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Bayesian Model Comparison

The Marginal Likelihood
• Go back to Bayes Rule

p(θ|y) =
p(y |θ)p(θ)

p(y)
∝ p(y |θ)p(θ)

• Suppose we have m alternative models, indexed by i = 1, 2, ...,m,
which then depend on parameters θi , so we now have

p(θi |y ,mi ) =
p(y |θi ,mi )p(θi |mi )

p(y |mi )

• We can express the probability of whether a model is correct or not
using the usual Bayes rule:

p(mi |y) =
p(y |mi )p(mi )

p(y)

• The posterior model probability p(mi |y) is a function of the prior
model probability (i.e. how likely we believe mi to be correct before
seeing the data) and the model’s marginal likelihood p(y |mi )
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Bayesian Model Comparison

The Marginal Likelihood

• For a particular model i from a number of alternatives mi we can
define a density conditional on this model

p(y |mi ) =

∫
Θ
p(y |θ,mi )p(θi |mi )dθ

by integrating wrt to θi .

• Note that the marginal likelihood depends only on the likelihood
p(y |θ,mi ) and the prior p(θ|mi )
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Bayesian Model Comparison

Bayes Factor and Model Odds
• Bayesian inference now allows a framework for comparing alternative

and potentially misspecified models based on their marginal
likelihoods - a “likelihood race”

• Now construct a Posterior Odds Ratio (assuming mi and mj):

POi ,j =
p(mi |y)

p(mj |y)
=

p(y |mi )p(mi )

p(y |mj)p(mj)

• Or a Bayes Factor (when the prior odds ratio, p(mi )
p(mj )

, is set to unity):

BFi ,j =
p(y |mi )

p(y |mj)
=

exp(LL(y |mi ))

exp(LL(y |mj))

defining the log-likelihood

LL(y |mi ) ≡ log(p(y |mi ))

noting that x = exp(log x)).
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Bayesian Model Comparison

Bayes Factor and Model Odds - cont.

• Given the Bayes factors one can easily compute the model
probabilities p1, p2, ...pn for n models. Since

∑n
i=1 pi = 1:

1

p1
=

n∑
i=2

BFi ,1

from which p1 is obtained. Then pi = p1BF (i , 1) gives the remaining
model probabilities

• model odds.m (or modelcomparison.m), computes these
probabilities given the data densities from the competing models
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Dynare and Matlab Files

Dynare and Matlab Files I

• NKlinear Est All.mod estimates model NKlinear with both habit
and indexing. Includes Brook-Gelman convergence diagnostics,
second-order stochastic simulation and historical variance
decomposition.

• NKlinear Est Habit.mod estimates model NKlinear with habit, but
no indexing. Use mode file from NKlinear Est All.mod as initial mode.

• NKlinear Est Index.mod estimates NKlinear with indexing, but no
habit. Use mode file from NKlinear Est All.mod as initial mode.

• NKlinear Est None.mod estimates NKlinear with neither habit nor
indexing (no persistence mechanisms). Use mode file from
NKlinear Est Indexing.mod as initial mode.

• Results are given for 100,000 mcmc draws but today you will need
to restrict the number to 10,000
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Dynare and Matlab Files

Dynare and Matlab Files II

• Matlab programmes model odds.m or modelcomparison.m
compute model odd from log-likelihood values

• Matlab program acfs plot.m plots the sample and estimated
Auto-Correlation Functions (acfs). Requires subfunctions
acfcomp.m and autocov.m.

• Matlab program irfs plot.m plots the impulse response functions for
the estimated model.
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Dynare and Matlab Files

Bayesian Model Comparison
• Formal Bayesian comparison of models NKlinear Est All.mod,

NKlinear Est Habit.mod, NKlinear Est Index.mod and
NKlinear Est None.mod

• Assumes a conventional Taylor rule

• Results based on LL(mcmc):

Model All Model Habit Model Index Model None

LLs(mode) -80.14 -73.52 -93.89 -85.91

LLs(mcmc) -72.29 -68.49 -91.03 -85.01

prob. 0.0219 0.9781 0.0000 0.0000

Table 1: Marginal Log-likelihood Values and Posterior Model Odds

• If there are mcmc convergence problems with some models it may be
best to use LL(mode) as the criteria.
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Dynare and Matlab Files

Limitations

• Such comparisons are important in the assessment of rival models

• A limitation is that the assessment of model fit is only relative to its
other rivals with different restrictions

• The outperforming model in the space of competing models may still
be poor (potentially misspecified)

• Ability of the absolute performance of one particular model against
data

• Need to assess model’s implied characteristics

• Model validation with data and VAR

• Forecasting performance?
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Model Validation

Validation based on standard moment criteria

• We now compare the ability of the four estimated models to predict
second moments (the absolute fit)
• To recap from Day 3: We have three sets of second moments:

• Volatility - Standard Deviations
• Co-Movement - Cross Correlations
• Persistence - Autocorrelation

• To generate moments of endogenous variables in Dynare we simply
use stoch simul:

• Uses post-estimation solution based on posterior modes or means of
the model to produce the three moment above.
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Model Validation

Results and plots
• Again all simulation outputs are stored in the

FILENAME results.mat in the working directory ⇒ reload it to
extract useful information (in the structure array oo )
• e.g. the simulated autocorrelation function can be found on the

diagonal of the field oo .autocorr
• Need subfunctions acfcomp.m and autocov.m to compute the

sample ACF.
• In the working directory, acfs plot .m plots the sample ACFs and

estimated ACFs from the model
• The next Table extends the moments comparison on Day 3 (for

Model All) to all four models
• We use 100,000 mcmc draws which takes time! During the day you

should use 10,000 and In as
• For each criterion the best-performing model is underlined.
• Mixed results: each model performs best for 2/8 criteria. But for ACFs of

higher order Slide 11 models All and Habit are clearly the best.
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Model Validation

Validation: Matching Second Moments
Standard Deviation
Output Inflation Interest rate

Data 0.5398 0.2400 0.6142

Model All 0.5928 0.3448 0.4205
Model Habit 0.5996 0.3113 0.4073
Model Index 0.6788 0.7212 0.6814
Model None 0.6886 0.5612 0.5318

Cross-correlation with Output

Data 1.000 -0.3199 0.0064

Model All 1.000 -0.0788 -0.2847
Model Habit 1.000 -0.0969 -0.2646
Model Index 1.000 0.0420 -0.0245
Model None 1.000 0.0673 -0.0492

Autocorrelations (Order=1)

Data 0.1466 0.5204 0.9371

Model All 0.0957 0.5714 0.8938
Model Habit 0.1150 0.5778 0.9074
Model Index 0.1487 0.8804 0.9667
Model None 0.1479 0.8418 0.9460
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Model Validation

Autocorrelation Function Plots
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Figure 1: Autocorrelations of Observables in the Actual Data and in the
Estimated Models
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Impulse Response Functions

Impulse Response Functions (IRFs)
• Importance of shocks to the endogenous variables of interests by

analysing the impulse response to the structural shocks in the models

• IRFs directly related from the state space representation ⇒ MA
representation (see later slide).

• Dynare procedure runs an IRF (that starts from the exact steady
state), by sampling shocks from the distribution (with 1 s.d.), to see
how the system reacts for the given periods

In Dynare:

• Simply using the stoch simul keyword following estimation, and
adding a list of variables of interest, e.g. stoch simul(irf=20) dy
pinfobs robs;, generates the IRFs using the estimated posterior means

• Again all simulation outputs from Dynare are stored in
FILENAME results.mat, so retrieving the field oo .irfs from the
above .mat file allows us to subplot and compare the IRFs from
different models (see irfs plot.m.)
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Impulse Response Functions

Impulse Response Functions (IRFs)
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Figure 2: irfs- Technology shock
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Endogenous Priors

Endogenous Priors
• In many cases, the justification for the choice of priors reflects more

the prior that some previous eminent researcher has got her priors
right!

• Del Negro and Schorfheide (2008) proposes an easily implementable
method to obtain prior distributions for DSGE model parameters
from data for moments of observable variables.

• They divide the parameters into three groups, which reflect the
information used to construct the prior:

1 Parameters that determine the steady states. These are calibrated
using the method of Day 1

2 Parameters governing the DSGE model’s endogenous propagation
mechanism where prior information coming from unrelated data sets,
e.g. the prior for the labor supply elasticity.

3 Parameters describing the propagation mechanism of exogenous
shocks.
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Endogenous Priors

Endogenous Priors For the Endogenous Shocks
• Del Negro and Schorfheide (2008) propose a method of “endogenous

priors” that translates priors for second moments of observables into a
joint prior distribution for these parameters.

• Such priors may come from pre-sample evidence, for instance, and are
assumed to be invariant across different DSGE model specifications.

• Dynare implements a version of this procedure due to Christiano et al.
(2011) except the “pre-sample” is the actual sample.

• Simply add endogenous prior to the estimation command.

• The product of the initial priors and the pre-sample likelihood of the
standard deviations of the observables is used as the new prior.

• This is really a hydrid Simulated Method of Moments (SMM) -
Bayesian Estimation Procedure.

• See the technical appendix of Christiano et al. (2011).

• The following table indicates the endogenous prior feature produces
some improvement in moment matching.
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Dynare and Matlab Files

Dynare

• NKlinear Est All End Priors.mod estimates model NKlinear with
both habit and indexing. Use mode file from NKlinear Est All.mod as
initial mode.

• NKlinear Est Habit End Priors.mod estimates model NKlinear
with habit, but no indexing. Use mode file from
NKlinear Est Habit.mod as initial mode.

• NKlinear Est Indexing End Priors.mod estimates NKlinear with
indexing, but no habit. Use mode file from
NKlinear Est Indexing.mod as initial mode.

• NKlinear Est None End Priors.mod estimates NKlinear with
neither habit nor indexing (no persistence mechanisms). Use mode
file from NKlinear Est None.mod as initial mode.

• Results are given for 100,000 mcmc draws but today you will need
to restrict the number to 10,000
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Dynare and Matlab Files

Matching Second Moments with Endogenous Priors

Standard Deviation
Output Inflation Interest rate

Data 0.5398 0.2400 0.6142

Model All (Previous) 0.5928 0.3448 0.4205
Model All (End. Priors) 0.5776 0.2738 0.3847

Cross-correlation with Output

Data 1.000 -0.3199 -0.0064

Model All (Previous) 1.000 -0.0788 -0.2847
Model All (End. Priors) 1.000 -0.0692 -0.2148

Autocorrelations (Order=1)

Data 0.1466 0.5204 0.9371

Model All (Previous) 0.0957 0.5714 0.8938
Model All (End. Priors) 0.0603 0.5432 0.8890
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Variance and Historical Decompositions

Variance and Historical Decompositions

• Variance decompositions decomposes the variation in each
endogenous variable into each shock to the system, thus providing
information on the the relative importance of each disturbance as a
source of variation for each variable

• Historical decompositions can be used for counterfactual simulations.

• The data can be decomposed into the sum of a baseline forecast and
the contribution of all shocks. This allow us to analyse how the data
would have evolved if a shock or a combination of shocks are shut
down (i.e., their contribution is zero)
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Variance and Historical Decompositions

State Space Representation Again
• Recall the state-space representation of the model solution

Xt+1 = AXt + Bεt+1 (1)

Yt = CXt (2)

where Xt is the potentially unobservable state (column) vector, Yt is
the vector of the observables (data) and εt is a vector of shocks.
• Solving (1) backwards, recursively we have

Yt = CXt = C (AXt−1 + Bεt) = C (A(AXt−2 + Bεt−1) + Bεt)

• Hence continuing with this recursive process we arrive at

Yt =
t∑

j=0

CAjεt−j + CAt+1X0 (3)

• The historical decomposition stems from this Moving Average
(MA) representation of the model state space
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Variance and Historical Decompositions

Moving Average Representation of the Solution

• To recap: the MA representation of the model state space is

Yt =
t∑

j=0

Djεt−j + CAt+1X0

for the data sample t = 1, ...,T . For each matrix Dj , denote its ith
row multiplying the ith shock by di ,j .

• If we further define the effect of the ith shock on Yt as
Yi ,t =

∑t
j=0 di ,jεi ,t−j , then we can decompose Yt as

Yt =
r∑

i=0

Yi ,t + CAt+1X0 (4)

where r is the number of shocks.

• This is what historical decomposition in Dynare produces.
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Variance and Historical Decompositions

Variance and Historical Decompositions in Dynare

• Dynare calculates each of the individual terms of (4), with the last
term, CAhX0, shown on the historical decomposition graphs as the
effect of ‘initial values’.

• The decomposition for a given sample according to the model can be
computed using the command shock decomposition which must be
followed by the estimation statement: shock decomposition
(parameter set=posterior mode) dy pinfobs robs;

• Example: using the NK linear model estimated in the earlier section -
NKlinear Est HistDecom.mod
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Variance and Historical Decompositions

Historical Decomposition of Inflation

0 10 20 30 40 50 60 70 80
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Initial values

epsMS         

epsM          

epsG          

epsA          

Figure 3: Historical Decomposition of Inflation: Model All
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Summary

Estimation, Comparison and Validation; Summary

• The choice of filter to make the data stationary - see Course Notes on
removing trends. We use differencing for output.

• The measurement equation: this links the data with the output of the
model

• the choice of priors: depends on the range of possible values for the
parameter. General guidance: inverse gamma distributions for non-negativity
constraints, beta distributions for fractions or probabilities, normal
distributions when more informative priors are necessary (uniform or ‘flat’
priors if there is little information about the parameter)

• Computation of Posterior: Bayes theorem, mode computation and MCMC.

• Model comparison: construct the Bayes Odds as above.

• Model validation: compare second moments with those of the data.

• Endogenous Priors give some improvement in matching second moments.

• DSGE-VAR & Forecasting: further model comparison and empirical
validation (tomorrow)
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Exercises

Exercises on Dynare I: Estimation and Comparison
1 Repeat the model comparison exercise across for model specifications

(all persistence mechanisms, only habit, only indexing and no
persistence mechanisms) using an implementable rule rather than
the conventional Taylor rule.

2 For today’s exercise find the posterior distribution based on 10,000 of
sets MCMC-MH simulation. But after the course repeat the process
with 100,000 draws.

3 Use mode files from the conventional Taylor rule as initial modes in
the estimation command. In most cases mode compute=4 should
give a negative definite Hessian. If not you must use
mode compute=6 which is designed to compute a negative definite
Hessian, but it takes a lot of time!

4 When you get this far you have LLs for eight models. Now conduct a
likelihood race across these eight models.

5 Since you use only 10,000 draws there will be mcmc convergence
problems with some models, so use LL(mode) as the criteria.
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Exercises

Exercises on Dynare II: Validation

1 Now repeat the moment comparison exercise using an
implementable rule rather than the conventional Taylor rule.

2 From the stochastic simulation of the estimated models with an
implementable monetary rule obtain the model-implied moments
based on the estimated posterior modes and produce the IRFs.

3 Use these results validate all eight model variants against the real
word data by extending the Table on Slide 10

4 Use acfs plot.m to compare autocorrelations of the observables in
the actual data and in the eight estimated models. (These use
MATLAB files acfcomp.m, autocov.m in the folder)

5 Use irfs plot.m to compare the impulse response functions of the
eight estimated models.
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Exercises

Christiano, L. J., Trabandt, M., and Walentin, K. (2011). Introducing
financial frictions and unemployment into a small open economy model.
Journal of Economic Dynamics and Control, 35(12), 1999—-2041.

Del Negro, M. and Schorfheide, F. (2008). Forming Priors for DSGE
models (and how it affects the Assessment of Nominal Rigidities.
Journal of Monetary Economics, 55(7), 1191–1208.
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