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Today’s timetable

• 09.30 am - 11.00 am: Session 1 : Lecture

• 11.00 am - 11.30 am: Break

• 11.30 am - 01.00 pm: Session 2 : Lecture

• 01.00 pm - 02.15 pm: Break

• 02.15 pm - 03.45 pm: Session 3 : Lecture /Labs

• 03.45 pm - 04.15 pm: Break

• 04.15 pm - 05.45 pm: Session 4 : Labs
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Learning outcomes

• Students will develop an understanding of Bayesian Estimation
Methods of DSGE models.

• Students will get familiarized with Bayesian Estimation Methods of
DSGE models within MATLAB.

• Students will be able to conduct independent estimation of DSGE
models using Bayesian methods within MATLAB.

• Please bear in mind: this is not an exhaustive treatment of Bayesian
estimation methods. But you will be equipped with the necessary
tools to start conducting independent research.

• More ( a lot more !) independent work is needed to fully master these
techniques.
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Hopefully by the end of the day you will get the following
joke...
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Motivation

From Calibration to Systems Estimation

• Up to now we have used calibration to pin down parameters in the model.

• We have used the deterministic steady state to solve for parameter values
that result in observed long-run outcomes for macro-variables such as hours
worked, the great ratios (consumption, investment shares given a
government spending share) and the real interest rate.

• For example, from the notes (section 3.5) you have that in the RBC model
the real interest rate can be calibrated as R = 1

β .

• A further example of parameter calibration was given by the paramter % =
(1−H)α

(1−H)α+cyH
, for given α, H and cy .
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Motivation

From Calibration to Systems Estimation
• This first-moment matching can be extended to a second-moment

matching of variances, correlations and auto-correlations to calibrate shock
processes.

• Current practice in empirical macroeconomics is to replace this informal
moment matching with formal systems estimation.

• Maximum Likelihood (ML), General Method of Moments (GMM) and
Bayesian estimation are three widely used systems estimation methods for
DSGE models.

• Distinguish between full and limited information methods.

• Full information methods: Maximum Likelihood, utilize full likelihood of
the DSGE model.

• GMM is a limited information method: only uses few equations. Other
(limited information) approaches: IRFs matching see Christiano et al.
(2005). Minimise difference between IRFs to a monetary policy shock
obtained from the model and those from a VAR in terms of the observables.

• Limited information methods fail to satisfy likelihood principle (all
information in an experiment is contained in the likelihood of parameters).
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Motivation

Key Readings

• Economic Dynamics in Discrete Time by Miao chapters 12 and 15

• Structural Macro-econometrics by DeJong and Dave - chapters 6–9

• The Econometrics of DSGE Models by Fernandez-Villaverde, J.

• Bayesian Estimation of DSGE Models, by Herbst and Schorfheide

• An Introduction to Graphs in Dynare by J. Pfeifer

• A Guide to Specifying Observation Equations for the Estimation of
DSGE Models by J. Pfeifer
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Motivation Preparing the Data

Taking models to the data
• DSGE models focus on explaining business cycle fluctuations

around steady state or exogenous balance growth values ⇒ model
solutions then imply stationarity of the variables

• Actual macro data, however, exhibits both trends and cycles ⇒ we
need to transform the data to fit properties of the model

• Once trends have been satisfactorily removed, one can then focus
on cyclical behaviour

• A key step in the setting up the model for estimation in Dynare is to
reconcile model variables and observed variables (data) through
’measurement equations’

• DSGE models can be estimated with a either two-step approach:
data is first detrended/filtered (or in our case first-differenced) or
demeaned if stationary and then structural parameters are estimated

• Or a one-step approach: common trend and means are estimated as
part of the system (what we do).
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Motivation Preparing the Data

Data
• In Appendix 6 of the notes you can find all the data sources and

transformations used here which follow closely Smets and Wouters
(2007)

• In today’s codes folder Data Preparation you can find the raw data
file raw data.mat, and an m-file filtered data.m that filters output
using different filter, and saves the filtered data in us data.mat which
we will be using to estimate the NK model.

• The program will compare linear trend removal (LT),the
Hodrick-Prescott filter (HP) and first-differencing (FD) and
reproduce the Figure 3.4 in De Jong and Dave (2007) in Chapter 3
which you should read.

• Our estimation uses output, inflation and nominal interest rate
data to estimate the output trend and means of inflation and
nominal interest rate together with all the parameters of the model.
•
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Motivation Preparing the Data

Overview of Bayesian Estimation

Bayesian analysis requires:

• Initial information ⇒ Prior distribution

• Data ⇒ Likelihood density or the probability of observing the data
given the model and parameters

• Prior and Likelihood ⇒ Bayes theorem ⇒ Posterior distribution

• Posterior distribution used for confidence intervals for parameters and
impulse responses.

• The posterior distribution also provides information regarding
identification of parameters - how much information does the data
provide on parameters?
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Motivation Preparing the Data

Bayesian Estimation Versus Maximum Likelihood

• Bayesian estimation is a full information systems estimation method
(much like ML)

• It is a “hybrid” approach between informal calibration and ML

• In the absence of prior information it converges to ML. If we are sure
the priors are correct we are back to calibration.

• It uses prior information to identify key structure parameters - use of
additional sources of information

• The likelihood surface can be flat (or almost flat) in some directions
⇒ priors add ‘curvature’ to likelihood

• The Bayesian approach allows straightforward facilities for the
construction of confidence intervals for parameter estimates and
impulse responses, forecasting and model comparison.
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The Bayesian Methodology

Bayes Rule
• Bayesian analysis is based on a few simple rules of probability
• Some notation: Suppose A, B are random variables (or events), then

probability of event A ≡ p(A)

probability of A and B ≡ p(A,B) or p(A ∩ B)

probability of A given B ≡ p(A|B) = P(A) if A, B are independent

• Then by definition of conditional probability

p(A|B) ≡ p(A,B)

p(B)

• Reversing the roles of events A and B , we also have

p(B|A) ≡ p(A,B)

p(A)

• Equating these expressions and rearranging, we get the Bayes rule:

p(B|A) =
p(A|B)p(B)

p(A)
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The Bayesian Methodology

The Bayesian Approach to Econometrics
• We want to use data (say T data points yT ≡ (y1, y2, · · ·yT )) to learn

about the model’s parameters (say n parameters, θ = (θ1, θ2, · · ·θn))
• A Bayesian approach does just that: replacing B by θ and A by y

p(θ|y) =
p(y |θ)p(θ)

p(y)

• Our focus is on p(θ|y): given the data (y), what can we tell about θ?
• Main difference: classical (frequentist) econometrics treats θ as some

unknown fixed value(s), whereas Bayesian econometrics assumes that,
if θ is unknown, then it should be expressed using rules of probability
(i.e., θ is effectively a random object)
• Noting that we’re interested in θ, we can drop p(y), so

p(θ|y) ∝ p(y |θ)p(θ) (posterior kernel).

• ML maximizes p(y |θ) wrt θ; Bayesian estimation maximizes p(θ|y).
The prior p(θ) gives the surface more curvature.
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The Bayesian Methodology

Likelihood = red line, Prior = blue line and Posterior = black line.
Example of how prior adds more curvature to likelihood.

page 14 of 75



The Bayesian Methodology

The Bayesian Approach to Econometrics

• p(θ|y): posterior density
• summarises what we know about θ after (hence posterior) seeing the

data

• p(y |θ): likelihood density given the model parameters - also denoted
as L(θ; y)
• p(θ): prior density

• contains all relevant information about θ that does not depend on the
data, i.e. what we know about θ prior to seeing the data

• p(θ|y) ∝ p(y |θ)p(θ) is like an updating rule: the data allow us to
update our priors about θ, resulting in the posterior, which combines
data and non-data information

• The likelihood density is computed using the Kalman Filter which is
a recursive forecasting procedure for the unobserved states given the
observables in the linear state space form (see Miao, ch. 10).
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The Bayesian Methodology

Dynare Steps in the Computation - Bottom up
Below is the Dynare routine for estimation, we will focus on steps 1-6 for now.

1 Solves the model for a particular parameter vector θ. Currently this is a
first-order (linear) solution

2 Evaluates the likelihood density p(y | θ) using the linear Kalman filter and
assuming Gaussian shocks (useful assumption as first and second moment
pin down the distribution of the process)

3 Maximizes p(y |θ)p(θ) numerically to arrive at the mode of θ (repeating 1
and 2 each time)

4 Computes the Hessian H:

H =

(
∂2 log(p(y |θ)p(θ))

∂θ∂θ′

)
(1)

5 The estimate of covariance matrix of the parameters is the inverse of -H at
the mode (see Miao chapter 15, page 403).

6 Output is reported at this stage (the prior mean, the estimated mode, its
standard deviation and a t-test). The user can stop here.

7 Proceeds to the computation of the posterior distribution using MCMC if
-H is positive definitepage 16 of 75



Computation

Quick MLE review : a pencil and paper example I

Suppose that Y is generated by the following process:

Y = θ + N(0, 1)

where θ is our parameter vector.
This process has likelihood:

L(Y ; θ) =
1√
π
e−

(Y−θ)2

2

and minus of the log-likelihood:

−log(L(Y ; θ)) =
(Y − θ)2

2
+ log(π)/2

Note : -log likelihood usually is simpler to deal with algebraically.
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Computation

Quick MLE review : a pencil and paper example II
• The Jacobian of the log-likelihood denoted with ∇θlog(L(Y ; θ)) corresponds

to ∂log(L(Y ;θ))
∂θ , i.e. the vector of first partial derivatives of the log likelihood

wrt θ.

• In this very simple case (1 parameter) : ∇θlog(L(Y ; θ)) = −θ + Y

• Set ∇θlog(L(Y ; θ)) = 0, to find that the MLE estimate is θ̂ = Y

• Question: is this a (local) maximum? Construct the Hessian matrix.

• The Hessian is the matrix of second partial derivatives, denoted as Hθ=θ̂ =
∂log(L(Y ;θ))

∂θ∂θ′ .

• For a (local) maximum, the Hessian needs to be negative definite at θ̂,
which indicates local concavity (MATLAB will check this for you).

• In this simple case: Hθ=θ̂ = −1. Hence we have a maximum.

• Provided some regularity assumption hold, MLE is consistent and efficient
(achieves the Cramér–Rao lower bound when the sample size tends to
infinity.

• var(θ̂) = I (θ)−1, where I (θ) = −nE [∂log(L(Y ;θ))
∂θ∂θ′ ], where I (θ) is the Fisher

information matrix.page 18 of 75



Computation

A Digression on Unconstrained Optimization
• From Simon and Blume, Mathematics for Economists, 1994, page

396 we have the following necessary and sufficient conditions for the
maximum x∗ of a function F (x) of n variables x = (x1, · · ·, xn)
• First Order Condition:

∂F

∂xi
= 0 for i = 1, · · ·, n

• Second Order Condition: The Hessian (H) below is negative
definite:

H =
∂2F

∂x∂x ′
≡


∂2F
∂x2

1
· · · ∂2F

∂xn∂x1

· · ·
· · ·
· · ·

∂2F
∂x1∂xn

· · · ∂2F
∂x2

n

 evaluated at x = x∗

• This is an n-variable generalization of the condition for the maximum
of a function F (x) of one variable x : dF

dx = 0, d2F
dx2 < 0.
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Computation

Constructing the posterior : a pencil and paper example
To get the conditional distribution of the parameters given the data (posterior)
we need the distribution of the parameters in the absence of any data. This is
called the prior. For this example take the prior of θ to be N ∼ (µ,σ).

Prior:

p(θ) =
1√
π
e−

(θ−µ)2

2σ2

Likelihood:

L(Y ; θ) =
1√
π
e−

(Y−θ)2

2

Combine prior information with the data to obtain the posterior (kernel) :

p(θ|y) ∝ L(Y ; θ)p(θ) ∝ 1√
π
e−

(Y−θ)2

2
1√
π
e−

(θ−µ)2

2σ2

up to a constant:

p(θ|y) ∝ L(Y ; θ)p(θ) ∝ e−
(Y−θ)2

2 − (θ−µ)2

2σ2

In this case, it is straightforward to compute first and second moments from the
posterior analytically. Question: is this always the case?
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Computation

Computation

• Again our focus is on the posterior distribution of p(θ|y) that
summarise what we know about θ conditional on y , this distribution
is characterized by (posterior) means, medians, modes, etc (and
respective standard deviations)

• Knowing this allows Bayesian inference expressed as E [g(θ)|y ], where
g(θ) is a function of interest (e.g. mean, variance, etc.):

E [g(θ)|y ] =

∫
g(θ)p(θ|y)dθ (2)

• Bar a few exceptions, it is often impossible to to evaluate the integral
analytically ⇒ recur to simulation methods (Monte Carlo), drawing
from the posterior density p(θ|y).

• As the number of draws (N) increases, then we can invoke the Law of
Large Numbers and the Central Limit Theorem
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Computation

Example

• Say, we are interested in characterizing the posterior distribution by
its mean and variance. We need to compute the mean:

E (θ|y) =

∫
θp(θ|y)dθ

• and the variance

Var(θ|y) = E (θ2|y)− [E (θ|y)]2

=

∫
θ2p(θ|y)dθ − [E (θ|y)]2

• In both cases we need to evaluate an integral that usually cannot be
worked out analytically!
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Computation

Solution

• Solution, focus on the integral of the form

E (g(θ)|y) =

∫
g(θ)p(θ|y)dθ

• If we had i.i.d. draws from the posterior, we could simply use a law of
large numbers:

E (g(θ)|y) =

∫
g(θ)p(θ|y)dθ ≈ 1

S

S∑
s=1

g(θs) = ĝ(s)

• Replace integral by sum over S draws from the posterior distribution
p(θ|yT )

• This is called Montecarlo integration

• Problem : how do we sample from a distribution which is
untractable? MCMC - Metropolis Hasting, more in a bit.
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Computation

Digression: why would we want to focus on the posterior
mode instead of the posterior mean ?

• If the posterior distribution is normal, there is no difference between
mode and mean.

• Typically the distribution of the posterior is unknown, then we need
to pick a measure.

• With irregular (not symmetric) posteriors the mode is a better
measure of central tendency.

• Example: suppose the posterior follows a binomial distribution with
p(x1)=0.6. The two outcomes are x0 = 0 or x1 = 1. In this case, the
mode will be 1 while the mean will be 0.6. Which measure of central
tendency describes best the distribution?

• Obviously the mode. In this case the mean does not even capture a
plausible value obtainable in the sample (note: in the sample we
either observe 0 or 1).
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Computation

Bayesian Maximum Likelihood

• The most conventional approach to estimation is to maximize the
likelihood L(y |θ)

• If we have a data-set of time series data yT = {y1, y2, ..., yT}, then
using Bayes Theorem it is straightforward to show that

L(yt+1|y t , θ) =
L(y t+1|θ)

L(y t |θ)

hence
L(y t+1|θ) = L(yt+1|y t , θ)L(y t |θ)

so that by induction we have

L(y t |θ) =
t∏

k=2

L(yk |yk−1, θ)L(y1|θ)p(θ)
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Computation

Calculation of the Likelihood Function
For linear models, with Gaussian shocks the model is solved for given θ along the
saddle path, and written in state space form as:

xk+1 = Axk + Bεk+1 yk = Cxk

Note: usually we only observe a subset of state variables x , these observables are
stored in the vector y ! Thus, we need a filtering procedure: Kalman Filter.

The log-likelihood is then given by:

lnL(y |θ) = −Tr

2
ln(2π)− 1

2

T∑
k=1

(det(Fk) + eTk F−1
k ek) + lnp(θ)

where r is the number of measurements at each period, and ek ,Fk are obtained
from the Kalman Filter recursions

ek = yk − Cxk,k−1 ; Fk = CPkC
T

xk+1,k = Axk,k−1 + APkC
TF−1

k ek

Pk+1 = APkA
T − APkC

TF−1
k CPkA

T + Bcov(ε)BT

subject to the initial conditions x1,0 = 0, and P1 being the solution of the

Lyapunov equation P1 = AP1A
T + Bcov(ε)BT .page 26 of 75



Computation

First Stage Estimation - Maximizing the Likelihood
• The first thing done by Dynare in the estimation stage is to maximize

the Bayesian likelihood

• Recall we obtain L(yT |θ) via the KF

• This yields the ML estimates, with parameter standard errors
obtained from the information matrix IN , which corresponds to the
Cramer-Rao lower bound

• For a given model Mi , we can write the Bayesian likelihood as
L(yT |θ,Mi ), and the marginal likelihood of model Mi is given by∫
L(yT |θ,Mi )dθ (e.g. by integrating out the parameter vector θ)

• Different models Mi may have some parameters fixed at 0, or
estimated under different information sets. The econometrician will
prefer the model with lowest marginal likelihood

• The Laplace approximation to the log marginal likelihood is given by
N
2 ln(2π) + lnL(yT |θ∗,Mi )− 1

2 ln(det(IT )) where IT is the information
matrix evaluated at the maximum θ∗.
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Computation

Problems with Maximizing the Likelihood
• Recall that we are usually interested in quantities such as

E [g(θ)|y ] =

∫
g(θ)p(θ|y)dθ

• e.g. mode, mean, variance, etc
• For complex models, with nonlinear effects of parameters, finding the

mode is not straightforward
• The main problem is that the algorithm may have converged to a

local maximum of the likelihood
• Even changing the initial parameter values is not an assured method

of hitting a global maximum
• Instead it is useful to sample the likelihood function over a large

range of parameter draws
• The objective when performing this sampling is to ensure that the

frequency of sampling a draw should exactly match the probability of
that draw
• The most commonly used method is the MCMC algorithm
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Computation Posterior Simulation

Recall : Dynare Steps in the Computation
1 Solves the model for a particular parameter vector θ. Currently this is

a first-order (linear) solution

2 Evaluates the likelihood density p(y | θ) using the linear Kalman filter
and assuming Gaussian shocks

3 Maximizes p(y |θ)p(θ) numerically to arrive at the mode of θ
(repeating 1 and 2 each time)

4 Computes the Hessian H:

H =

(
∂2 log(p(y |θ)p(θ))

∂θ∂θ′

)
(3)

5 The estimate of covariance matrix of the parameters is the inverse of
-H at the mode (see Miao chapter 15, page 403).

6 Output is reported at this stage (the prior mean, the estimated mode,
its standard deviation and a t-test). The user can stop here.

7 Proceeds to the computation of the posterior distribution using
MCMC if -H is positive definite
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Computation Posterior Simulation

MCMC Metropolis-Hastings algorithm
• MCMC methods: samplers wandering over the posterior, taking most

draws from high probability areas

• Not easy to draw directly from p(θ|y) - we need methods that work
well for any case ⇒ MH MCMC, drawing from a candidate
(”transition”) distribution

• ”Markov Chain” bit: a given draw θ∗ depends on θ(s−1)

• ”Monte Carlo” bit: θ∗ is drawn at random from a candidate proposal
(or transition) distribution α(θ(s−1), θ∗), and then (see below) θ(s) is
either θ∗ or θ(s−1)

• Idea: to specify a transition density for a MC such that, starting from
some initial value θ0 and iterating a number of times, we produce a
limiting distribution which is the target distribution we need to
sample from.

• Usually one discards the first several thousand draws to ensure that
the sequence is not dependent on the starting draw
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Computation Posterior Simulation

MCMC Metropolis-Hastings Algorithm - cont.

• Intuition: we want to sample from the region with highest posterior
probability, but we also want to visit the whole parameter space as
much as possible

• given that there is a discrepancy between the candidate and target
densities, the MCMC will not take the correct draws ⇒ MH algorithm
corrects this by calculating an acceptance probability and eventually
discarding some draws

• Because it is difficult to find a good candidate density, we usually
employ a Random Walk Chain MH algorithm

θ∗ = θ(s) = θ(s−1) + z (4)

• sampler wanders in random directions, thus visiting most of the
parameter space

• z ∼ N(θs−1, cΣ̂θ), key choice is the scaling parameter c
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Computation Posterior Simulation

A walk down the posterior...
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Computation Posterior Simulation

MCMC Metropolis-Hastings Algorithm - cont.
1 Choose starting value θ0 (usually posterior mode from first stage and

loop over steps 2 to 4)

2 Draw a candidate from the jumping distribution θ∗ in (4)

3 Given θ∗i , solve the model and use the KF to compute p(θ∗i |y)

4 For each draw i, accept (θ̂i = θ∗i ) with probability r ; reject the draw

(i.e. θ̂i = θi−1) with probability 1− r
• The acceptance probability of each new draw is defined by:

r = min

[
p(θ∗i |y)

p(θi−1|y)
, 1

]
(5)

• Notice that the lower
p(θ∗i |y)
p(θi−1|y) , the higher chance of rejection as r is

proportional to this ratio.
• Back to step 2

5 After repeating these steps so that sufficient draws are generated,
build posterior from empirical distribution
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Computation Posterior Simulation

Some remarks

• This acceptance rule ensures that the entire domain is visited
• The acceptance rate is dependent on the choice of c :

• if the jump is too small, the fraction of accepted draws is too high, i.e.
the chain will get stuck around a local maximum and won’t visit the
tails

• if c is too large, the acceptance rate will be low, i.e. the draws will
come from regions of lower probability and the chain is stuck in the tails

• Acceptance rate: ideally 20-40% ⇒ each move goes a reasonable
distance in parameter space, but not so low as to reject too frequently
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Computation Posterior Simulation

Testing for Convergence

• Testing for convergence of the posterior distribution is notoriously difficult,
and Dynare utilises some indicative statistics, summarised by diagrams, as
recommended by Brooks and Gelman (1998b). These diagrams are made up
of

• 3 multivariate figures (%80 interval, m2 and m3) representing
convergence indicators for all parameters considered together (the
posterior kernel), generated if mh nblocks> 1 and mh repl> 1000.

• 3 figures for each parameter, representing univariate convergence
indicators (%80 interval, m2 m3), triggered if mh nblocks> 1 and
mh repl> 2000

• For each of these indicators, dynare computes within-sequence statistics
(red) and statistics based on pooled draw from all sequences (blue)

• If the chains have converged, the two lines should stabilize horizontally
and should be close to each other.

• Dynare will generate independent chains that should converge to the same
ergodic distribution, provided that a sufficient number of draws is generated
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MCMC Convergence

Example of Convergence - Multivariate Measures
The diagnostics below, for the NK linear model estimated later, are
generated by the estimation command if mh replic is larger than 2000,
mh nblocks=2 and if option ‘nodiagnostic’ is not used.
‘Interval’ refers to the 80% quantile range, ‘m2’ and ‘m3’ refer to the
second and third moments

1000 1500 2000 2500
5

10

15
Interval

1000 1500 2000 2500
5

10

15
m2

1000 1500 2000 2500
40

60

80
m3
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MCMC Convergence

What to do about Lack of Convergence

• Convergence is a notorious problem for MCMC, and the only theorem
is that if convergence occurs, it is to the correct distribution.

• Crucially, one would want multivariate convergence
• Improving convergence could be done in one of two ways:

• Increase the number of draws
• Increase the ’scale factor’ for the Monte Carlo part. This increases the

range of search but at the expense of reducing the acceptance ratio
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MCMC Convergence

Marginal Likelihood and model comparison - Geweke
(1999)
• The computations thus far do not rely on the marginal likelihood
p(y), which appears in the denominator of Bayes Theorem.
• Recall: we focused on the posterior kernel p(θ|y) ∝ p(θ)p(y |θ)
• Marginal likelihoods play an important role in assessing the relative fit

of models because they are used to turn prior model probabilities into
posterior probabilities.
• The most widely used marginal likelihood approximation in the DSGE

model literature is the modified harmonic mean estimator proposed by
Geweke (1999).
• This estimator is based on the identity:∫

f (θ)

p(y)
dθ =

∫
f (θ)

p(θ)p(y |θ)
p(θ|y)dθ (6)

• where : f (θ) has the property that
∫
f (θ)dθ = 1.

• The identity is obtained by rewriting Bayes Theorem, multiplying
both sides with f (θ) and integrating over θ.
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MCMC Convergence

Marginal Likelihood and Model comparison - cont’d
• Suppose we have two models, Model 1 and Model 2.

• Then, if marginal data density Model 1 greater than Model 2 conclude that
model 1 fits better than model 2.

• Can use this to compare across two different models, or to evaluate
contribution to fit of various model features: habit persistence, adjustment
costs, etc.

• In Dynare, you will see after mode finding: Log data density [Laplace
approximation] is 1186.624917. Another estimate is provided after MCMC
algorithm.

• The Laplace approximation of marginal density is stored in :

• oo. MarginalDensity.LaplaceApproximation

• The Modifed Harmonic Mean of marginal density is stored in:

• oo. MarginalDensity.ModifiedHarmonicMean which is used with

• mh replic>0 or load mh file option.
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Estimation in Dynare

Measurement Equations

• Inflation is in gross terms and is computed as the ratio of a price
index P in two subsequent periods: Πobs

t = Pt
Pt−1

• In net terms, inflation can be approximated by the log of gross
inflation, πobst = log Πobs

t or, equivalently, πobst = logPt − logPt−1

• Interest rates (unlike inflation) are measured net and in annual terms,
while models are usually in quarterly terms - if the raw data is in
annualised percentage points, then you typically divide the data by
400

• If in a two-step procedure using a filter, the resulting series will have a
zero mean, whereas with first-differences you will be left with the
series’ average growth rate

• If the model is entered in log-linearized form, then the filtered
variables correspond to model variables, as deviations from the steady
state
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Estimation in Dynare

Measurement Equations
We estimate the linear NK model using SW data with output in
first-differences

Observables: output, inflation and interest rate

The corresponding measurement equations for the 3 observables are:
 D(log GDPt ) ∗ 100

log(GDPDEFt/GDPDEFt−1) ∗ 100
FEDFUNDSt/4 ∗ 100

 =

 Yt − Yt−1 + trend growth
Πt + constantΠ

Rn,t + constantRn



• Note: the quarterly trend growth rate in real GDP; the quarterly
steady-state inflation rate and the steady-state nominal interest
rate are estimated together with the other parameters.
• Sample: 1984:1-2008:2 which starts at observation 144 in the data

file.
• There is a pre-sample period of 4 quarters so the observations

actually used for the estimation go from 148:245.
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Priors
• For Bayesian estimation we need parameter ‘priors’ (location) and

their distributions (shape)

• Where do we get the priors from? Micro estimates, calibration,
existing studies...

• Typically the prior mean is centered around calibrated value. Std.
errors reflect subjective or objective (to cover the range of existing
estimates)

• The shape of the distribution

• General guidance - inverse gamma distributions are used as priors
when non-negativity constraints are necessary, beta distributions for
fractions or probabilities, normal distributions are used when more
informative priors seem to be necessary (uniform or ‘flat’ priors if
there is little information about the parameter)

• Options in Dynare are normal, gamma, beta, inverse gamma and
uniform distribution
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Estimation in Dynare

• Observed variables are declared after varobs and must be available in
the data file (can be a .mat file or a .m file or even an .xls file)
with the same name

• Estimated parameters are declared in an estim params; ... end; block.

• For each estimated parameter, declare the initial value and, optionally,
a lower and upper bound for the ML estimation.

• If their prior distributions are further declared, Dynare chooses to
perform the Bayesian estimation

• Computing the estimation is triggered by estimation and required
option in brackets after estimation: datafile=FILENAME
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Estimation in Dynare: options

Commonly used options are:

• prefilter: a value of 1 means that the estimation procedure will
demean the data

• first obs: specifies the first observation to be used

• mode compute: specifies the optimizer. For example: 0: switch mode
computation off; 1: fmincon; 4: csminwel

• mh replic: sets the number of replications for MH algorithm - longer
chains are more likely to have converged

• mh drop: sets the percentage of discarded draws

• mh jscale: specifies the scale to be used for the jumping distribution
in MH algorithm

• presample: number of initial periods that don’t enter into likelihood
computation (to initialize Kalman)
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Some other useful options

• mode file=FILENAME mode: reloads the computed posterior mode
(stored in FILENAME mode.mat in the working dir.)

• load mh file: recovers the estimates using the existing MH replications

• mode check: plots the objective function around the computed mode

• forecast = INTEGER: posterior distribution of out-of-sample forecast

• moments varendo: triggers the computation of the posterior
distribution of the theoretical moments of the endogenous variables
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Some Dynare Tricks

• Even though we are interested in estimating (some) parameters, it is still
useful to fully calibrate the model and initially keep the sequence ‘steady;
check; stoch simul;’

• Before estimating, you want to be sure that the steady state can be
computed, the BK conditions are met and that calibrated IRFs make sense.

• Recall that from BK conditions:

• Stability: This implies that when the economy is pushed off its steady
state following a shock, it converges back to it.

• Determinacy: this implies that when a shock displaces the economy
from its steady state, there is a unique path leading back to equilibrium.

• Occasionally it is convenient to define ’model-local variables’ - usually
composite parameters: these are define inside the ’model’ block, preceded by
the ’#’ symbol - however, these are not estimated!
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Estimating the Linearized NK model
With the model in state space form with observable variables, the steps of
the dynare procedure are as follows:

• Dynare computes log-likelihood functions running the Kalman
recursion as discussed previously.

• The mode of the posterior is estimated using a numerical optimisation
procedure

• Chris Sim’s csminwel (mode compute 4) is quick but may not
produce the required positive definite minus of the Hessian

• If this is the case mode compute 6 should produce a positive definite
result but it takes a lot of time!

• The posterior distribution is obtained with MCMC-MH using the
inverse Hessian at the estimated posterior mode as the covariance
matrix of the jumping distribution

• Fine-tuning mh jscale; mh replic; mh drop in order to remove any
dependence of the chain from its starting values
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Dynare Files for Estimating the NK model I

The .mod files for this analysis are:

• NKlinearEst Identification.mod- provides results for identification

• NKlinearEst.mod provides full estimation results for the mode and
the posterior distribution with 10,000 mcmc draws

• NKlinear Est.mod has been estimated using an initial saved
mode-compute 6 which is designed to give a negative definite
Hessian. The mode file saved as NKlinear Est mode saved

• Estimation results for 100,000 mcmc draws are reported in a separate
log file NKlinear Est 100Kmcmc jscale .40.log

• The convergence test are shown in the figure
NKlinear Est 100Kmcmc jscale .40.fig.

• This shows how more draws may be necessary to achieve
convergence.
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Dynare Files for Estimating the NK model II

• NKlinearEst.mod then proceeds to extract the mean of the
estimates and then computes impulse response functions (irfs)
using stoch simul.

• us data.mat is the data file used for all our results

• Note : various files produced by dynare of its own saved results (not
indicated as saved) of interest including the filename.log file that saves
whatever appear on the screen, the filename.mode file that saves the
mode and filename results.mat that saves all results including the irfs.
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Estimation output

• Results from posterior optimization (also for maximum likelihood)

• Marginal data density (modified harmonic mean estimator - Geweke,
1999)

• mean and confidence interval from posterior simulation

• Graphs with prior, posterior and mode

• Graphs of smoothed shocks and smoothed observation errors

• Convergence diagnostics (MCMC replications)

• Graphs of posterior IRFs (optional)

• All results are stored in FILENAME results.mat (in particular, in
structure array oo )

• All MH draws are saved in the subfolder under the path:
FILENAME\metropolis – post. median
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A summary of Dynare Bayesian estimation

1 Transform the actual data to fit properties of the model

2 Specify prior distributions

3 Dynare computes the log-likelihood numerically via the Kalman filter

4 Finds the maximum of the likelihood and posterior mode

5 Draws posterior sequences and simulates posterior distribution with
Metropolis algorithm

6 Computes various statistics on the basis of the posterior distribution
(post. moments)

7 Estimates the posterior marginal density to compare models

8 One remaining issue: Identification
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Identification
• It is necessary to confront the question of parameter identifiability in DSGE

models before taking them to the data.

• As model or parameter identification is a prerequisite for the informativeness
of different estimators, and their effectiveness when one uses the models to
address policy questions.

• The sources of identification failure could be :
• marginalisation (from the model structure: i.e. mapping the deep

parameters to the reduced form coefficients of the solution and
mapping the solution to the population objective function)

• or lack of information (from the data: i.e. mapping the population to
the sample objective).

• The lecture and the provided notes provide an overview that discusses about
the former.

• The standard remedy suggested by most empirical DSGE literature is to fix
some (potentially non-identifiable) parameters and re-maximize with the
parameters that are well-identified. This approach can be however
problematic see Canova and Sala (2009).
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Identification in Dynare

• The default syntax for the identification procedures in DYNARE:

varobs dy pinfobs robs;

identification(advanced=1);

• point identification at the prior mean

• the MC exploration using the draws from the prior distribution

• identification strength measured at the mean and weighted by the
prior standard deviation.
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Identification Example: NK Model

• The output of this procedure then reveals whether or not there are
identification problems with parameter estimation:

==== Identification analysis ====

Testing prior mean

Testing prior mean WARNING: Komunjer and Ng (2011) failed: There

are more shocks and measurement errors than observables, this is

not implemented (yet). Skip identification analysis based on minimal

state space system. The number of moments with non-zero derivative

is smaller than the number of parameters Try increasing ar = 2

• Our model has 4 shocks and 3 observables. The RE solution cannot be
invertible (see Fernandez-Villaverde et al. (2007)) and the standard perfect
information assumption on the part of agents is inconsistent with the
information of the econometrician. (See Levine et al. (2019)).
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Fernandez-Villaverde et al. (2007)- The PMIC
The solution to a (log-)linearized RE model has a state space representation:

xt+1 = Axt + Bεt+1 (7)

yt+1 = Cxt + Dεt+1 (8)

where : where xt is an n × 1 vector of possibly unobserved state variables, yt is a
k × 1 vector of variables observed by an econometrician, and εt is an m × 1
vector of economic shocks impinging on the states and observables.

• Under which condition do the shock in the DSGE model map into the shock
from a VAR in terms of the observables? i.e. under which conditions does
the econometrician have the same info set as agents?

• (Pre-)Condition 1: D is a square matrix and D−1 exists. This condition
requires the number of economic shocks to be the same as the number of
observables (m = k) and that the shocks are linearly independent.

• Condition 2: the Poor Man’s Invertibility Condition (PMIC). This requires
the matrix F = (A− BD−1C ) to be stable, e.g. this requires all the
eigenvalues of F to be less than 1 in modulus.

• If the PMIC condition is satisafied the econometrician’s and the agent’s
information set are aligned.
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Komunjer and Ng (2011)
In the case where the D matrix in is square and D−1 exists, the impulse
responses to the structural shocks εt are given by the following VMA
representation if the eigenvalues of A are inside the unit-circle:

yt = D(L)εt =
∞∑
j=0

djL
jεt−j (9)

where L is the lag operator d0 = D,
∑∞

j=0 tr(djd
′
j )<∞, dj = CAj−1B for

j ≥ 1. The transfer (impulse response) function associated to this :

D(z) = D + C (Inx − A)−1B =
∞∑
j=0

djL
jz−j (10)

with spectral densities:

Ω(z) = Γ(0) +
∞∑
j=1

Γ(j)z−1 +
∞∑
j=1

Γ(−j)z−1 = D(z)ΣεD(z−1)′ (11)
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Komunjer and Ng (2011)

• When m > k , equation 9 is no longer the Wold representation for yt
and εt is no longer fundamental.

• More precisely, the transfer function of a non-singular system with
more shocks than observables is not left-invertible.

• This means that the shock vector εt cannot be recovered from the
t-dated history of the vector yt . In other words, the econometrician
information set is narrower than the agent’s.

• Dynare is informing you that this situation / type of identification
analysis is not (yet) supported in Dynare, so it will skip the checks
based on the minimal state space representation.
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Identification Example: NK Model

• Continuing with the identification tests:

==== Identification analysis ====REDUCED-FORM:

All parameters are identified in the

Jacobian of steady state

and reduced-form solution matrices (rank(Tau)

is full with tol = robust).

SPECTRUM (QU AND TKACHENKO, 2012):

All parameters are identified in the Jacobian of mean

and spectrum (rank(Gbar) is full with tol = robust).

MOMENTS (ISKREV, 2010):

All parameters are identified in the Jacobian of

first two moments (rank(J) is full with tol = robust).

• If the rank condition fails in any of these two procedures, the
procedure indicates which parameters are responsible for identification
problems.
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Identification Example: NK model

• The following Figure shows an aggregate measure of how changes in the
elements of the parameter vector θ impact on the model moments. The
impact is measured locally using the Jacobian.

• The problem is that the derivatives are not scale invariant so not easily
comparable. For this reason here Dynare uses a
normalization/standardization procedure described in Iskrev Ratto (2011).

• Dynare plots here three different measure of sensitivity. The bars depict the
norm of the columns of three different standardized Jacobian matrices for the
respective parameter shown on the x-axis. The respective Jacobian refer to:

1 the moments matrix, indicating how well a parameter can be identified
due to the strength of its impact on moments

2 the solution matrices (model), indicating how well a parameter could in
principle be identified if all state variables were observed

3 the Linear Rational Expectation (LRE) model, indicating trivial cases of
non-identifiability due for example to the fact that some parameters
always show up as a product in the model equations.
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Identification Example: NK model

Sensitivity bars using derivatives (log-scale)
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Identification Example: NK model

• To completely rule out a flat likelihood at the local point one can also
check collinearity between the effects of different parameters on the
likelihood.

• If there exists an exact linear dependence between a pair and among
all possible combinations their effects on the moments are not distinct
and the violation of this condition must indicate a flat likelihood and
lack of identification.

• The details of collinearity analysis require the advanced analysis
option ((advanced = 1)) which prints the results of the brute force
search for the groups of parameters whose columns in the Jacobian
matrix best explain each column of the Jacobian (i.e. best
reproducing the behavior of each single parameter).
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Identification Example: NK model

Collinearity patterns with 1 parameter(s)

A Selection of High Collinearity patterns with 2 parameter(s)

Parameter [ Expl. params ] cosn

SE epsA [ SE epsMS hss ] 0.9978085

SE epsM [ phiX rho r ] 0.9656062

SE epsMS [ SE epsA hss ] 0.9973889

rhoA [ rhoMS phiX ] 0.9958508

rhoMS [ rhoA phiX ] 0.9956177

hss [ sigma c xi ] 0.9867869

sigma c [ SE epsG hss ] 0.9878160

alp [ SE epsA hss ] 0.9522590

theta pie [ hss rho r ] 0.9985808

rho r [ hss theta pie ] 0.9983547

theta y [ chi rho r ] 0.9414656
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Identification

Andrle (2010)

• Following Andrle (2010), identification can also be judged from a
singular value decomposition (SVD) of the information matrix

• Provides the size of the singular values and the associated
eigenvectors (i.e. parameters)

• Parameter combinations associated with the smallest singular values
are closest to being perfectly collinear and thus redundant

• Singular value of 0 implies that the parameter is completely
unidentified as it is responsible for the information matrix being rank
deficient

• Example, a the next figure : consr, conspie and trend are not
identifiable.

page 63 of 75



Identification
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Validation using Second Moments

Validation based on standard moment criteria

• We now examine the ability of the estimated model to predict second
moments (the absolute fit)
• Three sets of second moments:

• Volatility - Standard Deviations
• Co-Movement - Cross Correlations
• Persistence - Autocorrelation

• To generate moments of endogenous variables in Dynare we simply
use stoch simul:

• Uses post-estimation solution based on posterior modes or means of
the model to produce the three moment above.
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Validation using Second Moments

Results and plots

• Again all simulation outputs are stored in the
FILENAME results.mat in the working directory ⇒ reload it to
extract useful information (in the structure array oo )

• e.g. the simulated auto-correlation function can be found on the
diagonal of the field oo .autocorr

• Need sub-functions acfcomp.m and autocov.m to compute the
sample ACF.

• In the working directory, acfs plot .m plots the sample ACFs and
estimated ACFs from the model
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Validation - matching moments

Standard Deviation
Model Output Inflation Interest rate

Data 0.5398 0.2400 0.6142
Model 0.7469 0.4115 0.4706

Cross-correlation with Output
Data 1.00 -0.3199 -0.0064
Model 1.00 -0.2465 -0.3030

Autocorrelations (Order=1)
Data 0.1466 0.5204 0.9371
Model 0.6285 0.6826 0.9128

Table: Selected Second Moments of the Model
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Validation - ACF plots

0 5 10
-0.5

0

0.5

1
Output

0 5 10
0

0.2

0.4

0.6

0.8
Inflation

0 5 10
0

0.5

1
Interest rate

data
 NK Model

Figure: Auto-correlations of Observables in the Actual Data and in the Estimated
NK Model
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Summary

Summary of Model Estimation and Validation
• The choice of filter to make the data stationary - either a two-step

procedure filtering the series separately of a one-step procedure as on
the Course.

• The measurement equation: this links the data with the output of
the model

• the choice of priors: depends on the range of possible values for the
parameter. General guidance: gamma or inverse gamma distributions
for non-negativity constraints, beta distributions for fractions or
probabilities, normal distributions when more informative priors are
necessary (uniform or ‘flat’ priors if there is little information about
the parameter)

• Computation of Posterior: Bayes theorem, mode computation and
MCMC.

• Model validation: compare second moments with those of the data.

• Next: Model comparison
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Exercises

Exercise 1 on Dynare: Estimation

1 Using us data.mat, NKlinear Est.mod has been estimated using
mode-compute 6 which is designed to give a negative definite
Hessian. The mode file saved as NKlinear Est mode saved and
this can be re-cycled to use as an initial estimate of the mode in
subsequent estimations of closely related models.

2 The estimated model up to now assumed a conventional Taylor rule,
With the three observed variables chosen in the notes, first perform
the identification and then estimate the NK model with an
implementable Taylor rule. Use only 10,000 mcmc draws for now and
re-run the results later with at least 100,000.

3 Use the graph plotter from Days 1 and 2 provided to compare the
impulse responses to the four shocks and acfs plot.m to compare the
ACFs. What do you notice about your results?
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Exercise 2 on Dynare: Estimation

1 Recall the problem arising in the identification from having four
shocks and three observables. Address this by adding consumption
growth dc as an observable.

2 Now perform the identification and re-run the estimation (with an
implementable rule). Compare IRFs and ACFs with the original
set-up. What do you notice about your results?
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Appendix
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Exercises

Testing for MCMC Convergence

• Basic uni-variate test motivated by ANOVA considerations. Generate
m MCMC chains, each run for 2n iterations; first n are discarded to
avoid burn-in period. Let ψ represent one of the parameters, with
ψjk , j = 1, ...,m, k = 1, ..., n, representing the draws. If the ψjk were
normally distributed with variance σ2, then an unbiased estimator σ̂2

of σ2 is given by

(mn−1)σ̂2 =
m∑
j=1

n∑
k=1

(ψjk−ψ..)2 ≡
m∑
j=1

n∑
k=1

(ψjk−ψj .)
2+n

m∑
j=1

(ψj .−ψ..)2

where ψj . represents the mean for the jth chain, and ψ.. is the mean
over all chains
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Testing for MCMC Convergence (cont)
• One measure of convergence is that the ψj . are all equal to ψ.. i.e.

that the initial value of the draw in each chain does not affect the
mean. Another test is that the variance is equal across all the chains.

• We can test these together by checking whether the Potential Scale
Reduction Factor R2 ≡ V /W is approaching 1, where

V =
1

mn − 1

m∑
j=1

n∑
k=1

(ψjk−ψ..)2 W =
1

m(n − 1)

m∑
j=1

n∑
k=1

(ψjk−ψj .)
2

• Brooks and Gelman (1998) recommend that V and W are plotted
sequentially for k = 1, ..., n; this means that one can check that as n
increases, V and W tend individually to a limit, and that this is the
same limit as k approaches n.
• For a unimodal posterior distribution there is a check that both means

and variances of all chains’ estimates of ψ tend to the same limit.
• If the posterior distribution is not unimodal, then Dynare does a similar

calculation for third moments.
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Multivariate Measures for MCMC Convergence

• An unbiased estimate Ω̂ of the covariance matrix of the vector of parameters
θ is

(mn − 1)Ω̂ =
m∑
j=1

n∑
k=1

(θjk − θ..)(θjk − θ..)T

≡
m∑
j=1

n∑
k=1

(θjk − θj.)(θjk − θj.)T + n
m∑
j=1

(θj. − θ..)(θj. − θ..)T

Matrices V and W are then defined analogously to their scalar versions
above. One measure closeness is the maximum root statistic - the solution
to maxa(aTVa)/aTWa), which is given by the largest eigenvalue of

W−
1
2 VW−

1
2 , which should tend to 1 if the chains are converging to the

posterior distribution. The determinants of V and W should also converge.

• A similar approach is taken for third moments
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