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Global Sensitivity Analysis Toolbox

• Global Sensitivity Analysis toolbox.

Readings:

• Ratto, M.. (2008). ”Analysing DSGE Models with Global Sensitivity
Analysis”, Computational Economics 31 (2):115-139.

• Ratto, M., Hohberger, S., Burgert, M. (2016). ”New Software Tool
for the Evaluation of DSGE Models: An Application with DYNARE”,
mimeo.

page 2 of 21



Intro

Global Sensitivity Analysis and Monte-Carlo-Filtering.
Ratto(2008)

• Which is the domain of structural coefficients assuring the stability
and determinacy of a DSGE model?

• Which parameters mostly drive the fit of, e.g. GDP and which the fit
of inflation?

• How to represent in a direct, albeit approximated, form the
relationship between structural parameters and the reduced form of a
rational expectations model?

• We can use computational tools called GSA (and it’s Dynare toolbox)
to answer these questions.
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Intro

Global Sensitivity Analysis and Monte-Carlo-Filtering.
Ratto (2008)

• Think about the stability/indeterminacy analysis.

• Usually papers produce a 2 dimensional analysis varying 2 parameters
at the time.

• Here we will show how it is possible to work out the
determinacy/stability region of a model more generally than 2
parameters at the time.

• [?] discusses two approaches: Monte Carlo Filtering (MCF)
techniques and Functional variance decomposition techniques.

• We will focus here only on the first.
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Monte-Carlo-Filtering

Monte-Carlo-Filtering. Ratto (2008)

• Is special type of mapping procedure that is applied when the
objective of the analysis is to measure what fraction of a set of Monte
Carlo model realisations (a forecast, an IRF, a stochastic simulation)
falls within established bounds or regions.

• A sensitivity analysis procedure called regionalised sensitivity analysis
(RSA) is sub-sequently applied in order to know which input factors
are mostly responsible for the model to fall under the prescribed
region or not.

• MCF is often used in calibration, as it can successfully point out to
the existence of alternative behavioural regions in the
multidimensional space of the structural parameters.
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Monte-Carlo-Filtering

Monte-Carlo-Filtering and Determinacy/Stability. Ratto
(2008)

• These techniques can be used to map the stability region of DSGE
models and to detect critical regions in the model parameter space of
DSGE models.

• This is usually done by solving the model for parameter values on
some grid. Like we did before.

• MCF generalizes those, in a Bayesian context, and allows us to deal
with entire multivariate parameter spaces.

• A multi-parameter MC simulation is performed, sampling model
parameters (X1, .....,Xk) from prior ranges and propagating parameter
values through the model.
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Monte-Carlo-Filtering

Monte-Carlo-Filtering and Determinacy/Stability. Ratto
(2008)

• Then, based on a set of constraints (e.g. rank conditions or signs of impulse
responses), a categorization is defined for each MC model realization as
lying either within or outside the target region.

• The terms behavior (B) or non-behavior (B̄) are used in the MCF literature.
The B − B̄ categorization is mapped back onto the input structural
parameters, each of which is thus also partitioned into a B and B̄
sub-sample.

• Given a full set of N Monte Carlo runs, one obtains two subsets: (θi |B) of
size n and (θi |B̄) of size n̄, where n + n̄ = N.

• In general, the two sub-samples will come from different unknown probability
density functions: fn(θi |B) of size n and fn̄(θi |B̄) of size n̄.

• In order to identify the parameters that mostly drive the DSGE model into
the target behavior, the distributions fn and fn̄ are compared for each
parameter independently.
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Monte-Carlo-Filtering

Monte-Carlo-Filtering and Determinacy/Stability. Ratto
(2008)

• The Montecarlo sampling allows us to avoid computing analytical
integration over the remaining parameters.

• If for a given parameter Xi the two distributions are significantly different,
then Xi is a key factor driving the model behavior and there will be clearly
identifiable subsets of values in its predefined range that are more likely to
fall under B than under B̄.

• If the two distributions are not significantly different, then Xi is unimportant
and any value in its predefined range is likely to fall either in B than under B̄.

• Ideally, we are comparing the supports of the conditional cumulative
distribution functions (CDF) of a parameter and compute the distance under
standard statistical metrics.
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Monte-Carlo-Filtering

Monte-Carlo-Filtering and Determinacy/Stability. Ratto
(2008)

• The Smirnov two-sample test (two-sided version) provides us with a
statistical concept of distance.

dn,n̄(Xi ) = sup||Fn(Xi |B)− Fn̄(Xi |B̄)||

• And the question answered by the test is: “At what significance level α does
the computed value of dn,n̄ determines the rejection of the null hypothesis
Fn(Xi |B) = Fn̄(Xi |B̄)?

• The lower the α associated to the Smirnoff test, the more likely is to reject
the null hypothesis.

• The B and B̄ subsets can be further inspected through bi-dimensional
projections, in order to detect patterns characterizing two-way interactions.

• The standard procedure consists of computing the correlation coefficients ρij
between all parameters under the B and B̄ subsets, and plotting the
bi-dimensional projections of the sample for the couples having |ρij | larger
than a significance threshold.
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Monte-Carlo-Filtering

Monte-Carlo-Filtering and Determinacy/Stability. Ratto
(2008)

• The literature has mainly focused on sensitivity exercises on calibrated
parameters where the model objects of interest are computed by
varying one parameter at a time.

• The MCF has clear advantages over calibration sensitivity exercises.

• First, unlike sensitivity calibration exercises, all parameters move
simultaneously.

• Second, the Smirnoff test offers implicitly a statistical ranking of
parameters from the most to the least influential.

• Finally, it unveils important relationships among parameters. We will
use these insights to assess the prior model ability to replicate the key
data facts and try to uncover the deep parameters that are important
to match such patters.
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Monte-Carlo-Filtering

Monte-Carlo-Filtering and Determinacy/Stability. Ratto
(2008)

Analysing DSGE Models with Global Sensitivity Analysis 119
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Fig. 1 Graphical representation of the Smirnov test for an important parameter Xi , sampled from a uniform
distribution in the interval [0, 1]. The vertical bar is the dn,n̄ statistic. Model realisations under the B category
are more likely when Xi falls on the right part of its pre-defined range

under the B or B̄ subsets, and plotting the bi-dimensional projections of the sample
for the couples having |ρij | larger than a significance threshold. This usually enables
to visualise relationships between parameters.

For example, let us consider a simple model given by the equation Y = X1 +
X2, with Xi ∈ (0, 1). Let us define the model target behaviour as Y > 1. Then, a
MCF procedure can identify a significant negative correlation between X1 and X2
in the B subset, and the corresponding triangular pattern can be visualised through
the projection of the B sample shown in Fig. 2. From this pattern, one can deduct a
constraint X1 + X2 > 1 to fulfil the target behaviour.

We show next a few examples of the use of MCF to characterise the stability,
indeterminacy and instability behaviour of DSGE models. We will also show one
application of MCF for mapping in detail the fitting properties of a DSGE model. In
all the examples presented in this paper, Sobol’ quasi-Monte Carlo sequences as used
(Sobol’ 1976; Sobol’ et al. 1992). Readers can refer to Judd (1998) for an introduction
to quasi-Monte Carlo techniques. Here it is sufficient to say that such techniques are
generally preferred in MC-based sensitivity analysis because they can allow better
efficiency properties with respect to using standard pseudo-random generators. The
rate of stochastic convergence for pure pseudo-random Monte Carlo methods is, in
fact, N−1/2, while the actual rate of convergence of quasi-Monte Carlo methods can
be N−c with c ≤ 1 (Sobol’ 1998). This means that the rate of convergence can be
doubled, in such cases where c approaches one.

3 MCF Applications for DSGE Models: Mapping Stability

Let us consider a DSGE model with a set of structural parameters (X1, . . . , Xk), each
with its plausible prior range of values. We are interested in characterising the portion

123
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Monte-Carlo-Filtering

Monte-Carlo-Filtering and Determinacy/Stability. Ratto
(2008)

120 M. Ratto
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Fig. 2 Bi-dimensional projection of the B sub-sample for the simple model Y = X1+X2 (target behaviour
Y > 1). The triangular pattern clearly indicates the relationship X1 + X2 > 1 for the target behaviour. The
correlation coefficient between X1 and X2 in the MC sample is ρ12 = −0.45

of the parameter space that fulfills the Blanchard-Kahn conditions. We apply the
Monte Carlo filtering approach by defining the following categorisation: B indicates
the target stable behaviour, while B̄ indicates unacceptable behaviour, i.e. instability,
indeterminacy or any other reason impeding the solution of the model, e.g. the steady
state solution cannot be found.

3.1 Forward Looking Phillips Curve, Hybrid Version

Let ct and πt respectively denote output gap and inflation. We consider the hybrid
model (Kuttner 1994)

πt = ωπt−1 + (1 − ω)Etπt+1 + βct + aπ,t (2)

ct = 2A cos(2π/τ )ct−1 − A2ct−2 + ac,t (3)

where 0 < ω < 1, A and τ are the amplitude and period of ct and aπ,t , ac,t are white
noises. It is easy to check that the rank condition for existence of a unique stable
trajectory is verified for ω > 0.5. For ω ≤ 0.5 we have indeterminacy.

We define the following supports for the three coefficients (A,ω, τ ):

A ∈ [0, 1], ω ∈ [0, 1], τ ∈ [0, 100].

Figure 3 shows the Smirnov test with the cumulative distributions for the three
model parameters under the B and B̄ subsets, indicating a full separation of the B and
B̄ subsets for ω (significance level α = 0). The condition ω > 0.5 can also be clearly
identified by the cumulative distribution of ω under B (dotted line). The irrelevance of

123
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Monte-Carlo-Filtering

Monte-Carlo-Filtering and Determinacy/Stability. Ratto
(2008)

• Now let’s use the GSA toolbox to reproduce the same stability
analysis of the NK model we looked at earlier today.

• This morning we could only do a 2-dimensional analysis. Ie.
producing a plot of the interest rate smoothing vs the inflation
response in the Taylor rule.

• Now we can check the Stability region for multiple parameters at the
same time.
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Monte-Carlo-Filtering

Monte-Carlo-Filtering and Determinacy/Stability. Ratto
(2008)
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Figure: NK linear code. Determinacy region of θπ vs ρr
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Monte-Carlo-Filtering

Monte-Carlo-Filtering and Determinacy/Stability. Ratto
(2008)
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Figure: NK linear code. Determinacy region of θπ vs ρr vs ξ
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Monte-Carlo-Filtering

Monte-Carlo-Filtering options

• Code NKlinear.mod in folder GSA reproduces the figures above.

• There are various advanced options available for the command
dynare sensitivity

• Nsam=2048; size of the MC sample.

• pvalue ks=0.001; critical p-value for the smirnoff statistic d; plot
parameters with p-value<pvalue ks.

• For more options see the Dynare manual.
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Irf Matching

Monte-Carlo-Filtering applied to IRFs

• MCF can be applied to other exercises.

• For example B and B̄ can represent other things instead of
determinacy and indeterminacy regions.

• Let’s apply it to check the parameters responsible to the switch in
sign of a particular Impulse response to a structural shock in DSGE
models.

• We will use as an example the Hours-Technology debate. Which
parameter drives the response of hours to technology shocks in the
RBC model?

• Run code RBC.mod in folder GSA
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Irf Matching

RBC threshold for Hours in response to technology shocks
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Moment Matching

Monte-Carlo-Filtering applied to Moment Matching

• The second new sensitivity tool within the GSA toolbox is moment
calibration that allows for matching or restricting theoretical moments (auto
correlations, cross correlations, sign restrictions).

• The idea behind moment restriction is the question whether relationships
between two endogenous variables (yt and xt) in a DSGE model can be
matched with those in the data.

• In code NK Linear moments.mod in folder GSA we are interested in the
auto correlation function (ACF) of output Y as well as three cross
correlation functions (CCF) between two variables, namely (1) inflation and
interest rate, (2) output and inflation and (3) output and interest rate.

• Additionally, we restrict the theoretical moments either to be positive (1 and
3) or negative.

• Note that we specify priors distributions as the ones you will be using
tomorrow for estimation.
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Moment Matching

Monte-Carlo-Filtering applied to Moment Matching
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Moment Matching

Monte-Carlo-Filtering applied to Moment Matching

• The targeted regions/restrictions are marked in blue.

• Let’s focus on the first subplot which shows the correlation between inflation
(PIE) and nominal interest rate (Rn).

• It plots the range of cross correlations starting from R(-4) on PIE until
R(+4).

• Given the MC sample based on the prior distributions the model provides a
negative contemporaneous correlation between PIE and Rn. Only
correlations between R(+1) and R(+4) with PIE are inside the targeted
region.
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