ′ evaluated
at θ0 is equal to k. The second term can be split into the three components of τ

(Ratto and Iskrev 2011 provide details on the computation and implementation
of these analytical derivatives in Dynare).2 Note that HT does not depend on
the data, thus implying that it is possible to detect lack of identification, inher-
ent to the structure of the DSGE model, before taking the model to the data. On
the other hand, the rank of JT will provide information on the identification θ

given the set of observable variables and the sample size.
The above suggests a a procedure based on Monte Carlo exploration of the

parameter space Θ of model parameters. The local analysis is performed in
turn using the Monte Carlo realisations. This provides a ‘global’ prior ex-
ploration of point identification properties of DSGE models. One starts by
constructing a sample drawn from Θ (discarding values that do not ensure sta-

2 This includes the case of non-linear DSGE models, for which the derivative of τz may not be
obtained by direct differentiation, unlike linear models.
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bility and determinacy). This step can be guided by use of priors, specifying a
theoretically admissible range and/or a particular distribution for θ. The iden-
tifiability of each draw for θj is then established by studying the rank of JT and
HT, resorting to the necessary and sufficient conditions enumerated in Iskrev
(2010):

• if HT is rank-deficient at θj, this particular point is unidentifiable (full
rank of HT is necessary for identification)

• if HT has full rank but JT does not, then θj cannot be identified for the
particular set of observables and contemporaneous and lagged moments
under consideration, i.e. given X and T

• weak identification issues when the columns of JT and HT are nearly
linearly dependent (multicollinearity analysis of the re-scaled Jacobians)

Thus, a given parameter θj may be poorly identified because it has little
impact on the reduced-from coefficients of the model ( δτ

δθj
≈ 0 or because its

impact on the reduced-form coefficients is approximately a linear combination
of δτ

δθi
of other parameters.

Performing identification analysis in Dynare along the lines of Iskrev (2010)
and Ratto and Iskrev (2011) can be carried out in ‘standard’ or ‘advanced’
modes (providing a more detailed identification analysis, which however is
beyond the scope of this discussion). The ‘point estimate’ mode is the de-
fault option in Dynare, in which local identification checks are done for the
whole set, or only a subset, of the parameters in the model at a chosen cen-
tral tendency measure, either at the defined prior or the estimated posterior,
or at the calibrated value if no prior is declared. If priors have been defined,
a Monte Carlo exploration is also available, in which the identification checks
are based on samples from the prior distribution. The routines are triggered
by simply using the command identification, which runs a check on the rank
of JT and HT based on the priors and a list of observables defined by the
user. Note that this can be carried out even before model estimation. A list
of (< options >=< values >) can be used to control Monte Carlo replications,
see Ratto and Iskrev (2011) for more details. The output of this procedure then
reveals whether or not there are identification problems, stemming from JT
and/or HT, as illustrated below for the benchmark NK model we estimate in
these Course Notes:
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==== Identification analysis ====

Testing prior mean

All parameters are identified in the model (rank of H).

All parameters are identified by J moments (rank of J)

Monte Carlo Testing

Testing MC sample

All parameters are identified in the model (rank of H).

All parameters are identified by J moments (rank of J)

The upper block shows the local point identification check at the prior mean
and the second is a Monte Carlo testing using 250 draws from the prior space
(identification(prior_mc=250)). If the rank condition fails in any of these two pro-
cedures, the procedure indicates which parameters are responsible for identi-
fication problems. In particular, it reports the associated parameter(s) that are
responsible for failing the column rank condition in the JT and/or HT and the
parameter(s) with pair-wise and multi-correlation coefficients for each column
of the Jacobian matrix equal to unity.

A further output of the identification routine is the analysis of identification
‘strength’, i.e., focusing on weak identification, summarized in two additional
plots. The procedures are based on either the asymptotic or a moment infor-
mation matrix. The first can be obtained given a sample of size T, whereas
the second can be computed based on Monte Carlo simulations for samples of
size T, from which sample moments of the observed variables are computed,
forming a sample of N replicas of simulated moments. The corresponding in-
formation matrix is then obtained as IT(θ|mT) = HTΣmT HT, where ΣmT is the
covariance matrix of simulated moments.

The ‘strength’ of identification for θi is computed as

si =
√

θ2
i /IT(θ)

−1
(i,i) (6.5)

which works like a t-test for θi. This can be decomposed into a ‘sensitivity’ and
‘correlation’ parts, the first referring to the case when weak identification arises
when the moments do not change with θi and the second when collinearity
dampens the effect of θi. The former is defined as

∆i =
√

θ2
i · IT(θ)(i,i) (6.6)
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which can also be normalised relative to the prior standard deviation for θi:
σ(θi), weighting the information matrix using the prior uncertainty:

∆prior
i = σ(θi) ·

√
IT(θ)(i,i) (6.7)

This is particularly useful to distinguish the cases where (8) and (9) are singular
because θi ≈ 0. It is possible to show the standard error of a parameter:

s.e.(θi) =
1
∆i

1√
1− $2

i

(6.8)

where $i denotes collinearity between the effects of different parameters so that
lack of identification and a flat likelihood may be due to either ∆i = 0 or $i = 1.

Thus, the identification command plots the measures described above (also
normalised relative to the prior standard deviation for θi), where large bars in
absolute value (in the log-scale plot) imply strong identification, for the respec-
tive θi. Figure 6.2 shows the identification strength and sensitivity component
in the moments for the NK model respectively.

In the upper panel the bars depict the identification strength of the parame-
ters based in the Fisher information matrix normalized by either the parameter
at the prior mean (blue bars) or by the standard deviation at the prior mean
(yellow bars).3 Intuitively, the bars represent the normalized curvature of the
log likelihood function at the prior mean in the direction of the parameter. If
the strength is 0 (for both bars) the parameter is not identified as the likeli-
hood function is flat in this direction. The larger the absolute value of the bars,
the stronger the identification. The lower panel decomposes further the effect
shown above. Weak identification can be due to either i) other parameters hav-
ing exactly the same effect on the likelihood, or ii) that the likelihood does not
change at all with the respective parameter. This latter effect is the sensitivity
effect and is plotted in the bottom panel (scaling with the prior mean in blue
or the prior standard deviation in yellow).

Figure 6.3 shows an aggregate measure of how changes in the elements of
the parameter vector θ impact on the model moments. The impact is mea-
sured locally using the Jacobian. The problem is that the derivatives are not
scale invariant and thus not easily comparable, so Dynare uses three differ-
ent normalization/standardization procedures with respect to each parameter.

3 The weighting with the prior standard deviation is particularly useful for cases where the prior
mean is 0. In this case the weighting with the prior mean would falsely signal an identification
strength of 0.
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Figure 6.2: Identification Strength in NK Model- We can see that all parameters in the
NK model are identified. The model parameters on the x-axis are ranked
in increasing order of strength of identification. The larger the value, the
stronger is the identification, as is the case for ξp in the rightmost diagram.
In contrast, the identification for θdy in the leftmost diagram is the weakest.

The respective Jacobian refer to i) the moments matrix, indicating how well
a parameter can be identified due to the strength of its impact on moments,
ii) the solution matrices, indicating how well a parameter could in principle
be identified if all state variables were observed, and iii) the Linear Rational
Expectation (LRE) model, indicating trivial cases of non-identifiability due for
example to the fact that some parameters always show up as a product in the
model equations.4

To completely rule out a flat likelihood at the local point, one can also check
collinearity between the effects of different parameters on the likelihood. If
there is a exact linear dependence between a pair and among all possible com-
binations, their effects on the moments are not distinct and the violation of this
condition must indicate a flat likelihood and lack of identification. From high

4 This does not apply to the estimation of exogenous shocks.
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Figure 6.3: Sensitivity in NK Model- We can see that all parameters have a non-
negligible effect on the moments of the NK model.

correlations to near-exact collinearity one may suspect some weak identifica-
tion (due to partial identification). The details of collinearity analysis require
the advanced analysis option (advanced = 1) which prints the results of the
brute force search for the groups of parameters whose columns in the Jaco-
bian matrix best explain each column of the Jacobian. The default maximum
dimension of the group is 2 and the dimensionality is controlled by the op-
tion (max_dim_cova_group = INTEGER). For more information on parameter
similarities and high correlation Figure 6.4 plots collinearity patterns for the
critical collinearities (i.e. dark yellow spots for higher correlation).

The following box prints the syntax for the default identification procedures
in DYNARE IN NK: point identification at the prior mean, the MC exploration
using the draws from the prior distribution and identification strength mea-
sured at the mean and weighted by the prior standard deviation.

varobs dyobs dcobs dinvobs dwobs robs pinfobs labobs;

identification;

identification(advanced=1,max_dim_cova_group=3);



6.4 estimation of the nk and banking models 61

e
p
s
A

epsA

e
p
s
G

epsG

e
p
s
M

C
S

epsMCS

e
p
s
M

R
S

S

epsMRSS

e
p
s
M

P
S

epsMPS

e
p
s
R

P
S

epsRPS

e
p
s
IS

epsIS

s
ig

m
a
_
c

sigma_c

p
s
i

psi

c
h
i

chi

p
h
iX

phiX

x
ip

xip

x
iw

xiw

g
a
m

m
a
p

gammap

g
a
m

m
a
w

gammaw

rh
o
_
r

rho_r

th
e
ta

_
p
ie

theta_pie

th
e
ta

_
y

theta_y

th
e
ta

_
d
y

theta_dy

rh
o
A

rhoA

rh
o
G

rhoG

rh
o
M

C
S

rhoMCS

rh
o
M

R
S

S

rhoMRSS

rh
o
M

P
S

rhoMPS

rh
o
R

P
S

rhoRPS

rh
o
IS

rhoIS

prior_mean - Collinearity patterns with 1 parameter(s)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.4: Pairwise Collinearity Patterns in NK Model - The depicted plot shows an
example for a set size of one. The plot shows which linear combination of
parameters shown in the columns best replicates/replaces the effect of the
parameter depicted in the row on the moments of the observables. Higher
values imply the relative redundancy and thus weak or un-identifiability
of the parameter under consideration. The darker the brown squares are,
the more critical is the collinearity between parameters. For example, the
first row signifies that there is a strong correlation between the effect of
technology shock standard-deviation on the NK model moments and the
effect of government spending shock standard-deviation.

6.4 estimation of the nk and banking models

We estimate the models with seven observables: growth in output, consump-
tion, investment, real wage; hours worked, inflation and the nominal interest
rate. Shocks are seven exogenous AR1 shock processes to technology, govern-
ment spending, the real marginal cost (the latter being interpreted as a mark-up
shock), the marginal rate of substitution, an investment shock, a risk premium
shock and a shock to monetary policy. So far then we do not need the shock
to trend growth. But if we are to add a further financial series to represent
the spread, RK

t − Rt, then we do need this extra shock. Then the proposed
measurement equations similar to Smets and Wouters (2007a) are:
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6.4.1 Results for the NK Model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Measurment equations use with demeaned data(prefilter=1)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

dyobs = log(Y/Y(-1)*(1+g));

dcobs = log(C/C(-1)*(1+g));

dinvobs = log(I/I(-1)*(1+g));

dwobs = log(W/W(-1)*(1+g));

labobs = (Hd-STEADY_STATE(Hd))/STEADY_STATE(Hd);

pinfobs = log(PIE);

robs = Rn-1;

spreadobs = spread;

The data is described in the Appendix. This section sets out a strategy for
the calibration and Bayesian estimation of the model parameters. First we set
the nominal interest rate to 1.331847, Π = 0.866298, g = 0.003551, σc = 1.5.
Together these imply a value of β = 0.998. We then set ζ = 7, µ = 3, α = 0.67,
gy = 0.18. We calibrate θ to hit a Frisch parameter value δF = 2.5 which is
at the upper end of the empirical range (see discussion in Section 2.4). We
set Calvo parameters ξp = ξw = 0.75 to hit observed contract frequencies. In
the NK model parameters that must be estimated are φX, χ, γp, γw and all
parameters associated with the policy rule and the AR1 shock processes.

For the banking models, as far as possible we calibrate parameters to hit
target values in the balanced growth steady state set out above. The only
parameter that cannot be calibrated in this way is ε (or κ) in (5.1).

Results for the NK model, without the spread data, obtained using mode_compute
option 6 (options 4, 8 and 9 did not yield a positive definite Hessian) and
100000 MCMC draws (with convergence) took over 2 hours on my lap-top
with reasonable results:

RESULTS FROM POSTERIOR ESTIMATION

Log data density [Laplace approximation] is 5294.385239.
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parameters prior mean mode 90% HPD interval pstdev

sigma_c 1.500 1.2158 1.0473 1.3903 0.3750

psi 2.000 2.4399 1.6353 3.2704 0.7500

chi 0.500 0.3968 0.3178 0.4753 0.1000

phiX 2.000 0.5636 0.3414 0.7820 0.7500

xip 0.500 0.6052 0.5473 0.6634 0.1000

xiw 0.500 0.5176 0.4495 0.5903 0.1000

gammap 0.500 0.3572 0.2097 0.4990 0.1000

gammaw 0.500 0.6116 0.4621 0.7606 0.1000

rho_r 0.750 0.6706 0.6090 0.7320 0.1000

theta_pie 1.500 1.9980 1.7713 2.2312 0.2500

theta_y 0.120 0.0055 -0.0153 0.0261 0.0500

theta_dy 0.120 0.1857 0.1189 0.2556 0.0500

rhoA 0.500 0.9777 0.9685 0.9870 0.2000

rhoG 0.500 0.9605 0.9506 0.9704 0.2000

rhoMCS 0.500 0.9121 0.8814 0.9431 0.2000

rhoMRSS 0.500 0.9681 0.9517 0.9849 0.2000

rhoMPS 0.500 0.2939 0.1733 0.4120 0.2000

rhoRPS 0.500 0.5987 0.4761 0.7205 0.2000

rhoIS 0.500 0.9390 0.9061 0.9727 0.2000

standard deviation of shocks

prior mean post. mean 90% HPD interval

epsA 0.001 0.0093 0.0085 0.0100

epsG 0.001 0.0321 0.0295 0.0347

epsMCS 0.001 0.0147 0.0124 0.0169

epsMRSS 0.001 0.0338 0.0256 0.0423

epsMPS 0.001 0.0027 0.0024 0.0030

epsRPS 0.001 0.0052 0.0032 0.0071

epsIS 0.001 0.0166 0.0132 0.0200
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Simulating the model with a second-order stochastic solution gives the vari-
ance decomposition:

APPROXIMATED VARIANCE DECOMPOSITION (in percent)

epsA epsG epsMCS epsMPS epsIS epsMRSS epsRPS

Y 49.29 0.70 4.08 0.15 11.51 34.04 0.22

C 43.99 10.88 1.56 0.09 14.15 29.21 0.13

I 33.83 6.15 8.58 0.17 26.12 24.93 0.23

H 1.17 3.79 10.26 0.90 2.71 79.93 1.23

W 53.02 1.88 28.19 0.48 11.77 4.05 0.60

R 7.74 3.31 7.44 35.65 15.08 3.46 27.31

Q 0.76 0.24 1.19 0.99 94.54 0.48 1.79

Rn 6.16 5.23 4.53 4.04 47.00 3.57 29.47

PIE 9.32 3.37 7.81 29.90 18.48 4.68 26.44

RK 3.00 1.02 6.78 12.53 49.83 1.56 25.28

spread 0.40 0.10 2.68 16.35 40.68 0.29 39.51

CEquiv 65.85 7.96 0.87 0.00 13.72 11.59 0.00

So from a welfare (Ωt) point of view the most important shocks are those to
the A, MRSS, IS, and G.

6.4.2 Results for the GK Model

ESTIMATION RESULTS

Log data density is 5299.017734.

parameters prior mean mode 90% HPD interval pstdev

sigma_c 1.500 1.3569 1.1848 1.5244 0.3750

psi 2.000 1.8580 1.0802 2.6111 0.7500

chi 0.500 0.4219 0.3521 0.4929 0.1000
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phiX 2.000 1.5327 0.8887 2.1729 0.7500

xip 0.500 0.6573 0.6097 0.7040 0.1000

xiw 0.500 0.5076 0.4291 0.5883 0.1000

gammap 0.500 0.2769 0.1565 0.3941 0.1000

gammaw 0.500 0.6084 0.4605 0.7570 0.1000

rho_r 0.750 0.6647 0.5972 0.7325 0.1000

theta_pie 1.500 1.9528 1.7273 2.1831 0.2500

theta_y 0.120 0.0077 -0.0119 0.0269 0.0500

theta_dy 0.120 0.1804 0.1126 0.2490 0.0500

rhoA 0.500 0.9874 0.9812 0.9938 0.2000

rhoG 0.500 0.9617 0.9510 0.9723 0.2000

rhoMCS 0.500 0.9249 0.8918 0.9589 0.2000

rhoMRSS 0.500 0.9665 0.9519 0.9816 0.2000

rhoMPS 0.500 0.3081 0.1881 0.4299 0.2000

rhoRPS 0.500 0.5522 0.4315 0.6745 0.2000

rhoIS 0.500 0.8606 0.8304 0.8918 0.2000

standard deviation of shocks

prior mean post. mean 90% HPD interval

epsA 0.001 0.0093 0.0085 0.0100

epsG 0.001 0.0306 0.0281 0.0331

epsMCS 0.001 0.0160 0.0133 0.0186

epsMRSS 0.001 0.0305 0.0220 0.0384

epsMPS 0.001 0.0027 0.0024 0.0030

epsRPS 0.001 0.0063 0.0038 0.0088

epsIS 0.001 0.0370 0.0294 0.0447

APPROXIMATED VARIANCE DECOMPOSITION (in percent)

epsA epsG epsMCS epsMPS epsIS epsMRSS epsRPS

Y 60.29 0.46 6.58 0.27 5.66 26.59 0.16

C 60.31 5.91 3.06 0.16 7.17 23.09 0.30

I 35.63 3.62 17.21 1.67 19.02 22.36 0.49

H 1.84 4.38 16.14 1.34 2.84 72.60 0.85

W 63.27 1.03 25.87 0.43 5.87 2.96 0.57
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R 5.94 2.48 9.18 38.83 25.70 3.57 14.28

Q 1.62 0.61 4.19 3.64 86.79 1.81 1.34

Rn 6.76 4.15 7.67 7.25 58.07 4.45 11.65

PIE 7.90 2.64 9.72 31.73 29.94 5.01 13.07

RK 3.08 1.32 9.34 16.10 57.50 3.08 9.58

spread 1.77 0.77 6.87 20.07 53.96 2.21 14.35

N 4.98 0.58 9.15 15.13 63.53 3.08 3.55

CEquiv 90.72 2.08 0.79 0.03 2.13 4.24 0.01

omega 1.71 1.13 7.03 18.36 65.93 1.82 4.02

6.4.3 Results for the BGG Model

ESTIMATION RESULTS

Log data density is 5283.512639.

parameters prior mean mode 90% HPD interval pstdev

sigma_c 1.500 1.7425 1.4101 2.0791 0.3750

psi 2.000 0.9408 0.3546 1.5355 0.7500

chi 0.500 0.3570 0.2886 0.4267 0.1000

phiX 2.000 2.7642 1.8455 3.6465 0.7500

xip 0.500 0.7034 0.6496 0.7594 0.1000

xiw 0.500 0.4189 0.3079 0.5284 0.1000

gammap 0.500 0.3052 0.1596 0.4443 0.1000

gammaw 0.500 0.5902 0.4440 0.7409 0.1000

rho_r 0.750 0.7058 0.6570 0.7558 0.1000

theta_pie 1.500 1.9603 1.7262 2.1896 0.2500

theta_y 0.120 -0.0103 -0.0346 0.0143 0.0500

theta_dy 0.120 0.2245 0.1553 0.2929 0.0500

rhoA 0.500 0.9763 0.9643 0.9884 0.2000

rhoG 0.500 0.9666 0.9547 0.9783 0.2000

rhoMCS 0.500 0.8798 0.8302 0.9297 0.2000

rhoMRSS 0.500 0.9563 0.9355 0.9779 0.2000
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rhoMPS 0.500 0.2453 0.1369 0.3517 0.2000

rhoRPS 0.500 0.8679 0.7985 0.9400 0.2000

rhoIS 0.500 0.7383 0.6457 0.8269 0.2000

standard deviation of shocks

prior mean post. mean 90% HPD interval

epsA 0.001 0.0092 0.0084 0.0099

epsG 0.001 0.0288 0.0264 0.0312

epsMCS 0.001 0.0202 0.0153 0.0249

epsMRSS 0.001 0.0223 0.0158 0.0289

epsMPS 0.001 0.0026 0.0023 0.0029

epsRPS 0.001 0.0024 0.0013 0.0035

epsIS 0.001 0.0555 0.0380 0.0725

APPROXIMATED VARIANCE DECOMPOSITION (in percent)

epsA epsG epsMCS epsMPS epsIS epsMRSS epsRPS

Y 8.08 1.23 80.71 0.36 1.73 7.87 0.01

C 16.01 4.34 60.53 0.45 3.94 14.64 0.09

I 3.29 0.37 89.80 1.75 0.79 3.79 0.21

H 0.56 4.86 71.36 1.08 0.13 21.98 0.03

W 5.52 0.04 92.71 0.18 1.29 0.22 0.04

R 1.50 1.34 7.21 72.61 0.75 2.44 14.14

Q 0.17 0.01 1.79 1.55 96.21 0.17 0.11

Rn 4.87 5.24 49.21 6.13 3.67 17.47 13.41

PIE 4.04 4.22 37.98 24.11 2.87 14.07 12.71

RK 1.27 0.17 18.68 34.66 43.53 1.07 0.61

spread 0.44 0.53 18.36 44.94 34.93 0.29 0.51

CEquiv 9.39 1.83 82.24 0.04 4.43 2.08 0.00
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6.5 bayesian model comparisons
First, let us go back to Bayes Rule

p(θ|y) = p(y|θ)p(θ)
p(y)

∝ p(y|θ)p(θ)

So far we have not needed the unconditional density p(y) to maximize p(θ|y)
wrt θ. This is computed by integrating over the prior distribution to obtain

p(y) =
∫

Θ
p(y|θ)p(θ)dθ

For a particular model i from a number of alternatives, say mi, we can define a
density conditional on this model

p(y|mi) =
∫

Θ
p(y|θ, mi)p(θ, mi)dθ

where p(θ, mi) is the prior for that model. We refer to p(y|mi) as the marginal
likelihood associated with model mi.

Bayesian inference also allows a framework for comparing alternative and
potentially misspecified models based on their marginal likelihood. For a given
model mi ∈ M and common dataset, the latter is obtained by integrating out
vector θ,

p (y|mi) =
∫

Θ
p (y|θ, mi) p (θ|mi) dθ

where pi (θ|mi) is the prior density for model mi, and p (y|mi) is the data den-
sity for model mi given parameter vector θ. To compare models (say, mi and
mj) we calculate the posterior odds ratio which is the ratio of their posterior

model probabilities (or Bayes Factor when the prior odds ratio, p(mi)
p(mj)

, is set to
unity):

POi,j =
p(mi|y)
p(mj|y)

=
p(y|mi)p(mi)

p(y|mj)p(mj)
(6.9)

BFi,j =
p(y|mi)

p(y|mj)
=

exp(LL(y|mi))

exp(LL(y|mj))
(6.10)

defining the log-likelihood

LL(y|mi) ≡ log(p(y|mi))
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noting that x = exp(log x)). Components (6.9) and (6.10) provide a framework
for comparing alternative and potentially misspecified models based on their
marginal likelihood. Such comparisons are important in the assessment of rival
models.

Given Bayes factors we can easily compute the model probabilities p1, p2, · ·
·pn for n models. Since ∑n

i=1 pi = 1 we have that

1
p1

=
n

∑
i=2

BFi,1

from which p1 is obtained. Then pi = p1BF(i, 1) gives the remaining model
probabilities. The MATLAB programme, modelcomparison.m, computes these
probabilities give the the log-likelihood values from the competing models.
The following table provides a formal Bayesian comparison of the benchmark
NK model with both the GK and BGG models, using both the second stage
log-likelihood (preferable, as it pertains to the recovered posterior density).

NK GK BGG
LLs (2nd stage) 5294.385239 5299.017734 5283.512639

prob. 0.0096 0.9904 0.0000

Table 6.1: Marginal Log-likelihood Values and Posterior Model Odds

Our model comparison analysis suggests that the presence of BGG financial
frictions not does improve model fit, but NK frictions do. Recall, however, that
the results are sensitive to the length of sample and choice of observables (also
see exercises in Slides).

A limitation of the likelihood race methodology is that the assessment of
model fit is only relative to its other rivals with different restrictions. The out-
performing model in the space of competing models may still be poor (po-
tentially misspecified) in capturing the important dynamics in the data. To
further evaluate the absolute performance of one particular model against data,
in a later section we compare the model’s implied characteristics with those of
the actual data (a comparison with benchmark DSGE-VAR is also useful).
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6.6 second moment comparisons with data

The focus on various alternative specifications seeks to address some of the
concerns with Bayesian model comparisons pointed out by Sims (2003). By
estimating a large number of model variants, this method intends to complete
the space of competing models and to compute posterior odds that take into
consideration other (seemingly irrelevant) aspects of the specification. One
obvious pitfall or limitation of this methodology is that the assessment of how
fit a model is only relative to its other rivals with different restrictions. The
outperforming model in the space of competing models may still be poor in
capturing the important dynamics in the data.

Sims (2003) argues when weighing the evidence in favor of a particular char-
acteristic of the model failing to account for other aspects of the specification
can lead to disparate inference. In other words, the Bayesian model compari-
son (based on Bayes factors and posterior odds) is criticized on the basis of the
argument that the models considered are too sparse. In such cases, posterior
odds may lead to extreme outcomes and may also be highly dependent on the
prior distribution. Sims (2003) proposes that the possible solution is to ‘fill the
space of models’ to make the model comparison more robust. Recent work
by Del Negro et al. (2007) also seeks to address the lack of continuity in the
model space when comparing DSGE models relative to BVARs, by combining
data with artificial observations generated by the model. To further evaluate
the absolute performance of one particular model (or information assumption)
against data, in a later section we compare the model’s implied characteristics
with those of the actual data and with a benchmark DSGE-VAR model.

The summary statistics such as first and second moments have been standard
for researchers to use to validate models in the literature on DSGE models,
especially in the RBC tradition. As the Bayes factors (or posterior model odds)
are used to assess the relative fit amongst a number of competing models,
the question of comparing the moments is: can the models correctly predict
population moments, such as the variables’ volatility or their correlation, i.e.
to assess the absolute fit of a model to macroeconomic data.

Following Schorfheide (2000), let yrep be a sample of observation that one
could have observed in the past or that one might observe in the future. One
can derive the sampling distribution of yrep given the current state of knowl-
edge using the Bayes theorem: p(yrep|y) =

∫
L(yrep|θ)p(θ|y)dθ. Assume that

T(y) is a test quantity that reflects an aspect of the data (moment) that one
wants to check, e.g. correlation between output and inflation or the output
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volatility. In order to assess whether the estimated model can replicate pop-
ulation moments, one sequentially generates draws from the posterior distri-
bution, p(θ|y) and the predictive distribution p(yrep|y) so that the predictive
T(yrep) can be computed.

For the simulation and computation of moments, Dynare assumes that the
shocks follow a normal distribution. In a stochastic set-up, shocks are only al-
lowed to be temporary. A permanent shock cannot be accommodated because
of the need to stationarize the model. Also the expectations of future shocks
in a stochastic model must be zero. But in Dynare we can make the effect of
the shock propagate slowly throughout the economy by specifying the shock’s
process and introducing a “latent shock variable”, that affects the model’s true
exogenous variable, which is itself an AR(1). In a stochastic framework, these
exogenous variables take random values in each period. In Dynare, these ran-
dom values follow a normal distribution with zero mean, but we can (and
have to) specify the variability of these shocks (within the shock;...end; block).
So setting period=1000 when simulating the model specifies that the model is
simulated over 1000 periods, where Dynare computes the path of variables
over a 1000 period horizon by solving all the equations for every period, and
this can be used to compute the (empirical) moments of the simulated variables
(i.e. simulated model solutions).

To obtain the model-generated moments based on the real world data (i.e.
posterior distribution), simply use the stoch_simul keyword after the estima-
tion command. Table 6.2 presents some selected second moments implied by
the above estimations of models 1 and 2. In particular, we compute these
model-implied statistics by solving the models at the posterior means obtained
from estimation. The results of the models’ second moments are compared
with the second moments in the actual data to evaluate the models’ empirical
performance.

We have so far considered autocorrelation only up to order 1. To further
illustrate how the estimated models capture the data statistics and persistence
in particular, we now plot the autocorrelations up to order 10 of the actual
data and those of the endogenous variables generated by the model variants.
Using the stoch_simul keyword and argument, e.g., ar=10 we produce auto-
correlations up to order 10. All simulation outputs from Dynare are stored
in FILENAME_results.mat in the working directory. So we reload it to extract
useful fields (stored in the struc. array oo_ ) For instance, the simulated au-
tocorrelation function can be found on the diagonal of the field oo_.autocorr.
To compute and plot the sample ACFs from the data, we need subfunctions
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Model Output Investments Wage Int. Rate Inflation Spread
Means

Data 0.3551 0.3635 0.3413 1.3318 0.8663 0.8031

NK 0.3544 0.3544 0.3544 1.2882 0.8277 -0.0027

GK 0.3544 0.3544 0.3544 1.3022 0.8402 0.6938

BGG 0.3544 0.3544 0.3544 1.2866 0.8202 0.7105

Standard Deviation
Data 0.8017 2.1127 0.7531 0.9493 0.5855 0.5435

NK 0.8393 2.2463 1.9049 1.4562 0.8280 1.1764

GK 0.7953 2.7529 2.7893 0.7787 0.6756 1.3578

BGG 0.9292 3.1188 1.2070 0.8669 0.8432 1.4948

Cross-correlation with Output
Data 1.00 0.6791 0.0167 -0.0675 -0.1772 0.1211

NK 1.00 0.7621 0.5410 -0.0216 -0.0584 0.1514

GK 1.00 0.7538 0.4425 -0.0840 -0.0565 0.3253

BGG 1.00 0.7728 0.5190 0.1375 0.2324 0.5295

Table 6.2: Selected Moments of the Model Variants

acfcomp.m and autocov.m. Finally, in the working directory, acfs_plot.m plots
the sample ACFs and estimated ACFs.

6.7 impulse response functions

The following figure 6.5 depicts the mean responses corresponding to a pos-
itive one standard deviation technological shock. The endogenous variables
of interest are the observables in the estimation and each response is for a 10

period (2.5 years) horizon. All impulse responses are computed simulating the
vector of DSGE model parameters at the posterior mean values computed from
estimation.
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Figure 6.5: NK model IRFs- Technology Shock
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6.8 variance and historical decompositions
As explained above, impulse response functions allow us to analyse the ef-
fects of a shock to one of the endogenous variables on to the other variables.
Variance decompositions, on the other hand, decomposes the variation in each
endogenous variable into each shock to the system, thus providing informa-
tion on the relative importance of each disturbance as a source of variation
for each variable. Historical decompositions, in turn, can be used for counter-
factual simulations. The data can be decomposed into the sum of a baseline
forecast and the contribution of all shocks. This allow us to analyse how the
data would have evolved if a shock or a combination of shocks are shut down
(i.e., their contribution is zero).

The linear state-space representation of the model solution is given by

Xt+1 = AXt + Bεt+1

Yt = CXt

where Xt is the potentially unobservable state vector and Yt is the vector of
the observables. The historical decomposition stems from the Moving Average
(MA) representation of the model state space

Yh =
h

∑
j=0

djεh−j + CAhX0 (6.11)

for h = 1, ..., T. Note that each dj is a matrix, with its ith column di,j multiplying
the ith shock; if we further define the effect of all the ith shocks on Yh as
Yi,h = ∑h

j=0 di,jεi,h−j, then we can decompose Yh as

Yh =
r

∑
i=0

Yi,h + CAhX0 (6.12)

where r is the number of shocks.
During the course of the estimation, Dynare automatically produces the

Kalman filter estimates of all the {Xt}, and for the final set of parameters
(either the mode, or the average over the MCMC iterations) it also calculates
the smoothed estimates of the {Xt}. From these it also calculates the smoothed
estimates of all the shocks. These latter, together with the smoothed estimates
of X0 are then used to calculate each of the individual terms of (6.12), with the
last term, CAhX0, shown on the historical decomposition graphs as the effect
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of ‘initial values’.

In Dynare, variance decomposition for the specific periods (specified in [ ] af-
ter the option) can be carried out by using the option conditional_variance_decomposition.
The decomposition for a given sample according to the estimated model can
be computed using the command shock_decomposition which must be followed
by the estimation statement (unless one specifies to use the calibrated parame-
ters with the option parameter_set). The following figure provides, for inflation,
historical decomposition of our estimation samples to each of the estimated
shocks (based on the estimated posterior modes obtained using the NK linear
model above). Figures 6.6a– 6.6f decompose the historical time series with the
NK model using the estimated parameters. In particular it presents the contri-
bution of the respective shocks to the deviation of the smoothed inflation from
its steady state with the coloured bars. Note that the figures below also plot
the initial conditions which represent the distance between the rational expec-
tation solution from its steady state before the shock arrives. In other words,
these initial conditions refer to the part of the deviations from its steady state
explained by the unknown initial value of the state variables. The influence of
initial values usually dies out relatively quickly but its persistence depends on
how much persistence the model has.
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(a) Output (b) Consumption

(c) Investment (d) Inflation

(e) Interest rate (f ) Exchange rate

Figure 6.6: Historical Decompositions, US 1966-2008
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This section first sets out the general procedure for computing optimal Taylor-
type commitment rules in a DSGE models with any number of instruments
such as the nominal interest rate (considered up to now), fiscal instruments
(government spending, tax rates) and a macro-prudential instrument. Then
we study a macro-prudential instrument in the context of the GK model with
outside equity.

7.1 the general optimal policy problem

This section first considers the general optimal policy problem where the pol-
icymaker has a number of instruments and sets out to maximize a general
discounted welfare criterion subject to the constraints of a DSGE model. If the
policymaker is able to commit, the setting of instruments can be conducted
in terms of the ex ante optimal policy. If the expected discounted household
utility is chosen as the welfare criterion this becomes the well-known Ramsey
problem. A problem with such a solution is that it involves a complex rule
even for quite simple NK models. Much of the optimal policy literature there-
fore focuses on simple Taylor-type commitment rules that are optimized so as
to come close to mimicking the Ramsey solution and this is the approach of
this course. In the absence of an ability to commit the policymaker must set
policy to be time-consistent. Before proceeding with our treatment of simple
rules, we first briefly review the Ramsey and time-consistent solutions.

7.1.1 The Ramsey Problem

We consider a model as a special case of the following general setup recognized
by Dynare in non-linear form

Zt = J(Zt−1,Xt,wt, εt) (7.1)
EtXt+1 = K(Zt,Xt,wt) (7.2)

77
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where Zt,Xt are (n − m) × 1 and m × 1 vectors of backward and forward-
looking variables, respectively, εt is a ` × 1 i.i.d shock variable and wt is an
r× 1 vector of instruments. Under perfect information all variables dated t or
earlier are observed at time t including shocks.

Now define

yt ≡
[
Zt
Xt

]
Then, as in Dynare User Guide, chapter 7, (7.1) and (7.2) can be written

Et[ f (yt, yt+1, yt−1,wt, εt+1)] = 0 (7.3)
Et[εt+1] = 0

Et[εt+1ε′t+1] = Σε

This is quite general in that yt can be enlarged to include lagged and forward-
looking variables.

The general problem is to maximize at time 0, Ω0 = E0
[
∑∞

t=0 βtu(yt, yt−1,wt)
]

subject to (7.3) given initial values Z0.1 To carry out this problem write the La-
grangian

L = E0
[
∑ βt[u(yt, yt−1,wt) + λ′t+1 f (yt, yt+1, yt−1,wt, εt+1]

]
(7.4)

where λt is a column vector of multipliers associated with the n constraints
defining the model. First-order conditions are given by

E0

[
∂L
∂wt

]
= E0

[
u3(yt, yt−1,wt) + λ′t+1 f4(yt, yt+1, yt−1,wt, εt+1)

]
= 0 (7.5)

E0

[
∂L
∂yt

]
= E0[u1(yt, yt−1,wt) + βu2(yt+1, yt,wt+1) + λ′t+1 f1(yt, yt+1, yt−1,wt, εt+1)

+
1
β

λ′t f2(yt−1, yt, yt−2,wt−1, εt) + βλ′t+2 f3(yt+1, yt+2, yt,wt+1, εt+1)]

= 0 (7.6)

where the subscripts in {ui, fi} refer to the partial derivatives of the ith variable
in u, f .

Now partition λt = [λ1,t λ2,t] so that λ1,t, the co-state vector associated
with the backward-looking component of (7.5), namely (7.1), is of dimension
(n − m) × 1 and λ2,t, the co-state vector associated with the forward-looking
component of (7.5), namely (7.2), is of dimension m× 1.

1 The treatment here is for a zero-growth steady state.
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An important optimality condition is:

λ2,0 = 0; (ex ante optimal) (7.7)
λ2,0 = λ2; (‘timeless’ solution) (7.8)

where λ2 is the deterministic steady state of λ2,t. To complete our solution we
require 2n boundary conditions. Then together with (7.7) or (7.8), Z0 given are
n of these. The ‘transversality condition’ limt→∞ λt = λ gives us the remaining
n (see Currie and Levine (1993). chapter 4).

Thus in order to achieve optimality the policy-maker sets λ2,0 = 0 at time
t = 0. As is well-known optimal policy sees an initial jump in the inflation rate
even in the absence of any shocks. The timeless solution removes this feature
and imposes a time-invariance on the solution (see Adam (2011), for example).
For the ex ante optimal policy, at time t > 0 there then exists a gain from
reneging by resetting λ2,t = 0. Thus there is an incentive to renege that exists
at all points along the trajectory of the optimal policy by re-optimizing in this
fashion. This essentially is the time-inconsistency problem facing stabilization
policy in a model with structural dynamics. An easier understanding of the
difference between the fully optimal and the timeless solution is obtained by
evaluating the linear-quadratic (LQ) approximation about the steady state of
the optimum to the problem (assuming that the optimal solution converges to
a steady state). The welfare approximation is given by by a discounted sum of
terms, starting at time t = 0, each of which is a quadratic form in ∆yt and ∆wt,
where the latter are deviations of yt and wt about their steady states, and the
weighting matrix of the quadratic form is given by the second derivatives of
the Lagrangian divided by 2; in addition the welfare approximation contains a
linear term in ∆y0 (but not any subsequent ∆yt). This latter term is irrelevant
in a system that is purely backward looking, and merely represents the initial
condition of the system. However for a forward-looking system, the initial
value of ∆X0 is dependent on the instrument, and is the reason why the fully
optimal policy sees an initial deterministic jump even when ∆Z0 starts at its
steady state value. The timeless solution ignores the linear term in the welfare
approximation.
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7.1.2 Time-Consistent (Discretionary) Policy

To evaluate the time-consistent (discretionary) policy we write the expected
loss Ωt(Zt) at time t given observed Zt, in Bellman form as2

Ωt(Zt) = Et

[
∞

∑
τ=t

βτ−tu(yt, yt−1,wt)

]
= u(yt, yt−1,wt) + βEt [Ωt+1(Zt+1)] (7.9)

Define the value function

V(Zt) = max
{wt}
{u(yt, yt−1,wt) + βEt [Vt+1(Zt+1)]} (7.10)

Then Bellman’s equation is

Vt(Zt) = max
{wt}

Et {u(yt, yt−1,wt) + βEt [Vt+1(Zt+1)]} (7.11)

In other words Ωt is maximized at time t, subject to the model constraints, in
the knowledge that a similar procedure will be used to minimize Ωt+1 at time
t + 1. The dynamic programming solution then seeks a stationary Markov Per-
fect solution of the form wt = F(Zt), Xt = G(Zt) and Vt(Zt) = V(Zt).3 There is
no computationally feasible general algorithms to find the time-consistent so-
lution, other than when the system is only backward-looking (when the fully
optimal and time-consistent policies are identical), except for the case when
the system is linear and the loss function is quadratic.4 One commonly used
approach for the general problem is to assume that policymakers can commit
to direct the system to the steady state of the full optimum, but might not
be trusted with regard to stabilization around that optimum. Then the time-
consistent problem reduces to finding the LQ approximation about the opti-
mum, and then solving the Bellman problem. The same LQ approximation is
also used to check whether the assumption of convergence of the optimum to
a steady state is correct, by evaluating the 2nd order conditions that depend
on the Riccati equation for the fully optimal case.

2 This applies only to the zero-growth steady state. To stationarize the problem for a trended
balanced-growth steady state see Appendix B.

3 See Currie and Levine (1993) and Söderlind (1999) for a LQ treatment of this problem under
perfect information and Levine et al. (2012) under imperfect information. But see Dennis and
Kirsanova (2013) for the possibility of multiple equilibria.

4 A Markov-perfect time-consistent solution requires global methods which are, as yet, not
feasible for a medium-sized NK model with many state variables. For a small RBC model
however see Dennis and Kirsanova (2015)
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7.1.3 Optimized Simple Rules

Optimal policy in the form of the Ramsey solution can be expressed as wt =
f (Zt, λ2,t). This poses problems for the implementability of policy in terms
of complexity and the observability of elements of Zt (such as the technology
process At, but more importantly λ2,t). The macroeconomic policy literature
therefore focuses on simple rules, using the Ramsey solution as a benchmark.

The general optimal policy problem seeks an optimized simple rule in which
the vector of instruments wt respond to an observed subset of macroeconomic
variables in a prescribed (for example log-linear) fashion. All our rules take
the log-linear form

logwt = D log yt (7.12)

where we define logwt ≡ [log w1,t log w2,t, · · ·, log wr,t]′ over r instruments, and
similarly for log yt, and the matrix D selects a subset of yt from which to feed-
back. Again this is quite general in that yt can be enlarged to include lagged
and forward-looking variables.

The optimized simple rules then defines the inter-temporal welfare loss at
time t in Bellman form (7.9) (again ignoring long-term trend growth for now),
sets steady-state values for instruments wt, denoted by w, computes a second-
order solution for a particular setting of w and solves the maximization prob-
lem at t = 0,

max
w,D

Ω0(Z0,w, D) (7.13)

given initial values Z0. In a purely stochastic problem we put Z0 = Z, the steady
state of Zt, maximizing the conditional welfare at the steady state. In a purely
deterministic problem there is no exogenous uncertainty and the optimization
problem is driven by the need to return from Z0 to its steady state, Z. We now
examine optimal monetary policy conducted in terms of the Ramsey solution,
discretion and either of two simple Taylor interest rate rules used up to now,
(2.54) and (2.55) which are special cases of (7.12). To allow for the possibility
that ρr = 1, we re-parameterize the feedback coefficients by setting απ = (1−
ρr)θπ, αy = (1− ρr)θy and optimizing with respect to ρr, απ and αy.

To proceed we write the inter-temporal welfare loss at time t in Bellman form
as

Ωt = ut + βEt [Ωt+1]

It is now established that the Ramsey-solution to NK models such as ours sets
Π = 1 in the steady state. Optimized rules then set Π = 1 and optimize a
second-order approximation of the mean of Ωt over ρr, θπ and θr,y. In what follows
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we focus on the purely stochastic problem (as defined above) and therefore
start at the steady state.

7.2 jr preferences
The NK model up to now with a SW utility function displays a strong wealth
effect in response to a positive technology shock. As a result household reduce
their hours relative to the steady state and “consume” more leisure. Hours and
output then do not co-move, a feature we do see in the data.

An alternative functional form for utility found in the literature from Jaimovich
and Rebello (2008) controls the wealth effect. It takes the form:

Ut =
(Ct − κHθ

t Ξt)1−σc − 1
1− σc

(7.14)

Ξt = Cγ
t Ξ1−γ

t−1 ; γ ∈ [0, 1] (7.15)

The parameter κ can be set to target H̄ (as we did using $ with the Cobb-
Douglas function previously). The parameter θ can be set to target the elasticity
of labour supply with respect to the real wage.5 This leaves γ to control for
wealth effects. With γ = 1 we have a utility function of the form

Ut =
(Ct(1− κHθ

t ))
1−σc − 1

1− σc
(7.16)

A CD utility function is less flexible in that it can only target one steady state
outcome H = H̄ whereas the JR utility function can target labour supply elas-
ticity and (as we shall see) wealth effects.

From Appendix 1.2, the first-order conditions for the household now be-
come:

Euler Consumption : 1 = RtEt [Λt,t+1] (7.17)

Stochastic Discount Factor : Λt,t+1 ≡ β
λt+1

λt
(7.18)

where : λt = UC,t − γµt
Ξt

Ct
(7.19)

and : µt = −UΞ,t + β(1− γ)Et
µt+1Ξt+1

Ξt
(7.20)

5 See Bilbiie (2009) and Bilbiie (2011) for details.
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Labour Supply :
UH,t

λt
= −Wt (7.21)

Investment FOC : Qt(1− S(Xt)− XtS′(Xt))

+ Et

[
Λt,t+1 Qt+1S′(Xt+1)X2

t+1

]
= 1 (7.22)

Capital Supply : Et

[
Λt,t+1RK

t+1

]
= 1 (7.23)

where RK
t is the gross return on capital given by

RK
t =

[
rK

t + (1− δ)Qt
]

Qt−1
(7.24)

7.3 macro-prudential regulation
The GK model with outside equity can be used to examine the effects of fi-
nancial macro-prudential regulation alongside conventional monetary policy.
We consider a rule that directly regulates capital requirements in the form of
leverage (levert), defined as the proportion of total loans to inside plus outside
equity (net worth) defined as:

levert =
QtSt

Nt + qtEt
(7.25)

Then the rule take one of two forms

log
(

levert

lever

)
= ρlever log

(
levert−1

lever

)
− levery log

(
Yt

Y

)
+ leverspread log

(
1 + spreadt
1 + spread

)
(7.26)

log
(

levert

lever

)
= ρlever log

(
levert−1

lever

)
− levery log

(
Yt/Y

YF
t /YF

)
+ leverspread log

(
1 + spreadt
1 + spread

)
(7.27)

with levery, leverspread > 0 so that leverage is require to respond counter-cyclically
(pro-cyclically) to output (spread) where spread ≡ RK

t − Rt as before. The bank
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does not optimize with respect to et, and the rule then replaces the bank’s first-
order condition for the decentralized choice of xt, (1 + λt)µe,t = Θ′tλt.

The calibration chosen is for the high decentralized equity ratio x = 0.15.
Table 7.1 sets out the results for the regulation rule with a conventional Taylor
rule for monetary policy. Since our rule regulates equity (the capital require-
ment) in a pro-cyclical manner and responds positively to spread for the direct
control of x we see a marked increase in the volatility of equity which for
higher values of the feedback coefficients involves a significant welfare cost.
Table 7.2 calculates the welfare optimized form of the rule with respect to the
feedback=levery = leverspread.

In stationarized form (See Section 2.6.1) with a shock to trend, the inter-temporal
welfare is given by

Ωt = Ut + Et
[
(1 + gt+1)βg,t+1Ωt+1

]
where

βg,t ≡ β(1 + gt)
−σc (growth-adjusted discount factor)

Given a particular equilibrium for Ct and Ht and single-period utility, Ut =
U(Ct, Ct−1, Ht) we then compute CEequivt, the increase in the given by a 1%
increase in consumption, by defining the variable:

CEequivt ≡ Ut(1.01 Ct, 1.01 Ct−1/(1 + g), Ht)−Ut

+ Et
[
(1 + gt+1)βg,t+1CEequivt+1

]
Then we use the deterministic steady state of CEequivt, CE, to compare wel-
fare outcomes: for two welfare outcomes, W1 and W2, we define ce ≡ W1−W2

CE
reported in Table below.

The welfare cost of regulation in consumption equivalent percentage units
of the deterministic steady-state (CE) is reported and is significant at around
0.13% - 0.24%consumption equivalent for our chosen calibration of parameters
and shocks. The gain from using an optimized form of the regulatory rule
with feedback coefficients levery = leverspread = 0.18 − 0.19 is more modest
and of the order of around 0.06% consumption equivalent compared with a
weak rule of with feedback coefficients of 0.1 or an over-aggressive rule with
feedback 0.5.

7.4 dynare codes
The code for the material of this section is in the folder Policy. The mod file
GK_equity_MPR.mod now has both a flexi-price bloc and an internal or exter-



7.5 exercises 85

feedback Welfare E Spread Y C I H Rn SD(E) SD(lever)

No MPR -405.47 0.567 0.0044 0.766 0.474 0.146 0.324 1.0634 0.153 0.475

0.1 -406.07 0.555 0.0045 0.764 0.473 0.145 0.324 1.065 0.283 0.054

1.0 -406.60 0.249 0.0047 0.762 0.472 0.144 0.324 1.066 0.529 0.542

Table 7.1: A Regulatory Rule in the GK-equity Model.
The table reports ergodic means except where SDs are indicted. External
Habit and Standard Taylor Monetary Rule. feedback=levery = leverspread.

ρlever = 0.7

feedback Welfare CE Cost of MPR SD(lever)

No MPR -405.47 0 0.475

0.1 -406.07 0.1276 0.054

0.17 -406.0623 0.1260 0.092

0.18 -406.0622 0.1259 0.095

0.19 -406.0622 0.1259 0.103

0.2 -406.06 0.1260 0.108

0.3 -406.07 0.1276 0.163

0.4 -406.10 0.1340 0.217

0.5 -406.14 0.1425 0.271

1.0 -406.60 0.2403 0.542

Table 7.2: Optimized Regulatory Rule in the GK-equity Model.
External Habit6 and Standard Taylor Monetary Rule.

feedback=levery = leverspread. A 1% permanent increase in consumption gives
a welfare gain of 4.7026

nal habit option. The exercise in Table 7.2 is carried out in GK_equity_MPR.mod
with an option to turn off MPR and replace the rule with the bank’s first-order
condition for the decentralized choice of xt, (1 + λt)µe,t = Θ′tλt.

7.5 exercises

1. Use the graph plotter to compare of the GK model with and without MPR.
In the former case choose the upper limit of the feedback parameter.
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2. Rework Tables 7.1 and 7.2 with an implementable monetary rule. What
do you notice?



8 B R I E F L I T E R AT U R E R E V I E W

Prior to the financial crisis of 2007–2008, the literature on financial frictions
in macroeconomics was relatively limited, and largely focused on asymmetric
information problems and limited contract enforceability. Asymmetric infor-
mation would emerge as either financing inefficiencies or co-ordination fail-
ures. For instance, Stiglitz and Weiss (1981) focus on the former and show how
adverse selection in finance can lead to credit rationing in which some bor-
rowers are excluded from the credit market at any price, even with profitable
projects. Diamond and Dybvig (1983) is an example of the latter, highlighting
how maturity mismatch with asymmetric information can lead to bank runs.
The combination of short-term liabilities with only partially liquid long-term
assets can generate a two-equilibrium model; a bank run equilibrium can occur
as a self-fulfilling prophecy if households believe one might occur. In Bernanke
and Gertler (1989), entrepreneurs observe information about their productivity
and due to costly state verification (see Townsend (1979)) a wedge between the
cost of internal and external finance that depends on the leverage of the bor-
rower emerges, and leads to an endogenous default rate in equilibrium. This
approach was extended further in Carlstrom and Fuerst (1997) and Bernanke
et al. (1999). Holmstrom and Tirole (1997, 1998) discuss inefficient outcomes
that emerge due to a dual moral hazard problem resulting from asymmet-
ric information in financing projects. In this model, it is the responsibility of
intermediaries to monitor the entrepreneurs, who are able to shirk. If interme-
diaries can also shirk, then there is a double moral hazard problem and both
entrepreneur and intemediary will be capital constrained to ensure they both
have sufficient ‘skin in the game’.

Financial frictions emerging from limited commitment can take a similar
form. For instance, collateral constraints arise in Kiyotaki and Moore (1997) but
due to a commitment problem rather than asymmetric information; borrowers
cannot commit to repay debt and so must hold collateral as a guarantee. This
has an important effect on macroeconomic outcomes as durable goods take on
the dual role of being both factors of production and sources of collateral. This
dual role creates an accelerator mechanism as when the value of capital falls,
firm net worth will also fall, tightening the credit constraint. The reverse is true

87
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as the credit constraint slackens during an upturn. Kehoe and Levine (1993)
and Cooley et al. (2004) also look at limited contract enforceability and reach
similar conclusions. The collateral constraints approach proposed in Kiyotaki
and Moore (1997) was used to relate fluctuations in real estate prices with
economic outcomes in Iacoviello (2005) by assuming that entrepreneurs must
post real estate as collateral for loans, and by treating real estate as a factor
of production. Here the accelerator mechanism of Kiyotaki and Moore (1997)
worked via the housing market whereby a fall in house prices would both
depress household demand and reduce investment.

Since the recent financial crisis, the number of papers studying the impor-
tance of financial frictions on macroeconomic outcomes and policy implica-
tions has grown considerably, commonly building on the mechanisms pro-
posed in the Kiyotaki and Moore (1997) (KM) collateral constraints model, or
the Bernanke et al. (1999) (BGG) costly state verification model. In KM the prop-
agation and amplification comes from the fluctuations in asset prices, while in
BGG from fluctuation of agents net worth. The KM approach was extended to
study the effects of financial constraints on the banking sector in Gertler and
Kiyotaki (2010) (GK) where the limited commitment problem of KM introduces
an agency problem between depositors and banks; when the value of bank
capital declines, the borrowing constraint tightens and limits the amount of
deposits the bank can raise and subsequently, the level of investment. Another
extension proposed in Gertler and Karadi (2011) uses this approach to analyse
the role of unconventional monetary policy. It is assumed the central bank can
perform financial intermediation at a cost, but when the borrowing constraint
tightens sufficiently, this cost is less than the inefficiency introduced by the
agency problem. The two approaches have both been applied to the housing
market. Impatient households post housing as collateral to secure mortgage
loans in Iacoviello and Neri (2010) where the mechanism of Iacoviello (2005)
is focused on the demand-side of the economy, and shown to have important
effects on the business cycle. The collateral constraints arise in Forlati and Lam-
bertini (2011) due to the Bernanke et al. (1999) costly state verification mecha-
nism which is applied to household credit by assuming households observe
a private housing-value shock that can lead to default when households are
insolvent. The authors emphasise increased housing investment risk in highly
leveraged economies.

Of the alternative approaches to introduce credit frictions, Gerali et al. (2010)
and Forni et al. (2010) introduce monopolistic competition into the banking sec-
tor with nominal interest rate rigidities. Kiyotaki and Moore (2012) and Adrian
and Shin (2009) look at the role of liquidity; the former develop a model of mon-
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etary economy with differences in liquidity across assets, whilst the latter anal-
yse how balance-sheet quantities of market-based financial intermediaries are
important macroeconomic state variables for the conduct of monetary policy.
Cúrdia and Woodford (2010) analyse the relationship between interest spreads
and monetary policy by assuming that financial intermediation consumes real
resources and that the credit spread depends on the volume of loans. Other
papers have attempted to develop the bank-run model of Diamond and Dyb-
vig (1983). Angeloni and Faia (2013) adapt Diamond (2000) and Diamond and
Rajan (2000) (themselves a development of Diamond and Dybvig) to a DSGE
setting, and Gertler and Kiyotaki (2012) incorporates both into a DSGE model.

The large influence of the BGG and KM approaches to the financial frictions
literature might be partly due to the simplicity of applying the frictions to a
representative agent, rational expectations model, solved using linear approx-
imation techniques. It has been argued in Holden et al. (2019) that this rules
out ex ante the possibility of explaining a number of key stylized facts, such as
the large positive skew in the interest spreads, and negative skews in invest-
ment. There have been a number of papers that do study the non-linear and
asymmetric effects of financial frictions which are much better suited to explain
such phenomena, usually using global solution methods, or the perturbation
based methods of Holden (2016) and Guerrieri and Iacoviello (2015). For ex-
ample, Holden et al. (2019) extend the GK approach to allow for the borrowing
constraint to only be occasionally binding. They find that the empirical accu-
racy of the simulated third moments and cross-correlations are significantly
improved compared to a model with an always binding financial constraint.
Other examples of financing constraints include He and Krishnamurthy (2013),
Brunnermeier and Sannikov (2014) and Dewachter and Wouters (2014) who
propose an occasionally binding constraint on equity rather than debt. On the
demand side, Iacoviello (2015) modifies the Iacoviello and Neri (2010) model
by fixing the supply of housing and allowing the collateral constraint on house-
hold debt to be only occasionally binding. He shows how household mortgage
default can lead to a credit crunch as banks de-leverage.

We now consider the general policy question: how when faced with the ex-
istence of multiple competing and contrasting models such as those studied
on this financial frictions option, all of which are believed to be misspecified,
should policymakers set macroeconomic policy? Deak et al. (2019) proposes
general framework that uses a pool of contrasting models for the policy de-
sign problem. The methodology uses Bayesian estimation to weight alterna-
tive models to design optimized Taylor-type rules that are robust in a sense
described below. A crucial requirement is to provide a k-period ahead predic-
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tive density, given macro-economic data. The predictive density characterizes
out-of-sample observations that have not been used up to that point in time to
estimate the posterior density of the parameter vector. As such this provides
predictions about future observations that fully incorporate the information
regarding within-model uncertainty (defined below) in the data.

The paper then investigates the welfare consequences of a standard Taylor-
type monetary policy rules using three medium-scale New Keynesian DSGE
models studied on this Course: the Smets-Wouters model in Smets and Wouters
(2007a), the workhorse model widely used in policy-making institutions for
forecasting and policy analysis, and the other two models that add GK and
BGG variants of financial frictions. Hence, the model pool can be motivated by
considering a policy maker who is uncertain how to incorporate financial fric-
tions into a DSGE model or if they should be incorporated at all. For further
details see the paper.

The purpose of this section was to provide some context for the models
presented in the course, but does not constitute a comprehensive review of
the financial frictions literature in macroeconomics. For a more comprehensive
literature survey we refer to Brunnermeier et al. (2012). We also direct the
interested reader to a recent special issue in the Review of Economic Dynamics
in Gertler and Williamson (2015).

8.1 exercise
As a take-away exercise from the Course add to the NK model a friction fac-
ing households in the housing market of the form set out in Iacoviello (2005).
Compare the monetary policy transmission mechanism with that for the NK,
GK and BGG models studied on this Course.



9 C O N C L U S I O N S

This one-day Course has covered two banking models suitable for incorpo-
ration into a DSGE modelling framework. We have shown how to set the
models up in Dynare to perform second-order perturbation solutions, estimate
the models using Bayesian methods and carry out optimal conventional and
unconventional policy exercises.

Modelling financial frictions is a very active area of current research. Topics
being investigated by the CIMS researchers include financial frictions in mod-
els with endogenous entry and medium term cycles, solutions to the case of
occasionally binding constraints and international policy coordination. This
Course has hopefully provided you with the tools necessary to participate in
this exciting area.

91





B I B L I O G R A P H Y

Adam, K. (2011). Government Debt and Optimal Monetary and Fiscal Policy.
European Economic Review, 55(1), 57 – 74.

Adrian, T. and Shin, H. S. (2009). Money, Liquidity, and Monetary Policy.
American Economic Review, 99(2), 600–605.

Angeloni, I. and Faia, E. (2013). Capital Regulation and Monetary Policy with
Fragile Banks. Journal of Monetary Economics, 60(2).

Bernanke, B. and Gertler, M. (1989). Agency Costs, Net Worth, and Business
Fluctuations. American Economic Review, 79(1), 14–31.

Bernanke, B., Gertler, M., and Gilchrist, S. (1999). The Financial Accelerator
in Quantitative Business Cycles. In M. Woodford and J. B. Taylor, editors,
Handbook of Macroeconomics, vol. 1C. Amsterdam: Elsevier Science.

Beyer, A. and Farmer, R. (2004). On the indeterminancy of New Keynesian
Economics. ECB Working Paper Series, No. 323.

Bilbiie, F. (2009). Nonseparable Preferences, Fiscal policy Puzzles and Inferior
Goods. Journal of Money, Credit and Banking, 41(2-3), 443–450.

Bilbiie, F. (2011). Nonseparable Preferences, Frisch Labor Supply and the Con-
sumption Multiplier of Government Multiplier of Government Spending:
One Solution to the Fiscal Policy Puzzle. Journal of Money, Credit and Banking,
43(1), 221–251.

Brooks, S. and Gelman, A. (1998). General Methods for Monitoring Conver-
gence of Iterative Simulations. Journal of Computational and Graphical Statistics,
7(4), 434–455.

Brunnermeier, M. K. and Sannikov, Y. (2014). A Macroeconomic Model with a
Financial Sector. American Economic Review, 104(2), 379–421.

Brunnermeier, M. K., Eisenbach, T. M., and Sannikov, Y. (2012). Macroeco-
nomics with Financial Frictions: A Survey. NBER Working Papers 18102,
National Bureau of Economic Research, Inc.

93



94 bibliography

Calvo, G. (1983). Staggered Prices in a Utility-Maximizing Framework. Journal
of Monetary Economics, 12(3), 383–398.

Canova, F. and Sala, L. (2009). Back to square one: Identification issues in dsge
models. Journal of Monetary Economics, 56, 431–449.

Carlstrom, C. T. and Fuerst, T. S. (1997). Agency Costs, Net Worth, and Busi-
ness Fluctuations: A Computable General Equilibrium Analysis. American
Economic Review, 87(5), 893–910.

Chetty, R., Guren, A., Manoli, D., and Weber, A. (2012). Does Indivisible La-
bor Explain the Difference between Micro and Macro Elasticities? A Meta-
Analysis of Extensive Margin Elasticities. NBER Macroeconomics Annual, 27,
1–56.

Cho, J.-O. and Cooley, T. F. (1994). Employment and hours over the business
cycle. Journal of Economic Dynamics and Control, 18, 411–432.

Christiano, L., Eichenbaum, M., and Evans, C. (2005). Nominal Rigidities and
the Dynamic Effects of a Shock to Monetary Policy. Journal of Political Econ-
omy, 113, 1–45.

Cooley, T., Marimon, R., and Quadrini, V. (2004). Aggregate Consequences of
Limited Contract Enforceability. Journal of Political Economy, 112(4), 817–847.

Cúrdia, V. and Woodford, M. (2010). Credit spreads and monetary policy. Jour-
nal of Money, Credit and Banking, 42, 3–35.

Currie, D. and Levine, P. (1993). Rules, Reputation and Macroeconomic Policy
Coordination. Cambridge University Press.

Deak, S., Levine, P., Mirza, A., and Pearlman, J. (2019). Designing robust
monetary policy using prediction pools. School of Economics, University of
Surrey, Discussion Paper 1219.

Del Negro, M., Schorfheide, F., Smets, F., and Wouters, R. (2007). On the fit
of new keynesian models. Journal of Business and Economic Statistics, 25(2),
123–162.

Dennis, R. and Kirsanova, T. (2013). Expectations traps and coordination fail-
ures with discretionary policymaking. Working Papers 2013_02, Business
School - Economics, University of Glasgow.



bibliography 95

Dennis, R. and Kirsanova, T. (2015). Computing Time- Consistent Markov-
Perfect Optimal Policies in Business-Cycle Models. Macroeconomic Dynamics.

Dewachter, H. and Wouters, R. (2014). Endogenous risk in a DSGE model with
capital-constrained financial intermediaries. Journal of Economic Dynamics and
Control, 43, 241–268.

Diamond, D. W. and Dybvig, P. (1983). Bank Runs, Deposit Insurance and
Liquidity. Journal of Political Economy, 91, 401 – 419.

Diamond, D. W. and Rajan, R. (2000). Liquidity Risk, Liquidity Creation and
Financial Fragility: A Theory of Banking. Journal of Political Economy, 109(6),
287 – 327.

Diamond, D. W. R. R. (2000). A Theory of Bank Capital. Journal of Finance,
LV(6).

Dixit, A. K. and Stiglitz, J. E. (1977). Monopolistic competition and optimal
product diversity. American Economic Review, 67(3), 297–308.

Faia, E. and Monacelli, T. (2007). Optimal interest rate rules, asset prices, and
credit frictions. Journal of Economic Dynamics and Control, 31(10), 3228 – 3254.

Forlati, C. and Lambertini, L. (2011). Risky mortgages in a DSGE model. Inter-
national Journal of Central Banking, 7(1), 285–335.

Forni, L., Gerali, A., and Pisani, M. (2010). Macroeconomic effects of greater
competition in the service sector : the case of Italy. Macroeconomic Dynamics,
14(5), 677–708.

Gerali, A., Neri, S., Sessa, L., and Signoretti, F. M. (2010). Credit and Banking in
a DSGE Model of the Euro Area. Journal of Money, Credit and Banking, 42(s1),
107–141.

Gertler, M. and Karadi, P. (2011). A Model of Unconventional Monetary Policy.
Journal of Monetary Economics, 58(1), 17– 34.

Gertler, M. and Kiyotaki, N. (2010). Financial Intermediation and Credit Policy
in Business Cycle Analysis. Elsevier. Chapter in the Handbook of Monetary
Economics.

Gertler, M. and Kiyotaki, N. (2012). Banking, Liquidity and Bank Runs in an
Infinite Horizon Economy. Mimeo, NYU and Princeton University.



96 bibliography

Gertler, M. and Williamson, S. (2015). Money, credit, and financial frictions.
Special issue of Review of Economic Dynamics, 18(1).

Gertler, M., Kiyotaki, N., and Queralto, A. (2012). Financial Crises, Bank Risk
Exposure and Government Financial Policy. Journal of Monetary Economics,
59, S17–S34.

Guerrieri, L. and Iacoviello, M. (2015). OccBin: A toolkit for solving dynamic
models with occasionally binding constraints easily. Journal of Monetary Eco-
nomics, 70, 22–38.

Hall, R. E. (2009). Reconciling Cyclical Movements in the Marginal Value of
Time and the Marginal Product of Labor. Journal of Political Economy, 117(2).

He, Z. and Krishnamurthy, A. (2013). Intermediary Asset Pricing. American
Economic Review, 103(2), 732–770.

Holden, T. (2016). Computation of solutions to dynamic models with occasion-
ally binding constraints. EconStor Preprints 130143, ZBW - German National
Library of Economics.

Holden, T., Levine, P., and Swarbrick, J. (2019). Credit crunches from occa-
sionally binding bank borrowing constraints. Journal of Money, Credit and
Banking, Forthcoming. Presented at the 2014 CEF Annual Conference, Oslo
and the 2016 RES Annual Conference, Brighton.

Holmstrom, B. and Tirole, J. (1997). Financial Intermediation, Loanable Funds,
and the Real Sector. The Quarterly Journal of Economics, 112(3), 663–91.

Holmstrom, B. and Tirole, J. (1998). Private and Public Supply of Liquidity.
Journal of Political Economy, 106(1), 1–40.

Iacoviello, M. (2005). House prices, borrowing constraints, and monetary pol-
icy in the business cycle. American Economic Review, 95(3), 739–764.

Iacoviello, M. (2015). Financial Business Cycles. Review of Economic Dynamics,
18(1), 140–164.

Iacoviello, M. and Neri, S. (2010). Housing Market Spillovers: Evidence from
an Estimated DSGE Model. American Economic Journal: Macroeconomics, 2(2),
125–64.



bibliography 97

Iskrev, N. (2008). Evaluating the information matrix in linearized dsge models.
Economics Letters, 99, 607–610.

Iskrev, N. (2010). Local identification in DSGE models. Journal of Monetary
Economics, 57(2), 189–202.

Jaimovich, N. and Rebello, S. (2008). News and Business Cycles in Open
Economies. Journal of Money, Credit and Banking, 40(8), 1699–1710.

Keane, M. P. (2011). Labor Supply and Taxes: A Survey. Journal of Economic
Literature, 494, 961–1075.

Kehoe, T. J. and Levine, D. K. (1993). Debt-Constrained Asset Markets. The
Review of Economic Studies, 60(4), 865–888.

Kimball, M. S. (1995). The quantitative analytics of the basic neomonetarist
model. Journal of Money, Credit and Banking, 27(4), 1241–1277.

King, R., Plosser, C., and Rebelo, S. (1988). Production, Growth and Business
Cycles I: The basic Neoclassical Model. Journal of Monetary Economics, 21,
195–231.

King, R. G. and Rebelo, S. T. (1999). Resuscitating Real Business Cycles. In J. B.
Taylor and M. Woodford, editors, Handbook of Macroeconomics, chapter 14,
pages 927–1007. Elsevier, 1 edition.

Kiyotaki, N. and Moore, J. (1997). Credit Cycles. Journal of Political Economy,
105(2), 211 – 248.

Kiyotaki, N. and Moore, J. (2012). Liquidity, Business Cycles, and Monetary
Policy. NBER Working Papers 17934, National Bureau of Economic Research,
Inc.

Klenow, P. J. and Willis, J. L. (2016). Real Rigidities and Nominal Price Changes.
Economica, 83(331), 443–472.

Komunjer, I. and Ng, S. (2011). Dynamic identification of dynamic stochastic
general equilibrium models. Econometrica, 79(6), 1995–2032.

Levine, P., Pearlman, J., and Yang, B. (2012). Imperfect Information, Opti-
mal Monetary Policy and Informational Consistency. Presented at the the
17th International Conference on Computing in Economics and Finance, San
Francisco, June 29 - July 1, 2011, University of Surrey and Department of



98 bibliography

Economics Discussion Papers 1012, Department of Economics, University of
Surrey .

McManus, D. A. (1992). How common is identification in parametric models?
Journal of Econometrics, 53(1-3), 5–23.

Pencavel, J. (1986). Labor supply of men: a survey. In O. Ashenfelter and
R. Layard, editors, Handbook of Labor Economics, volume I, chapter 1, pages
3–102. Elsevier Science Publishers BV.

Pesaran, M. H. (1989). The Limits to Rational Expectations. Basil Blackwell, Ox-
ford.

Peterman, W. B. (2016). Reconciling micro and macro estimates of the frisch
labor supply elasticity. Economic Inquiry, 54(1), 100–120.

Ratto, M. and Iskrev, N. (2011). Algorithms for Identification Analysis under the
DYNARE Environment. European Commission, Joint Research Centre.

Reichling, F. and Whalen, C. (2017). Review of Estimates of the Frisch Elasticity
of Labor Supply. Eastern Economic Journal, 43(1), 37–42.

Rogerson, R. and Wallenius, J. (2009). Micro and macro elasticities in a life
cycle model with taxes. Journal of Economic Theory, 144, 2277–2292.

Rothenberg, T. J. (1971). Indetification in parametric models. Econometrica,
39(3), 577–91.

Sargent, T. J. (1987). Macroeconomic Theory, 2nd edition. Academic Press.

Schorfheide, F. (2000). Loss Function-based Evaluation of DSGE Models. Jour-
nal of Applied Econometrics, 15(6), 645–670.

Sims, C. (2003). The Role of Models and Probabilities in the Monetary Policy
Process. Brookings Paper on Economic Activity.

Smets, F. and Wouters, R. (2007a). Shocks and Frictions in US business cycles:
A Bayesian DSGE approach. American Economic Review, 97(3), 586–606.

Smets, F. and Wouters, R. (2007b). Shocks and frictions in US business cycles:
A Bayesian DSGE approach. American Economic Review, 97(3), 586–606.

Söderlind, P. (1999). Solution and Estimation of RE Macromodels with Optimal
Policy. European Economic Review, 43, 813–823.



bibliography 99

Stiglitz, J. E. and Weiss, A. (1981). Credit Rationing in Markets with Imperfect
Information. American Economic Review, 71(3), 393–410.

Townsend, R. M. (1979). Optimal Contracts and Competitive Markets with
Costly State Verification. Journal of Economic Theory, 21(2), 265 – 293.





A P P E N D I C E S

1 the household problem

Households own the capital stock which they rent to firms at a rental rate rK
t .

They choose between work and leisure and therefore how much labour they
supply. Let Lt = 1− Ht be the total time available for work (say 16 hours per
day) that consists of leisure time and Ht the proportion of this time spent at
work. The single-period utility is

U = U(Ct, Lt) (A.1)

and we assume that1

UC > 0, UL > 0 UCC ≤ 0, ULL ≤ 0 (A.2)

In a stochastic environment, the value function of the representative house-
hold at time t is given by

Vt = Vt(Bt−1) = Et

[
∞

∑
s=0

βsU(Ct+s, Lt+s)

]
(A.3)

The household’s problem at time t is to choose paths for consumption {Ct},
leisure, {Lt}, labour supply {Ht = 1− Lt}, capital stock {Kt}, investment {It}
and bond holdings to maximize Vt given by (A.3) given its budget constraint
in period t

Bt = Rt−1Bt−1 + WtHt − Ct − It − Tt (A.4)

where Bt is the given net stock of financial assets at the end of period t, rK
t is

the rental rate, is the wage rate and Rt is the gross interest rate paid on assets
held at the beginning of period t, It is investment and Tt are lump-sum taxes;
and given that capital stock accumulates according to

Kt = (1− δ)Kt−1 + (1− S(Xt))It ; (A.5)

Xt ≡
It

It−1
; S′, S′′ ≥ 0 ; S(1) = S′(1) = 0 (A.6)

1 Our notation is UC ≡ ∂U
∂C , UCC ≡ ∂2U

∂C2 etc.
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In (A.6), S(Xt) are investment adjustment costs, It units of output converts to
(1− S(Xt))It of new capital sold at a real price Qt (Tobin’s Q). All variables are
expressed in real terms relative to the price of output.

To solve the household problem we form a Lagrangian

L = Et

[ ∞

∑
s=0

βs
(

U(Ct+s, Lt+s)

+ λt+s

[
Rt+s−1Bt+s−1 + Wt+s(1− Lt+s) + rK

t+sKt+s−1 − Ct+s − It+s − Tt+s − Bt+s]

+ Qt+s[(1− δ)Kt+s−1 + (1− S(Xt+s))It+s − Kt+s]
)]

Then the first-order conditions with respect to {Ct+s}, {Bt+s−1}, {Kt+s−1},
{It+s} and {Lt+s} are respectively

{Ct+s} : Et[UC,t+s − λt+s] = 0 ;
s ≥ 0 (A.7)

{Bt+s−1} : Et[β
sλt+sRt+s−1 − βs−1λt+s−1] = 0 ;

s > 0 (Bt−1 given) (A.8)
{Kt+s−1} : Et[β

sλt+srK
t+s + βsλt+sQt+s(1− δ)− βs−1λt+s−1Qt+s−1] = 0 ;

s > 0 (Kt−1 given) (A.9)

{It+s} : Et
[
λt,t+sQt+s(1− S (It+s/It+s−1))− 1−Qt+sS′ (It+s/It+s−1)

It+s

It+s−1

− βλt,t+s+1Qt+s+1S′ (It+s/It+s−1)×
(
− It+s+1

I2
t+s

It+s+1

) ]
= 0 ;

s ≥ 0 (A.10)
{Lt+s} : Et[UL,t+s − λt+sWt+s] = 0 ;

s ≥ 0 (A.11)

Putting s = 0 in (A.7), (A.37) and (A.11) and s = 1 in (A.8) and (A.9) and
defining the stochastic discount factor as Λt,t+1 ≡ β

λt+1
λt

we now have:

Euler Consumption : 1 = RtEt [Λt,t+1] (A.12)

Stochastic Discount Factor : Λt,t+1 ≡ β
λt+1

λt
(A.13)

where : λt = UC,t (A.14)

Labour Supply :
UH,t

λt
= −UL,t

λt
= −Wt (A.15)
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Leisure and Hours : Lt ≡ 1− Ht (A.16)
Investment FOC : Qt(1− S(Xt)− XtS′(Xt))

+ Et

[
Λt,t+1 Qt+1S′(Ξt+1)Ξ2

t+1

]
= 1 (A.17)

Capital Supply : Et

[
Λt,t+1RK

t+1

]
= 1 (A.18)

where RK
t is the gross return on capital given by

RK
t =

[
rK

t + (1− δ)Qt
]

Qt−1
(A.19)

1.1 Capital Producers

Note that the investment decision can be taken by separate capital producing
firms who convert raw output into new capital at a cost and sold at a real price
Qt. They maximize with respect to {It} expected discounted profits

Et

∞

∑
s=0

Λt,t+s [Qt+s(1− S (It+s/It+s−1))It+s − It+s] (A.20)

where Λt,t+s = βs
(

λt+s
λt

)
is the real stochastic discount rate over the interval

[t, t + s]. This leads to the same first-order decision as (A.17).

1.2 Solution of the Household Problem with JR Preferences

Now form a Lagrangian

L = Et

[ ∞

∑
s=0

βs
(

U(Ct+s, Lt+s, Xt+s)

+ λt+s[Rt+s−1Bt+s−1 + Wt+s(1− Lt+s) + rK
t+sKt+s−1 − Ct+s − It+s − Tt+s − Bt+s]

+ λt+sQt+s[(1− δ)Kt+s−1 + (1− S(Xt+s))It+s − Kt+s] + µt+s[Xt+s − Cγ
t+sX1−γ

t+s−1]
)

Then the first-order conditions with respect to {Xt+s}, {Ct+s}, {Bt+s−1},
{Kt+s−1}, {It+s} and {Lt+s} are respectively

{Xt+s} : Et[UX,t+s + µt+s − β(1− γ)µt+s+1Cγ
t+s+1X−γ

t+s] = 0 ;
(A.21)
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s ≥ 0{Ct+s} : Et[UC,t+s − λt+s − γµt+sC
γ−1
t+s−1X1−γ

t+s−1] = 0 ; s ≥ 0(A.22)

{Bt+s−1} : Et[β
sλt+sRt+s−1 − βs−1λt+s−1] = 0 ;

s > 0 (Bt−1 given) (A.23)
{Kt+s−1} : Et[β

sλt+srK
t+s + βsλt+sQt+s(1− δ)− βs−1λt+s−1Qt+s−1] = 0 ;

s > 0 (Kt−1 given) (A.24)

{It+s} : Et
[
λt,t+sQt+s(1− S (It+s/It+s−1))− 1−Qt+sS′ (It+s/It+s−1)

It+s

It+s−1

− βλt,t+s+1Qt+s+1S′ (It+s/It+s−1)×
(
− It+s+1

I2
t+s

It+s+1

) ]
= 0 ;

s ≥ 0 (A.25)
{Lt+s} : Et[UL,t+s − λt+sWt+s] = 0 ; s ≥ 0 (A.26)

Putting s = 0 in (A.21), (A.22), (A.25) and (A.26) and s = 1 in (A.23) and
(A.24) and defining the stochastic discount factor as Λt,t+1 ≡ β

λt+1
λt

we now
have:

Euler Consumption : 1 = RtEt [Λt,t+1] (A.27)

Stochastic Discount Factor : Λt,t+1 ≡ β
λt+1

λt
(A.28)

where : λt = UC,t − γµt
Xt

Ct
(A.29)

and : µt = −UX,t + β(1− γ)Et
µt+1Xt+1

Xt
(A.30)

Labour Supply :
UH,t

λt
= −UL,t

λt
= −Wt (A.31)

Leisure and Hours : Lt ≡ 1− Ht (A.32)
Investment FOC : Qt(1− S(Ξt)− ΞtS′(Ξt))

+ Et

[
Λt,t+1 Qt+1S′(Ξt+1)Ξ2

t+1

]
= 1 (A.33)

Capital Supply : Et

[
Λt,t+1RK

t+1

]
= 1 (A.34)

where RK
t is the gross return on capital given by

RK
t =

[
rK

t + (1− δ)Qt
]

Qt−1
(A.35)
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Investment Specific Shock

With an investment specific shock capital accumulation becomes

Kt = ((1− δ)Kt−1 + (1− S(Xt))It ISt) (A.36)

Then the Lagrangian becomes

L = Et

[ ∞

∑
s=0

βs
(

U(Ct+s, Lt+s, Xt+s)

+ λt+s[Rt+s−1Bt+s−1 + Wt+s(1− Lt+s) + rK
t+sKt+s−1 − Ct+s − It+s − Tt+s − Bt+s]

+ λt+sQt+s[(1− δ)Kt+s−1 + (1− S(Xt+s))It+s ISt+1]− Kt+s + µt+s[Xt+s − Cγ
t+sX1−γ

t+s−1]
)

Then the first-order conditions with respect to {It+s} become

{It+s} : Et
[
λt,t+sQt+s ISt+s(1− S (It+s/It+s−1))− 1−Qt+s ISt+sS′ (It+s/It+s−1)

It+s

It+s−1

− βλt,t+s+1Qt+s+1 ISt+s+1S′ (It+s/It+s−1)×
(
− It+s+1

I2
t+s

It+s+1

) ]
= 0 ;

s ≥ 0 (A.37)

leading to changes

Investment FOC : Qt ISt(1− S(Ξt)− ΞtS′(Ξt))

+ Et

[
Λt,t+1 Qt+1 ISt+1S′(Ξt+1)Ξ2

t+1

]
= 1 (A.38)

Capital Supply : Et

[
Λt,t+1RK

t+1

]
= 1 (A.39)

where RK
t is the gross return on capital given by

RK
t =

[
rK

t + (1− δ)Qt
]

Qt−1
(A.40)

2 inflation and price dispersion dynamics
This Appendix shows how first order conditions expressed as summations, as
in Calvo contracts, can be expressed as difference equations suitable for coding
in Dynare. Then the dynamic form of price dispersion, ∆t is derived.



106 appendices

2.1 A Useful Lemma

In the first order conditions for Calvo contracts and expressions for value func-
tions we are confronted with expected discounted sums of the general form

Ωt = Et

[
∞

∑
k=0

βkXt,t+kYt+k

]
(B.1)

where Xt,t+k has the property Xt,t+k = Xt,t+1Xt+1,t+k and Xt,t = 1 (for example
an inflation, interest or discount rate over the interval [t, t + k]).
Lemma
Ωt can be expressed as

Ωt = Yt + βEt [Xt,t+1Ωt+1] (B.2)

Proof

Ωt = Xt,tYt + Et

[
∞

∑
k=1

βkXt,t+kYt+k

]

= Yt + Et

[
∞

∑
k′=0

βk′+1Xt,t+k′+1Yt+k′+1

]

= Yt + βEt

[
∞

∑
k′=0

βk′Xt,t+1Xt+1,t+k′+1Yt+k′+1

]
= Yt + βEt [Xt,t+1Ωt+1] �

2.2 Price Dynamics

Then (2.9) in the main text can be written

P0
t

Pt
=

Jp
t

J Jp
t

(B.3)

and summations J Jp
t and Jp

t are of the form considered in the Lemma above.
Applying the Lemma, inflation dynamics are given by

J Jp
t − ξEt[Λt,t+1Πζ−1

t+1 J Jp
t+1] = Yt

Jp
t − ξEt[Λt,t+1Πζ

t+1 Jp
t+1] =

1
1− 1

ζ

YtMCtMSt
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1 = ξΠζ−1
t + (1− ξ)

(
Jp
t

J Jp
t

)1−ζ

MCt =
PW

t
Pt

=
Wt

PtFH,t
(B.4)

∆t ≡
1
n

n

∑
j=1

(Pt(j)/Pt)
−ζ = ξΠζ

t ∆t−1 + (1− ξ)

(
Jp
t

J Jp
t

)−ζ

as in the main text.
With indexing by an amount γ ∈ [0, 1], the optimal price-setting first-order

condition for a firm j setting a new optimized price P0
t (j) is now given by

P0
t (j) =

1
(1−1/ζ)

Et
[
∑∞

k=0 ξkΛt,t+kPt+k MCt+k MSt+kYt+k(j)
]

Et

[
∑∞

k=0 ξkDt,t+kYt+k(j)
(

Pt+k−1
Pt−1

)γ]
Price dynamics are now given by

P0
t

Pt
=

Jp
t

J Jp
t

J Jp
t − ξβEt[Π̃

ζ−1
t+1 J Jp

t+1] = YtUC,t

Jp
t − ξβEt[Π̃

ζ
t+1 Jp

t+1] =
1

1− 1
ζ

MCtMStYtUC,t

Π̃t ≡
Πt

Πγ
t−1

2.3 Dynamics of Price Dispersion

Price dispersion lowers aggregate output as follows. As with consumption
goods, the demand equations for each differentiated good m with price Pt(m)
forming aggregate investment and public services takes the form

It(m) =

(
Pt(m)

Pt

)−ζ

It ; Gt(m) =

(
Pt(m)

Pt

)−ζ

Gt (B.5)

Hence equilibrium for good m gives

Yt(m) = AtHt(m)

(
Kt(m)

Yt(m)

) 1−α
α

= (Ct + It + Gt)

(
Pt(m)

Pt

)−ζ

(B.6)
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where Yt(m), Ht(m) and Kt(m) are the quantities of output, hours and capital
needed in the wholesale sector to produce good m in the retail sector. Since the
capital-labour ratio is constant integrating over m, and using Ht =

∫ 1
0 Ht(m)dm

we obtain

Yt =
F(At, Ht, Kt)

∆p
t

(B.7)

as in the main text.

Price dispersion is linked to inflation as follows. Assuming as before that
the number of firms is large we obtain the following dynamic relationship:

∆p
t = ξΠζ

t ∆p
t−1 + (1− ξ)

(
Jp
t

J Jp
t

)−ζ

(B.8)

Proof
In the next period, ξ of these firms will keep their old prices, and (1− ξ) will
change their prices to PO

t+1. By the law of large numbers, we assume that the
distribution of prices among those firms that do not change their prices is the
same as the overall distribution in period t. It follows that we may write

∆p
t+1 = ξ ∑

jno change

(
Pt(j)
Pt+1

)−ζ

+ (1− ξ)

(
Jp
t+1

J Jp
t+1

)−ζ

= ξ

(
Pt

Pt+1

)−ζ

∑
jno change

(
Pt(j)

Pt

)−ζ

+ (1− ξ)

(
Jp
t+1

J Jp
t+1

)−ζ

= ξ

(
Pt

Pt+1

)−ζ

∑
j

(
Pt(j)

Pt

)−ζ

+ (1− ξ)

(
Jp
t+1

J Jp
t+1

)−ζ

= ξΠζ
t+1∆p

t + (1− ξ)

(
Jp
t+1

J Jp
t+1

)−ζ

�

Wage stickiness follows in an analogous fashion.
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3 original gk solution of the gk model

3.1 GK with Internal Equity Only

To solve this problem we first note using (3.1) that Vt(st, dt) is homogeneous of
degree one in st and dt. The solution must therefore take the form:

Vt = Vt(st, dt) = νs,tst − νd,tdt (C.1)

where νs,t, and νd,t are time-varying parameters that are the marginal values
of the asset at the end of period t. Now eliminate dt from (C.1) using (3.1) to
obtain

Vt = Vt(st, nt) = µs,tQtst + νd,tnt (C.2)

where µs,t ≡ νs,t
Qt
− νd,t is the excess value of bank assets over deposits.

Next write the Bellman equation as

Vt(st, nt) = max
st

EtΛt,t+1[(1− σB)nt+1 + σBVt+1(st+1, nt+1)] (C.3)

with nt given by (3.2). Then we perform the optimization maxst Vt(st, nt) sub-
ject to the IC constraint (3.5). The Lagrangian for this problem is

Lt = Vt + λt[Vt −ΘQtst] = (1 + λt)Vt − λtΘQtst (C.4)

where λt > 0 if the constraint binds and λt = 0 otherwise.
The first order and Kuhn-Tucker conditions for the optimization problem

are:

st : (1 + λt)µs,t = λtΘ (C.5)
KT : λt(µs,tQtst + νd,tnt −ΘQtst) = 0 (C.6)
KT : λt ≥ 0 (C.7)

We now define φt as the leverage ratio (loans to net worth) of the representative
bank

φt ≡
Qtst

nt
(C.8)

Then if λt > 0 and the IC constraint binds, using (C.5), φt is given by

φt =
νd,t

Θ− µs,t
(C.9)
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whereas if it does not bind, from (C.5) we have µs,t = 0. Taking these together
we can write

µs,t = max
{

0, Θ− νd,t

φt

}
(C.10)

Using (C.8) we can write (C.2) as

Vt = [µs,tφt + νd,t]nt (C.11)

and hence (C.3) becomes

Vt(st, nt) = EtΛt,t+1[1− σB + σB(µs,t+1φt+1 + νd,t+1)]nt+1

≡ EtΛt,t+1Ωt+1nt+1

= EtΛt,t+1Ωt+1[RK
t+1Qtst − Rt+1dt] (C.12)

defining Ωt = 1− σB + σB(νd,t + φtµs,t) = 1− σB + σBΘφt if the IC constraint
binds, the shadow value of a unit of net worth (using (C.9)).

Comparing (C.12) with (C.1) and equating coefficients of st and dt, we arrive
at the determination of νs,t and νd,t:

νd,t = EtΛt,t+1Ωt+1Rt+1 (C.13)
νs,t = EtΛt,t+1Ωt+1QtRK

t+1 (C.14)

Hence we have the excess value of bank assets over deposits

µs,t ≡
νs,t

Qt
− νd,t = EtΛt,t+1Ωt+1(RK

t+1 − Rt+1) (C.15)

Equations (C.10) and (C.13)–(C.15) complete the bankers solution and deter-
mine φt, µs,t, νd,t and νs,t in terms of the interest rate wedge RK

t − Rt. Note
that in the absence of a binding IC constraint, µs,t = 0, Ωt = 1, νd,t =
EtΛt,t+1Rt+1 = EtΛt,t+1RK

t+1 = 1, the arbitrage condition for our NK model,
and leverage is indeterminate.

3.2 GK with Outside Equity

Proceeding as before, to solve the problem we look for a linear solution of the
form:

Vt = Vt(st, dt, et) = νs,tst − νd,tdt − νe,tet (C.16)

where νs,t/Qt, νd,t, νe,t/qt are time-varying parameters that are the marginal
values of the asset at the end of period t. Now eliminate dt from (C.16) using
(3.15) to obtain

Vt = Vt(st, et, nt) = µs,tQtst + µe,tqtet + νd,tnt = (µs,t + µe,txt)Qtst + νd,tnt
(C.17)
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where µs,t ≡ νs,t
Qt
− νd,t is the excess value of bank assets over deposits and

µe,t ≡ νd,t −
νe,t
qt

is the excess cost of deposits over outside equity.
Using (C.17) we can write the Bellman equation as

Vt(st, xt, nt) = max
st,xt

EtΛt,t+1[(1− σB)nt+1 + σBVt+1(st+1, xt+1, nt+1)] (C.18)

Then we perform the optimization maxst,xt Vt(st, xt, nt) subject to the IC con-
straint (3.18). The Lagrangian for this problem is

Lt = Vt + λt[Vt −Θ(xt)Qtst] = (1 + λt)Vt − λtΘ(xt)Qtst (C.19)

where λt > 0 if the constraint binds and λt = 0 otherwise.
The first order conditions for the optimization problem are:

st : (1 + λt)(µs,t + µe,txt) = λtΘ(xt)

xt : (1 + λt)µe,t = λtΘ′(xt)

KT : λt(µs,t + µe,txt)Qtst + νd,tnt −Θ(xt)Qtst) = 0
KT : λt ≥ 0

As before we define φt be the leverage ratio of the representative bank

φt =
Qtst

Nt
(C.20)

where if λt > 0 and the IC constraint binds φt is given by

φt =
νd,t

Θt − (µs,t + µe,txt)
(C.21)

Otherwise if it does not bind λt = 0 so from the first order conditions µe,t =
µs,t = 0. Thus we can write

µs,t = max
{

0, Θt − µe,txt −
νd,t

φt

}
(C.22)

Using (C.20) we can write (C.2) as

Vt = [(µs,t + µe,txt)φt + νd,t]nt (C.23)

and hence (C.18) becomes

Vt(st, et, nt) = EtΛt,t+1[1− σB + σB((µs,t+1 + µe,t+1xt+1)φt+1 + νd,t+1)]nt+1

≡ EtΛt,t+1Ωt+1nt+1
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= EtΛt,t+1Ωt+1[RK
t+1Qtst − Rt+1dt − RE

t+1qtet] (C.24)

defining Ωt = 1− σB + σB(νd,t + φt(µs,t + µe,txt)), the shadow value of a unit
of net worth, and using (3.16).

Comparing (C.24) with (C.16) and equating coefficients of st, dt and et we
arrive at the determination of νs,t, νd,t and νe,t:

νd,t = EtΛt,t+1Ωt+1Rt+1 (C.25)
νs,t = EtΛt,t+1Ωt+1QtRK

t+1 (C.26)

νe,t = EtΛt,t+1Ωt+1qtRE
t+1 (C.27)

Hence

µs,t ≡
νs,t

Qt
− νd,t = EtΛt,t+1Ωt+1(RK

t+1 − Rt+1) (C.28)

µe,t ≡ νd,t −
νe,t

qt
= EtΛt,t+1Ωt+1(Rt+1 − RE

t+1) (C.29)

Equations (C.22), and (C.25) – (C.29) complete the bankers solution and deter-
mine φt, µs,t, µe,t, νd,t, νs,t and νe,t in terms of the interest rate wedges RK

t − Rt
and Rt − RE

t .
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