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Linearization

Linearization: First Order Taylor Series Expansion

• Stability analysis in dynamic models is based on a linear (first-order)
approximation about some baseline.

• The easiest way to set up a model in dynare is in linearized form
about a steady state.

• The technique of linearization uses a Taylor series expansion.

• Consider a general function of two variables F (Xt ,Yt).

• Then up to first-order terms we have

F (Xt ,Yt) ≈ F (X ,Y ) +
∂F

∂Xt
(Xt − X ) +

∂F

∂Yt
(Yt − Y ) (1)

where partial derivatives are evaluated at the steady-state values
X ,Y .
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Linearization

Linearization: Some Notation

• We now use the following notation

Xt − X

X
= xt (2)

• We deal with proportional deviations unlike the dynare solution
procedure above which used absolute deviations Ŷt ≡ Yt − Y. Unless
Yt is in logs, these are quite different.

• Then (1) becomes

ft ≈
X

F

∂F

∂Xt
xt +

Y

F

∂F

∂Yt
yt (3)

• Note that

log

[
Xt

X

]
= log

[
1 +

Xt − X

X

]
≈ xt (4)

which is why this technique is referred to as ‘log-linearization’.
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Linearization

Absolute and Proportional Deviations in Dynare

• In our dynare codes we have defined variables such as XXt ≡ Xt
X

written in dynare as X/STEADY STATE(X).

• Then since dynare uses absolute deviations X̂X t ≡ XXt − XX and
XX = 1, it follows that

• X̂X t = XXt − 1 = Xt−X
X ≡ xt are now proportional deviations in Xt .

• Impulse reaction functions can now be interpreted as percentage
elasticities.

• Variable XXt in a non-linear set-up corresponds to Xt in the linearized
one.

page 4 of 12



Linearization

Linearization: Application

• Define lower case variables xt ≈ log Xt

X̄t
if Xt has a long-run trend

• Or xt ≈ log Xt
X otherwise where X is the steady state value of a

non-trended variable.

• Appendix 2 in the notes and the following slides illustrate this method
for the Euler equation in both the RBC and NK models with CD
utility.
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Example 1

Example of Linearization: The Euler Equation
• The non-linear without habit form is given by

UC ,t = βRtEt [UC ,t+1] (5)

UC ,t = (1− %)C
(1−%)(1−σc )−1
t (1− Ht)

%(1−σc ) (6)

• Let’s now apply the Taylor-Series approximation to (5). Applying

f (Rt ,UC ,t+1) ≈ f (R,UC ) +
∂f

∂Rt
(Rt − R) +

∂f

∂UC ,t+1
(UC ,t+1 − UC )

with the partial derivatives evaluated at the steady state, to the
right-hand-side of (5), and using the steady-state βR = 1:

UC ,t ≈ UC + βUC (Rt − R) + βREt [UC ,t+1 − UC ]

≈ UC + UC
(Rt − R)

R
+ Et [UC ,t+1 − UC ]

• Hence

uC ,t ≡
UC ,t − UC

UC
≈ rt + Et [uC ,t+1]
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Example 1

Example of Linearization: The Euler Equation (cont)

• To linearize (6) it is quickest to first take logs to obtain

logUC ,t = ((1−%)(1−σc)−1) logCt +%(1−σc) log(1−Ht)+constant

Then subtracting the steady state from both sides of the equation:

logUC ,t − logUC = ((1− %)(1− σc)− 1)(logCt − logC )

+ %(1− σc)(log(1− Ht)− log(1− H))

Now again use the Taylor series expansion to approximate

log(1− Ht)− log(1− H) ≈ − 1

1− H
(Ht − H) = − H

1− H
ht

Hence we arrive at the linearization of section 4.2 in the notes:

uC ,t ≈ −((σc − 1)(1− %) + 1)ct + (σc − 1)%
H

1− H
ht (7)

page 7 of 12



Example 2

The Linearized RBC Model with External Habit

Given investment it and marginal utilities uL,t and uC ,t

Technology shock : at = ρAat−1 + εA,t

Gov Spending shock : gt = ρGgt−1 + εG ,t

Capital Accumulation : kt = (1− δ)kt−1 + δit

Euler Equation : Et [uC ,t+1] = uC ,t − rt

Labour Supply : wt = uL,t − uC ,t

Labour Demand : wt = yt − ht

Production Function : yt = α(at + ht) + (1− α)kt−1

Equilibrium : yt = cyct + iy it + gygt

where recall that xt = log Xt
X ≈

Xt−X
X for any xt .
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Example 2

The Linearized RBC Model - Continued
Marginal utilities of consumption and leisure and investment (with costs of
adjustment) are given respectively by

uC ,t = −(1 + (σc − 1)(1− %))

(
ct − χct−1

1− χ

)
︸ ︷︷ ︸

habit added

+(σc − 1)%
H

1− H
ht

uL,t = uC ,t +

(
ct − χct−1

1− χ

)
︸ ︷︷ ︸

habit added

+
H

1− H
ht

rt =
(R − 1 + δ)(Etyt+1 − kt) + (1− δ)Etqt+1

R
− qt(

1 +
1

R

)
it =

1

R
Et it+1 + it−1 +

1

S ′′(1)
qt

A government balanced budget constraint completes the model (but in the
absence of tax distortions plays no role):
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Why Linearization?

An Example of why Linearization is Useful
• Full paper and pen stability analysis possible for linear models and

optimal policy for linear-quadratic problems (see Woodford (2003)
and Gaĺı (2015)).

• Consider the Euler Equation. Useful analysis can be done in the case
of a logarithmic utility function (σc = 1). In this case uC ,t ≈ ct and
the the linear Euler equation becomes:

Et [uC ,t+1] = uC ,t − rt ⇒ ct = −rt + Et [ct+1]

• Solving this forward in time gives

ct = −rt −Et [−rt+1 + Et+1[ct+2]] = −rt −Et [rt+1] +Et [Et+1[ct+2]]

• Then using Et [Et+1[ct+2]] = Et [ct+2] (the “law of iterated
expectations”) and reiterating we arrive at:

ct = −rt − Et [rt+1]− Et [rt+2]− · · · = −
∞∑
i=0

Et [rt+i ]
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Why Linearization?

Another Example of Why Linearization is Useful
• Gather the linearization of the labour supply choice and the marginal

utility of leisure together:

wt = uL,t − uC ,t

uL,t = uC ,t +

(
ct − χct−1

1− χ

)
+

H

1− H
ht

• It follow that wt =
(
ct−χct−1

1−χ

)
+ H

1−H ht

• We now have an expression for the inverse elasticity of hours with
respect to the wage keeping consumption fixed at its steady state.

• Then ct = ct−1 and the constant consumption inverse elasticity (the
Frisch elasticity) is then H

1−H = 1/2 with H = 1/3.

• From empirical studies this is on the low side (estimates suggest an
elasticity > 1).

• But JR rather than CD preferences used for the RBC model will
enable us to target the Frisch elasticity
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Why Linearization?

A Final Example: Understanding Impulse Responses

• The linearized model can be used to understand the impulse
responses.

• Consider the simpler version where σ = 1 (Cobb-Douglas utility) and
χ = 0 (no external habit).

• Follow the reasoning in the Notes on Understanding Impulse
Responses for NK model, for the flexi-price and wage limit (the RBC
model) (

1− 1

cy

)
at + it > 0 (8)

• Thus since cy < 1, this requires as a necessary condition it > 0.

• Return to this in the NK model of Day 2.

• Then provided that adjustment costs φX are absent or small, hours
will increase.
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Why Linearization?

Gaĺı, J. (2015). Monetary Policy, Inflation and the Business Cycle.
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Monetary Policy. Princeton University Press.
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