FINANCIAL FRICTIONS IN DSGE MODELS

Macro-Prudential Regulation

Paul Levine Afrasiab Mirza

September 11, 2020

Four Policy Regimes

- Rules considered depend on whether the policymaker can *commit*, or she exercises *discretion* and engages in period-by-period optimization.
- With commitment the welfare-optimal policy is the solution to the Ramsey problem; but this is not time-consistent in RE models: with the mere passage of time initially optimal policy becomes sub-optimal.
- The Ramsey solution is not the same thing as the social planner's problem in any model with some market failure.
- In the absence of commitment the policymaker optimizes period-by-period the *discretionary solution*. This is sub-optimal.
- Even with commitment the policymaker may be constrained to simple rules (e.g., Taylor-type rules)
- Rationale for simplicity: transparency, information available and ease of implementation

NK Model with JR Preferences

- The SW NK model up to now with basically a CD household utility function displays a strong wealth effect in response to a positive technology shock.
- As a result household reduce their hours relative to the steady state and "consume" more leisure.
- Hours and output then do not co-move, as in the data.
- The following alternative functional form for utility found in Jaimovich and Rebello (2008) controls the wealth effect:

$$U_{t} = \frac{(C_{t} - \kappa H_{t}^{\theta} \Xi_{t})^{1 - \sigma_{c}} - 1}{1 - \sigma_{c}}$$

$$\rightarrow \log(C_{t} - \kappa H_{t}^{\theta} \Xi_{t}) \text{ as } \sigma_{c} \rightarrow 1$$

$$\Xi_{t} = C_{t}^{\gamma} \Xi_{t-1}^{1 - \gamma}; \quad \gamma \in [0, 1]$$

JR Preferences: Calibration of Parameters

- There are three parameters to calibrate: κ , θ and γ :
- Parameters are κ and θ are calibrated to target \bar{H} (as we did using ϱ with the Cobb-Douglas function previously) and the Frisch elasticity as in Holden *et al.* (2018)
- ullet This leaves γ as a free parameter to control for wealth effects
- Note that the CD utility function is less flexible in that it can only target one steady state outcome $H=\bar{H}$ whereas the JR utility function can target the Frisch elasticity as well.

JR Preferences: Household foc

• From Appendix 1.1, the household first-order conditions now become:

Euler Consumption
$$: 1 = R_t \mathbb{E}_t \left[\Lambda_{t,t+1} \right]$$
 Stochastic Discount Factor $: \Lambda_{t,t+1} \equiv \beta \frac{\lambda_{t+1}}{\lambda_t}$ where $: \lambda_t = U_{C,t} - \gamma \mu_t \frac{\Xi_t}{C_t}$ and $: \mu_t = -U_{\Xi,t} + \beta (1-\gamma) \mathbb{E}_t \frac{\mu_{t+1} \Xi_{t+1}}{\Xi_t}$ Labour Supply $: \frac{U_{H,t}}{\lambda_t} = -W_t$

- Investment and capital supply foc as before
- The following irfs to a technology shock show how wealth effects are reduced by reducing γ . Note that $\gamma>0$ is required for a bgp.

Macro-Prudential Policy

- The GK model with outside equity can be used to examine the effects of financial macro-prudential regulation alongside conventional monetary policy.
- We consider a rule that directly regulates capital requirements in the form of the inverse of leverage (lever_t), defined as the proportion of total loans to inside equity (net worth) plus outside equity defined as:

$$lever_t = \frac{Q_t K_t}{N_t + q_t E_t}$$

 Exercise is illustrative: Parameter Values are those set in the GK Section and are not those estimated subsequently

Direct Regulation of Outside Equity

• Then rules take one of two forms:

$$\log\left(\frac{lever_{t}}{lever}\right) = \rho_{lever}\log\left(\frac{lever_{t-1}}{lever}\right) - lever_{y}\log\left(\frac{Y_{t}}{Y}\right) + lever_{spread}\log\left(\frac{1 + spread_{t}}{1 + spread}\right)$$

$$\log\left(\frac{lever_{t}}{lever}\right) = \rho_{lever}\log\left(\frac{lever_{t-1}}{lever}\right) - lever_{y}\log\left(\frac{Y_{t}/Y}{Y_{t}^{F}/Y^{F}}\right) + lever_{spread}\log\left(\frac{1 + spread_{t}}{1 + spread}\right)$$

$$(2)$$

- With lever_y, lever_{spread} > 0, leverage is require to respond counter-cyclically (pro-cyclically) to output (spread)
- Spread $\equiv R_t^K R_t$ as before.
- The rule then replaces the bank's first-order condition for the decentralized choice of $x_t \equiv \frac{q_t E_t}{Q_t S_t}$, $(1 + \lambda_t) \mu_{e,t} = \Theta_t' \lambda_t$.

A Regulatory Rule in the GK-equity Model

feedback	Welfare	Е	Spread	Y	R_n	SD(E)	SD(lever)
No MPR	-405.47	0.567	0.0044	0.146	1.0634	0.153	0.475
0.1	-406.07	0.555	0.0045	0.145	1.065	0.283	0.054
1.0	-406.60	0.249	0.00472	0.144	1.066	0.529	0.542

Table: A Regulatory Rule in the GK-equity Model.

The table reports ergodic means except where SDs are indicted. External Habit and Standard Taylor Monetary Rule. feedback= $lever_y = lever_{spread}$.

$$\rho_{lever} = 0.7$$

- Second-order perturbation solution
- We see a marked increase in the volatility of equity which for higher values of the feedback coefficients involves a significant welfare cost.
- But for a given MPR rule of thus form, feedback= $lever_y$, $lever_{spread}$ and ρ_{lever} can be chosen to be welfare-optimal.

A Welfare-Optimal Regulatory Rule

feedback	Welfare	CE Cost of MPR	SD(lever)
No MPR	-405.47	0	0.475
0.1	-406.07	0.1276	0.054
0.17	-406.0623	0.1260	0.092
0.18	-406.0622	0.1259	0.095
0.19	-406.0622	0.1259	0.103
0.2	-406.06	0.1260	0.108
0.3	-406.07	0.1276	0.163
0.4	-406.10	0.1340	0.217
0.5	-406.14	0.1425	0.271

- Given the rule, $\rho_{lever} = 0.7$ and $lever_y = lever_{spread}$, the welfare optimal outcome is where $lever_y = lever_{spread} = 0.18 0.19$.
- An optimized rule over $lever_y$, $lever_{spread}$ and ρ_{lever} can be found using the matlab minimization routine, **fmincon**
- A 1% permanent increase in consumption gives a welfare gain of 4.7026 - see next slide

Welfare and Consumption Equivalent Calculation

 In stationarized form (See Section 2.6.1 of notes) with a shock to trend, the intertemporal welfare is given by

$$\Omega_t = U_t + \mathbb{E}_t \left[(1 + g_{t+1}) \beta_{g,t+1} \Omega_{t+1} \right]$$
 where $\beta_{g,t} \equiv \beta (1 + g_t)^{-\sigma_c}$ (growth-adjusted discount factor)

• Given a particular equilibrium for C_t and H_t and single-period utility, $U_t = U(C_t, C_{t-1}, H_t)$, compute CE, the increase in the given by a 1% increase in consumption, by defining the variable:

$$CEequiv_t \equiv U_t(1.01 \ C_t, 1.01 \ C_{t-1}/(1+g), H_t) - U_t + \mathbb{E}_t \left[(1+g_{t+1})\beta_{g,t+1} CEequiv_{t+1} \right]$$

- Then we use the deterministic steady state of CEequiv_t, CEequiv, to compare welfare outcomes.
- Then for two welfare outcomes, W_1 and W_2 , we define $ce \equiv \frac{W_1 W_2}{CEequiv}$ reported in Table above.

Discussion

- Third order approximations to the perturbation solution (or even global solutions) are required to incorporate time-varying risk (see Dewachter and Wouters (2014)).
- One can optimize with respect to the feedback and persistence parameters in the rule.
- But since optimized simple rules depend on the variance-covariance matrix of shocks an *estimated* form of the model should be used.
- The main purpose of the MPR rule is to reduce the risk of a systemic default is not explicitly modelled.
- What we show are the costs of MPR given that it is desirable and implemented through a rule such as (1).

Dynare Codes

- The code for the material of this section is in the folder Policy.
- The exercise in the two tables above is carried out in $\mathbf{GK_equity_MPR.mod}$ with an option to turn off MPR and replace the rule with the bank's first-order condition for the decentralized choice of x_t , $(1 + \lambda_t)\mu_{e,t} = \Theta'_t \lambda_t$.

Exercises

- Use the graph plotter to compare of the GK model with and without MPR. In the former case choose the upper limit of the feedback parameter.
- 2 Rework the two tables above with an implementable monetary rule. What do you notice?

Conclusions and Future Research

- This one-day Course has covered a range of banking models suitable for incorporation into a DSGE modelling framework.
- The course has covered both theory and practical implementation.
 DO READ THE NOTES!
- We have shown how to set the models up in Dynare to perform second-order perturbation solutions, estimate the models and carry out monetary and macro-prudential policy exercises.
- The models can be generalized to the small open economy interacting with the ROW (see Surrey Easter Course).
- For the needs of a central bank in the Euro-zone the ROW can be the Euro-zone
- More generally, modelling financial frictions is a very active area of current research.
- This Course has hopefully provided you with the tools necessary to participate in this agenda.

- Bilbiie, F. (2009). Nonseparable Preferences, Fiscal policy Puzzles and Inferior Goods. *Journal of Money, Credit and Banking*, **41**(2-3), 443–450.
- Bilbiie, F. (2011). Nonseparable Preferences, Frisch Labor Supply and the Consumption Multiplier of Government Multiplier of Government Spending: One Solution to the Fiscal Policy Puzzle. *Journal of Money, Credit and Banking*, **43**(1), 221–251.
- Dewachter, H. and Wouters, R. (2014). Endogenous risk in a DSGE model with capital-constrained financial intermediaries. *Journal of Economic Dynamics and Control*, **43**, 241–268.
- Holden, T., Levine, P., and Swarbrick, J. (2018). Reconciling Jaimovich-Rebello Preferences, Habit in Consumption and Labour Supply. *Economic Letters*, **168(C)**, 132–137.
- Jaimovich, N. and Rebello, S. (2008). News and Business Cycles in Open Economies. *Journal of Money, Credit and Banking*, **40**(8), 1699–1710.