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Introduction and Overview of Bayesian Estimation

From Calibration to Systems Estimation

• Up to now we have used calibration to pin down parameters in the model.

• We have used the deterministic steady state to solve for parameter values

that result in observed long-run outcomes for macro-variables such as hours

worked, the great ratios (consumption, investment shares given a

government spending share) and the real interest rate.

• This first-moment matching can be extending to a second-moment

matching of variances, correlations and autocorrelations to calibrate shock

processes.

• Current practice in empirical macroeconomics is to replace this informal

moment matching with formal systems estimation.

• Maximum Likelihood (ML), General Method of Moments (GMM) and

Bayesian estimation are three widely used systems estimation methods for

DSGE models.
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Introduction and Overview of Bayesian Estimation

Overview of Bayesian Estimation

Bayesian analysis requires:

• Initial information ⇒ Prior distribution

• Data ⇒ Likelihood density or the probability of observing the data given the

model and parameters

• Prior and Likelihood ⇒ Bayes theorem ⇒ Posterior distribution

• Posterior distribution used for confidence intervals for parameters and

impulse responses.

• The posterior distribution also provides information regarding identification

of parameters - how much information does the data provide on parameters?
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Introduction and Overview of Bayesian Estimation

Dynare Steps in the Computation

1 Solves the model for a particular parameter vector θ - we’ll only consider a

first-order (linear) solution

2 Evaluates the likelihood density p(y |θ) using the linear Kalman filter and

assuming Gaussian shocks

3 Maximizes p(y |θ)p(θ) numerically to arrive at the mode of θ (repeating 1

and 2 each time)

4 Computes an estimate of covariance matrix of the parameters, Σ̂θ using the

result

Σ̂θ =

(
−∂

2 log(p(y |θ)

∂θ∂θ′

)−1

(1)

evaluated at the mode. The term in the brackets is the Hessian.

5 Output is reported at this stage (the prior mean, the estimated mode, its

standard deviation and a t-test). The user can stop here.

6 Proceeds to the computation of the posterior distribution using MCMC
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Introduction and Overview of Bayesian Estimation

Summary of Dynare Bayesian Estimation Procedures

1 transform the actual data to fit properties of the model (not in Dynare)

2 specify prior distributions

3 Dynare computes the log-likelihood numerically via the Kalman filter

4 finds the maximum of the likelihood and posterior mode

5 draws posterior sequences and simulates posterior distribution with

Metropolis algorithm

6 computes various statistics on the basis of the posterior distribution (post.

moments)

7 estimates the posterior marginal density (see next slides) to compare models

8 One can examine sensitivity of the results to choice of priors.

9 But before estimation the we need to examine the possibility that some

parameters may not be identified.
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Identification issues in DGSE models

Identification

• The default syntax for the identification procedures in DYNARE:

varobs dy pinfobs robs;

identification(advanced=1);

• point identification at the prior mean

• the MC exploration using the draws from the prior distribution

• identification strength measured at the mean and weighted by the prior

standard deviation.
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Identification issues in DGSE models

Identification Example: NK Model

• The output of this procedure then reveals whether or not there are

identification problems with parameter estimation:

==== Identification analysis ====

Testing prior mean

Testing prior mean

REDUCED-FORM: All parameters are identified in the Jacobian of

steady state and reduced-form solution matrices (rank(Tau) is full

with tol = robust).

MINIMAL SYSTEM (KOMUNJER AND NG, 2011): All parameters are identified

in the Jacobian of steady state and minimal system (rank(Deltabar)

is full with tol = robust).

• So far so good.
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Identification issues in DGSE models

Identification Example: NK Model

• Continuing with the identification tests:

SPECTRUM (QU AND TKACHENKO, 2012): !!!WARNING!!! The rank of Gbar

(Jacobian of mean and spectrum) is deficient by 6 (rank(Gbar) =

20 < 26 with tol = robust)!

theta dy is not identified! rhoA is not identified! rhoG is not

identified! rhoMCS is not identified! rhoMRSS is not identified!

rhoIS is not identified!

MOMENTS (ISKREV, 2010): All parameters are identified in the Jacobian

of first two moments (rank(J) is full with tol = robust).

• If the rank condition fails in any of these two procedures, the procedure

indicates which parameters are responsible for identification problems.
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Identification issues in DGSE models

Identification Example: NK model

• The following Figure shows an aggregate measure of how changes in the

elements of the parameter vector θ impact on the model moments. The

impact is measured locally using the Jacobian.

• The problem is that the derivatives are not scale invariant so not easily

comparable. For this reason here Dynare uses a

normalization/standardization procedure described in Iskrev Ratto (2011).

• Dynare plots here three different measure of sensitivity. The bars depict the
norm of the columns of three different standardized Jacobian matrices for the
respective parameter shown on the x-axis. The respective Jacobian refer to

1 the moments matrix, indicating how well a parameter can be identified
due to the strength of its impact on moments

2 the solution matrices, indicating how well a parameter could in
principle be identified if all state variables were observed

3 the Linear Rational Expectation (LRE) model, indicating trivial cases of
non-identifiability due for example to the fact that some parameters
always show up as a product in the model equations.
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Identification issues in DGSE models

Identification Example: NK model

Sensitivity bars using derivatives (log-scale)
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Figure: Identification Strength in NK Model
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Identification issues in DGSE models

Identification Example: NK model

• To completely rule out a flat likelihood at the local point one can also check

collinearity between the effects of different parameters on the likelihood.

• If there exists an exact linear dependence between a pair and among all

possible combinations their effects on the moments are not distinct and the

violation of this condition must indicate a flat likelihood and lack of

identification.

• The details of collinearity analysis require the advanced analysis option

((advanced = 1)) which prints the results of the brute force search for the

groups of parameters whose columns in the Jacobian matrix best explain

each column of the Jacobian (i.e. best reproducing the behaviour of each

single parameter).

page 11 of 31



Identification issues in DGSE models

Identification Example: NK model

Collinearity patterns with 1 parameter(s)

Parameter [ Expl. params ] cosn

chi [ sigma c ] 1.0000000

sigma c [ chi ] 1.0000000

psi [ gammap ] 0.9999849

xip [ chi ] 0.9998896

gammap [ psi ] 0.9999849

gammaw [ gammap ] 0.9986115

rho r [ theta pie ] 0.9977585

theta pie [ rho r ] 0.9977585

theta y [ rho r ] 0.9974422

SE epsMPS [ theta pie ] 0.9972525

xiw [ gammaw ] 0.9869263

rhoMPS [ theta pie ] 0.9705889
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Identification issues in DGSE models

Identification GK and BGG models

• Very different results are obtained for the GK and BGG models

• Most parameters are reported as unidentified and the advance option that

produces the identification strength and collinearity results breaks down.

• However the estimated mode is of good quality as chosen in the mode

check, the mcmc procedure converges and the posterior estimates are not

centred on the priors.

• So our estimated results look satisfactory.
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Estimation of NK and NK-Banking Models

Estimation of NK Model: Measurement Equations

• We use first-differences of non-stationary data and levels elsewhere. (The

Dynare command prefilter=1 demeans the data).

• Inflation is in gross terms and is computed as the ratio of a price index P in

two subsequent periods: Πobs
t = Pt

Pt−1

• In net terms, inflation can be approximated by the log of gross inflation,

πobst = log Πobs
t or, equivalently, πobst = log Pt − log Pt−1

• Interest rates (unlike inflation) are measured net and in annual terms, while

models are usually in quarterly terms - if the raw data is in annualised

percentage points, then you typically divide the data by 400

• If using a filter, the resulting series will have a zero mean, whereas with

first-differences you will be left with the series’ average growth rate

• If the model is entered in log-linearized form, then the filtered variables

correspond to model variables, as deviations from the steady state
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Estimation of NK and NK-Banking Models

Data

• In the notes you can find all the data sources and transformations used here:

for US data, we follow closely Smets and Wouters (2007).

• In the ‘Data Preparation’ folder you can find the raw data in Excel files, an

m-file data preparation.m using different filters, reproducing the figure

presented
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Estimation of NK and NK-Banking Models

Measurement Equations - All Models

Estimating the NK, GK and BGG models, US data in first-differences where
relevant, the corresponding measurement equations are:

D(log(GDPt)) = dy
D(log(CONSt)) = dc

D(log(It)) = di
D(log(Wt)) = dw

D(log(labobst)) = labobs
D(log(GDPDEFt) = pinfobs
FEDFUNDSt/4 ∗ 100 = robs

Spread = spreadbcc


=



log
(

Yt

Y t

)
− log

(
Yt−1

Y t−1

)
+ trend growth

log
(

Ct

C t

)
− log

(
Ct−1

C t−1

)
+ trend growth

log
(

It
I t

)
− log

(
It−1

I t−1

)
+ trend growth

log
(
Wt
W

)
− log

(
Wt−1

W

)
log
(

Πt
Π

)
+ constantΠ

log
(

Rn,t

Rn

)
+ constantRn

Rk − R


• Sample: 1966:1-2017:4 which starts at observation 75 in the data file.
• In the estimation that follows spread data is not used which leaves 7

observables and 7 shocks. This is a necessary condition for invertibility of

the state space presentation of the RE solution and the validity of the

standard perfect information solution ( see Fernandez-Villaverde et al.

(2007) and Levine et al. (2019)).
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Dynare and Matlab Files

Dynare and Matlab Files

• NK financial.mod estimates the core NK model. This includes

identification, Brook-Gelman convergence diagnostics and historical variance

decomposition. This .mod file requires a steadystate.m counterpart, with

an accompanying ss fun.m solver.

• GK financial.mod (and accompanying steady state files) estimates the GK

model with outside equity

• BGG financial.mod (and accompanying steady state files) estimates the

BGG model with a normal distribution for the idiosyncratic shock.

• Matlab programs NK validation.m etc compare first and second moments

of observed variables with those of the data used for estimation.

• All results are stored in a text file Results summary for each model

• Matlab program Comparethem.m in the sub-folder compare computes

model odds from log-likelihood values

• Matlab program acfs plot.m plots the sample ACFs and estimated ACFs.

Requires subfunctions acfcomp.m and autocov.m.
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Dynare and Matlab Files

Estimation Output

• results from posterior optimization (also for maximum likelihood)

• marginal data density (modified harmonic mean estimator - Geweke, 1999)

• mean and confidence interval from posterior simulation

• graphs with prior, posterior and mode

• graphs of smoothed shocks and smoothed observation errors

• convergence diagnostics (MCMC replications)

• graphs of posterior IRFs (optional)

• all results are stored in FILENAME results.mat (in particular, in structure

array oo )

• all MH draws are saved in the subfolder under the path:

FILENAME\metropolis – post. median
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Bayesian Model Comparison

Bayesian Model Comparison
• First consider Bayes Rule

p(θ|y) =
p(y |θ)p(θ)

p(y)
∝ p(y |θ)p(θ)

• So far we have not needed the unconditional density p(y) to maximize

p(θ|y) wrt θ.

• This is computed by integrating over the prior distribution to obtain

p(y) =

∫
Θ

p(y |θ)p(θ)dθ

• For a particular model i from a number of alternatives, say mi , we can

define a density conditional on this model

p(y |mi ) =

∫
Θ

p(y |θ,mi )p(θ,mi )dθ

where p(θ,mi ) is the prior for that model.

• We refer to p(y |mi ) as the marginal likelihood associated with model mi .
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Bayesian Model Comparison

Bayes Factor and Model Odds

• Bayesian inference now allows a framework for comparing alternative and

potentially misspecified models based on their marginal likelihoods - a

“likelihood race”

• Now construct a Posterior Odds Ratio (assuming mi and mj ):

POi ,j =
p(mi |y)

p(mj |y)
=

p(y |mi )p(mi )

p(y |mj )p(mj )

• Or a Bayes Factor (when the prior odds ratio, p(mi )
p(mj )

, is set to unity):

BFi ,j =
p(y |mi )

p(y |mj )
=

exp(LL(y |mi ))

exp(LL(y |mj ))

defining the log-likelihood

LL(y |mi ) ≡ log(p(y |mi ))

noting that x = exp(log x).
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Bayesian Model Comparison

Bayes Factor and Model Odds - cont.

• Given the Bayes factors one can easily compute the model probabilities

p1, p2, ...pn for n models. Since
∑n

i=1 pi = 1:

1

p1
=

n∑
i=2

BFi ,1

from which p1 is obtained. Then pi = p1BF (i , 1) gives the remaining model

probabilities

• modelcomparison.m, computes these probabilities given the data densities

from the competing models
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Results

Comparison of NK, GK and BGG Models

• Formal Bayesian comparison of the benchmark NK model with two financial

sector models, the GK model with outside equity and the BGG model

• Dynare Files: NK financial.mod (NK), FK financial.mod (GK),

BGG financial.mod (BGG)

• Results:

NK GK BGG

LLs (2nd stage) 5296.23 5300.27 5282.71

prob. 0.0173 0.9827 0.0000

Table: Marginal Log-likelihood Values and Posterior Model Odds
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Results

Limitations

• Such comparisons are important in the assessment of rival models

• A limitation is that the assessment of model fit is only relative to its other

rivals with different restrictions

• The outperforming model in the space of competing models may still be

poor (potentially misspecified)

• Ability of the absolute performance of one particular model against data

• Need to assess model’s implied characteristics

• Model validation with by comparison with the second moments of data.

This is often unsatisfactory.

• Use of endogenous priors as in Del Negro and Schorfheide (2008) and

Christiano et al. (2011) helps.
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Model Validation

Validation Based on Moment Criteria

• Ability to predict population moments (the absolute fit)

• Comparing second moments

• Volatility - Standard Deviations
• Co-Movement - Cross Correlations
• Persistence - Autocorrelation

• To generate moments of endogenous variables in Dynare:

• to get the model-generated moments based on actual data, simply use
the stoch simul keyword after the estimation command

• useful options for the estimation command:
mode file=FILENAME mode, load mh file and nodiagnostic

• uses post-estimation solution (post. modes or means) of the model to
produce various statistics of interest
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Model Validation

Dynare Procedures

• This line of code simulates the model and generates moments of observables

based on the post. distribution:

stoch simul(OPTIONS) y obs c obs i obs er obs pi obs rn obs etc.;

• This line of code reloads the computed posterior modes and simulated MH

sequences:

//estimation when modes and MCMC-MH draws already exist
//filename mode in the working directory

estimation(datafile = us data,mode compute=0, first obs =

12, presample = 11,mode file=FILENAME mode, prefilter =

1,mh replic=0,mh nblocks = 1,mh jscale = 0.40,mh drop =

0.2, plot priors = 0, load mh file);
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Model Validation

Results and Plots

• Again all simulation outputs are stored in the FILENAME results.mat in

the working directory ⇒ reload it to extract useful information (in the

structure array oo )

• e.g. the simulated autocorrelation function can be found on the diagonal of

the field oo .autocorr

• Need subfunctions acfcomp.m and autocov.m to compute the sample ACF.

• In the working directory, acfs plot .m plots the sample ACFs and estimated

ACFs from the model
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Model Validation

Matching Moments: Estimated Parameter Means

Model Output Investments Wage Int. Rate Inflation Spread

Means

Data 0.3551 0.3635 0.3413 1.3318 0.8663 0.8031

NK 0.3544 0.3544 0.3544 1.3075 0.8490 0.0193

GK 0.3544 0.3544 0.3544 1.3318 0.8626 0.6900

BGG 0.3544 0.3544 0.3544 1.2956 0.8442 0.7307

Standard Deviation

Data 0.8017 2.1127 0.7531 0.9493 0.5855 0.5435

NK 0.8554 2.0730 1.1089 0.6966 0.5743 1.6902

GK 0.8274 2.2799 1.0869 0.7820 0.6031 2.8354

BGG 0.8344 2.1269 1.0964 0.7804 0.5960 1.8647

Cross-correlation with Output

Data 1.00 0.6791 0.0167 -0.0675 -0.1772 0.1211

NK 1.00 0.7128 0.4622 -0.1660 -0.1461 0.3249

GK 1.00 0.6555 0.4185 -0.1154 -0.05881 0.2502

BGG 1.00 0.6069 0.4273 -0.1837 -0.1919 0.2715
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Model Validation

Autocorrelation Function Plots
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Figure: Autocorrelations of Observables in the Actual Data and in the Estimated
Models
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Exercise

Exercise on Dynare: Estimation and Comparison

1 Consider the question: How do the three models perform when additional

data on the spread is used to constrain estimation? To answer this use

usdata1947120173.mat and the eight observed variables chosen in the

notes, estimate the NK, GK and BGG models based on 10000 MCMC

draws. Interpret the results. How important are wealth effects in each of

these model?

2 You can answer the question by comparing the marginal likelihoods across

the three models (with and without financial sectors). Use Matab file

modelcomparison.m and compute the posterior model probabilities across

these two models. What is the main conclusion?
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Exercise

Christiano, L. J., Trabandt, M., and Walentin, K. (2011). Introducing financial

frictions and unemployment into a small open economy model. Journal of

Economic Dynamics and Control, 35(12), 1999–2041.

Del Negro, M. and Schorfheide, F. (2008). Forming Priors for DSGE models (and

how it affects the Assessment of Nominal Rigidities. Journal of Monetary

Economics, 55(7), 1191–1208.

Fernandez-Villaverde, J., Rubio-Ramirez, J., Sargent, T., and Watson, M. W.

(2007). ABC (and Ds) of Understanding VARs. American Economic Review,

97(3), 1021–1026.

Levine, P., Pearlman, J., Wright, S., and Yang, B. (2019). Information, VARs and

DSGE Models. Technical report, School of Economics Discussion Papers 1619,

School of Economics, University of Surrey.
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